]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/x86.c
Merge tag 'virtio-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[~andy/linux] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         u64 value;
193         unsigned int cpu = smp_processor_id();
194         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         unsigned int cpu = smp_processor_id();
228         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230         if (((value ^ smsr->values[slot].curr) & mask) == 0)
231                 return;
232         smsr->values[slot].curr = value;
233         wrmsrl(shared_msrs_global.msrs[slot], value);
234         if (!smsr->registered) {
235                 smsr->urn.on_user_return = kvm_on_user_return;
236                 user_return_notifier_register(&smsr->urn);
237                 smsr->registered = true;
238         }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266         /* Fault while not rebooting.  We want the trace. */
267         BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code,
294                 bool reinject)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301         if (!vcpu->arch.exception.pending) {
302         queue:
303                 vcpu->arch.exception.pending = true;
304                 vcpu->arch.exception.has_error_code = has_error;
305                 vcpu->arch.exception.nr = nr;
306                 vcpu->arch.exception.error_code = error_code;
307                 vcpu->arch.exception.reinject = reinject;
308                 return;
309         }
310
311         /* to check exception */
312         prev_nr = vcpu->arch.exception.nr;
313         if (prev_nr == DF_VECTOR) {
314                 /* triple fault -> shutdown */
315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316                 return;
317         }
318         class1 = exception_class(prev_nr);
319         class2 = exception_class(nr);
320         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322                 /* generate double fault per SDM Table 5-5 */
323                 vcpu->arch.exception.pending = true;
324                 vcpu->arch.exception.has_error_code = true;
325                 vcpu->arch.exception.nr = DF_VECTOR;
326                 vcpu->arch.exception.error_code = 0;
327         } else
328                 /* replace previous exception with a new one in a hope
329                    that instruction re-execution will regenerate lost
330                    exception */
331                 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342         kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348         if (err)
349                 kvm_inject_gp(vcpu, 0);
350         else
351                 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357         ++vcpu->stat.pf_guest;
358         vcpu->arch.cr2 = fault->address;
359         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367         else
368                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373         atomic_inc(&vcpu->arch.nmi_queued);
374         kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386         kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397                 return true;
398         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399         return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409                             gfn_t ngfn, void *data, int offset, int len,
410                             u32 access)
411 {
412         gfn_t real_gfn;
413         gpa_t ngpa;
414
415         ngpa     = gfn_to_gpa(ngfn);
416         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417         if (real_gfn == UNMAPPED_GVA)
418                 return -EFAULT;
419
420         real_gfn = gpa_to_gfn(real_gfn);
421
422         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427                                void *data, int offset, int len, u32 access)
428 {
429         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430                                        data, offset, len, access);
431 }
432
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440         int i;
441         int ret;
442         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445                                       offset * sizeof(u64), sizeof(pdpte),
446                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
447         if (ret < 0) {
448                 ret = 0;
449                 goto out;
450         }
451         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452                 if (is_present_gpte(pdpte[i]) &&
453                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458         ret = 1;
459
460         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461         __set_bit(VCPU_EXREG_PDPTR,
462                   (unsigned long *)&vcpu->arch.regs_avail);
463         __set_bit(VCPU_EXREG_PDPTR,
464                   (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474         bool changed = true;
475         int offset;
476         gfn_t gfn;
477         int r;
478
479         if (is_long_mode(vcpu) || !is_pae(vcpu))
480                 return false;
481
482         if (!test_bit(VCPU_EXREG_PDPTR,
483                       (unsigned long *)&vcpu->arch.regs_avail))
484                 return true;
485
486         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
490         if (r < 0)
491                 goto out;
492         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495         return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500         unsigned long old_cr0 = kvm_read_cr0(vcpu);
501         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502                                     X86_CR0_CD | X86_CR0_NW;
503
504         cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507         if (cr0 & 0xffffffff00000000UL)
508                 return 1;
509 #endif
510
511         cr0 &= ~CR0_RESERVED_BITS;
512
513         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514                 return 1;
515
516         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517                 return 1;
518
519         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521                 if ((vcpu->arch.efer & EFER_LME)) {
522                         int cs_db, cs_l;
523
524                         if (!is_pae(vcpu))
525                                 return 1;
526                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527                         if (cs_l)
528                                 return 1;
529                 } else
530 #endif
531                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532                                                  kvm_read_cr3(vcpu)))
533                         return 1;
534         }
535
536         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537                 return 1;
538
539         kvm_x86_ops->set_cr0(vcpu, cr0);
540
541         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542                 kvm_clear_async_pf_completion_queue(vcpu);
543                 kvm_async_pf_hash_reset(vcpu);
544         }
545
546         if ((cr0 ^ old_cr0) & update_bits)
547                 kvm_mmu_reset_context(vcpu);
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561                         !vcpu->guest_xcr0_loaded) {
562                 /* kvm_set_xcr() also depends on this */
563                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564                 vcpu->guest_xcr0_loaded = 1;
565         }
566 }
567
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->guest_xcr0_loaded) {
571                 if (vcpu->arch.xcr0 != host_xcr0)
572                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573                 vcpu->guest_xcr0_loaded = 0;
574         }
575 }
576
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579         u64 xcr0;
580
581         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
582         if (index != XCR_XFEATURE_ENABLED_MASK)
583                 return 1;
584         xcr0 = xcr;
585         if (!(xcr0 & XSTATE_FP))
586                 return 1;
587         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588                 return 1;
589         if (xcr0 & ~host_xcr0)
590                 return 1;
591         kvm_put_guest_xcr0(vcpu);
592         vcpu->arch.xcr0 = xcr0;
593         return 0;
594 }
595
596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599             __kvm_set_xcr(vcpu, index, xcr)) {
600                 kvm_inject_gp(vcpu, 0);
601                 return 1;
602         }
603         return 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
606
607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
608 {
609         unsigned long old_cr4 = kvm_read_cr4(vcpu);
610         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611                                    X86_CR4_PAE | X86_CR4_SMEP;
612         if (cr4 & CR4_RESERVED_BITS)
613                 return 1;
614
615         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616                 return 1;
617
618         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619                 return 1;
620
621         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
622                 return 1;
623
624         if (is_long_mode(vcpu)) {
625                 if (!(cr4 & X86_CR4_PAE))
626                         return 1;
627         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628                    && ((cr4 ^ old_cr4) & pdptr_bits)
629                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630                                    kvm_read_cr3(vcpu)))
631                 return 1;
632
633         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634                 if (!guest_cpuid_has_pcid(vcpu))
635                         return 1;
636
637                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639                         return 1;
640         }
641
642         if (kvm_x86_ops->set_cr4(vcpu, cr4))
643                 return 1;
644
645         if (((cr4 ^ old_cr4) & pdptr_bits) ||
646             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647                 kvm_mmu_reset_context(vcpu);
648
649         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650                 kvm_update_cpuid(vcpu);
651
652         return 0;
653 }
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
655
656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
657 {
658         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659                 kvm_mmu_sync_roots(vcpu);
660                 kvm_mmu_flush_tlb(vcpu);
661                 return 0;
662         }
663
664         if (is_long_mode(vcpu)) {
665                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667                                 return 1;
668                 } else
669                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
670                                 return 1;
671         } else {
672                 if (is_pae(vcpu)) {
673                         if (cr3 & CR3_PAE_RESERVED_BITS)
674                                 return 1;
675                         if (is_paging(vcpu) &&
676                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677                                 return 1;
678                 }
679                 /*
680                  * We don't check reserved bits in nonpae mode, because
681                  * this isn't enforced, and VMware depends on this.
682                  */
683         }
684
685         /*
686          * Does the new cr3 value map to physical memory? (Note, we
687          * catch an invalid cr3 even in real-mode, because it would
688          * cause trouble later on when we turn on paging anyway.)
689          *
690          * A real CPU would silently accept an invalid cr3 and would
691          * attempt to use it - with largely undefined (and often hard
692          * to debug) behavior on the guest side.
693          */
694         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
695                 return 1;
696         vcpu->arch.cr3 = cr3;
697         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
698         vcpu->arch.mmu.new_cr3(vcpu);
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_cr3);
702
703 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
704 {
705         if (cr8 & CR8_RESERVED_BITS)
706                 return 1;
707         if (irqchip_in_kernel(vcpu->kvm))
708                 kvm_lapic_set_tpr(vcpu, cr8);
709         else
710                 vcpu->arch.cr8 = cr8;
711         return 0;
712 }
713 EXPORT_SYMBOL_GPL(kvm_set_cr8);
714
715 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
716 {
717         if (irqchip_in_kernel(vcpu->kvm))
718                 return kvm_lapic_get_cr8(vcpu);
719         else
720                 return vcpu->arch.cr8;
721 }
722 EXPORT_SYMBOL_GPL(kvm_get_cr8);
723
724 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
725 {
726         unsigned long dr7;
727
728         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
729                 dr7 = vcpu->arch.guest_debug_dr7;
730         else
731                 dr7 = vcpu->arch.dr7;
732         kvm_x86_ops->set_dr7(vcpu, dr7);
733         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
734 }
735
736 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738         switch (dr) {
739         case 0 ... 3:
740                 vcpu->arch.db[dr] = val;
741                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
742                         vcpu->arch.eff_db[dr] = val;
743                 break;
744         case 4:
745                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
746                         return 1; /* #UD */
747                 /* fall through */
748         case 6:
749                 if (val & 0xffffffff00000000ULL)
750                         return -1; /* #GP */
751                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
752                 break;
753         case 5:
754                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
755                         return 1; /* #UD */
756                 /* fall through */
757         default: /* 7 */
758                 if (val & 0xffffffff00000000ULL)
759                         return -1; /* #GP */
760                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
761                 kvm_update_dr7(vcpu);
762                 break;
763         }
764
765         return 0;
766 }
767
768 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
769 {
770         int res;
771
772         res = __kvm_set_dr(vcpu, dr, val);
773         if (res > 0)
774                 kvm_queue_exception(vcpu, UD_VECTOR);
775         else if (res < 0)
776                 kvm_inject_gp(vcpu, 0);
777
778         return res;
779 }
780 EXPORT_SYMBOL_GPL(kvm_set_dr);
781
782 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784         switch (dr) {
785         case 0 ... 3:
786                 *val = vcpu->arch.db[dr];
787                 break;
788         case 4:
789                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
790                         return 1;
791                 /* fall through */
792         case 6:
793                 *val = vcpu->arch.dr6;
794                 break;
795         case 5:
796                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
797                         return 1;
798                 /* fall through */
799         default: /* 7 */
800                 *val = vcpu->arch.dr7;
801                 break;
802         }
803
804         return 0;
805 }
806
807 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
808 {
809         if (_kvm_get_dr(vcpu, dr, val)) {
810                 kvm_queue_exception(vcpu, UD_VECTOR);
811                 return 1;
812         }
813         return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_get_dr);
816
817 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
818 {
819         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
820         u64 data;
821         int err;
822
823         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
824         if (err)
825                 return err;
826         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
827         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
828         return err;
829 }
830 EXPORT_SYMBOL_GPL(kvm_rdpmc);
831
832 /*
833  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
834  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
835  *
836  * This list is modified at module load time to reflect the
837  * capabilities of the host cpu. This capabilities test skips MSRs that are
838  * kvm-specific. Those are put in the beginning of the list.
839  */
840
841 #define KVM_SAVE_MSRS_BEGIN     10
842 static u32 msrs_to_save[] = {
843         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
844         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
845         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
846         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
847         MSR_KVM_PV_EOI_EN,
848         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
849         MSR_STAR,
850 #ifdef CONFIG_X86_64
851         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
852 #endif
853         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
854 };
855
856 static unsigned num_msrs_to_save;
857
858 static const u32 emulated_msrs[] = {
859         MSR_IA32_TSC_ADJUST,
860         MSR_IA32_TSCDEADLINE,
861         MSR_IA32_MISC_ENABLE,
862         MSR_IA32_MCG_STATUS,
863         MSR_IA32_MCG_CTL,
864 };
865
866 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
867 {
868         if (efer & efer_reserved_bits)
869                 return false;
870
871         if (efer & EFER_FFXSR) {
872                 struct kvm_cpuid_entry2 *feat;
873
874                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
875                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
876                         return false;
877         }
878
879         if (efer & EFER_SVME) {
880                 struct kvm_cpuid_entry2 *feat;
881
882                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
883                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
884                         return false;
885         }
886
887         return true;
888 }
889 EXPORT_SYMBOL_GPL(kvm_valid_efer);
890
891 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
892 {
893         u64 old_efer = vcpu->arch.efer;
894
895         if (!kvm_valid_efer(vcpu, efer))
896                 return 1;
897
898         if (is_paging(vcpu)
899             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
900                 return 1;
901
902         efer &= ~EFER_LMA;
903         efer |= vcpu->arch.efer & EFER_LMA;
904
905         kvm_x86_ops->set_efer(vcpu, efer);
906
907         /* Update reserved bits */
908         if ((efer ^ old_efer) & EFER_NX)
909                 kvm_mmu_reset_context(vcpu);
910
911         return 0;
912 }
913
914 void kvm_enable_efer_bits(u64 mask)
915 {
916        efer_reserved_bits &= ~mask;
917 }
918 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
919
920
921 /*
922  * Writes msr value into into the appropriate "register".
923  * Returns 0 on success, non-0 otherwise.
924  * Assumes vcpu_load() was already called.
925  */
926 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
927 {
928         return kvm_x86_ops->set_msr(vcpu, msr);
929 }
930
931 /*
932  * Adapt set_msr() to msr_io()'s calling convention
933  */
934 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
935 {
936         struct msr_data msr;
937
938         msr.data = *data;
939         msr.index = index;
940         msr.host_initiated = true;
941         return kvm_set_msr(vcpu, &msr);
942 }
943
944 #ifdef CONFIG_X86_64
945 struct pvclock_gtod_data {
946         seqcount_t      seq;
947
948         struct { /* extract of a clocksource struct */
949                 int vclock_mode;
950                 cycle_t cycle_last;
951                 cycle_t mask;
952                 u32     mult;
953                 u32     shift;
954         } clock;
955
956         /* open coded 'struct timespec' */
957         u64             monotonic_time_snsec;
958         time_t          monotonic_time_sec;
959 };
960
961 static struct pvclock_gtod_data pvclock_gtod_data;
962
963 static void update_pvclock_gtod(struct timekeeper *tk)
964 {
965         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
966
967         write_seqcount_begin(&vdata->seq);
968
969         /* copy pvclock gtod data */
970         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
971         vdata->clock.cycle_last         = tk->clock->cycle_last;
972         vdata->clock.mask               = tk->clock->mask;
973         vdata->clock.mult               = tk->mult;
974         vdata->clock.shift              = tk->shift;
975
976         vdata->monotonic_time_sec       = tk->xtime_sec
977                                         + tk->wall_to_monotonic.tv_sec;
978         vdata->monotonic_time_snsec     = tk->xtime_nsec
979                                         + (tk->wall_to_monotonic.tv_nsec
980                                                 << tk->shift);
981         while (vdata->monotonic_time_snsec >=
982                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
983                 vdata->monotonic_time_snsec -=
984                                         ((u64)NSEC_PER_SEC) << tk->shift;
985                 vdata->monotonic_time_sec++;
986         }
987
988         write_seqcount_end(&vdata->seq);
989 }
990 #endif
991
992
993 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
994 {
995         int version;
996         int r;
997         struct pvclock_wall_clock wc;
998         struct timespec boot;
999
1000         if (!wall_clock)
1001                 return;
1002
1003         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1004         if (r)
1005                 return;
1006
1007         if (version & 1)
1008                 ++version;  /* first time write, random junk */
1009
1010         ++version;
1011
1012         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1013
1014         /*
1015          * The guest calculates current wall clock time by adding
1016          * system time (updated by kvm_guest_time_update below) to the
1017          * wall clock specified here.  guest system time equals host
1018          * system time for us, thus we must fill in host boot time here.
1019          */
1020         getboottime(&boot);
1021
1022         if (kvm->arch.kvmclock_offset) {
1023                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1024                 boot = timespec_sub(boot, ts);
1025         }
1026         wc.sec = boot.tv_sec;
1027         wc.nsec = boot.tv_nsec;
1028         wc.version = version;
1029
1030         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1031
1032         version++;
1033         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1034 }
1035
1036 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1037 {
1038         uint32_t quotient, remainder;
1039
1040         /* Don't try to replace with do_div(), this one calculates
1041          * "(dividend << 32) / divisor" */
1042         __asm__ ( "divl %4"
1043                   : "=a" (quotient), "=d" (remainder)
1044                   : "0" (0), "1" (dividend), "r" (divisor) );
1045         return quotient;
1046 }
1047
1048 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1049                                s8 *pshift, u32 *pmultiplier)
1050 {
1051         uint64_t scaled64;
1052         int32_t  shift = 0;
1053         uint64_t tps64;
1054         uint32_t tps32;
1055
1056         tps64 = base_khz * 1000LL;
1057         scaled64 = scaled_khz * 1000LL;
1058         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1059                 tps64 >>= 1;
1060                 shift--;
1061         }
1062
1063         tps32 = (uint32_t)tps64;
1064         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1065                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1066                         scaled64 >>= 1;
1067                 else
1068                         tps32 <<= 1;
1069                 shift++;
1070         }
1071
1072         *pshift = shift;
1073         *pmultiplier = div_frac(scaled64, tps32);
1074
1075         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1076                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1077 }
1078
1079 static inline u64 get_kernel_ns(void)
1080 {
1081         struct timespec ts;
1082
1083         WARN_ON(preemptible());
1084         ktime_get_ts(&ts);
1085         monotonic_to_bootbased(&ts);
1086         return timespec_to_ns(&ts);
1087 }
1088
1089 #ifdef CONFIG_X86_64
1090 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1091 #endif
1092
1093 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1094 unsigned long max_tsc_khz;
1095
1096 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1097 {
1098         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1099                                    vcpu->arch.virtual_tsc_shift);
1100 }
1101
1102 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1103 {
1104         u64 v = (u64)khz * (1000000 + ppm);
1105         do_div(v, 1000000);
1106         return v;
1107 }
1108
1109 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1110 {
1111         u32 thresh_lo, thresh_hi;
1112         int use_scaling = 0;
1113
1114         /* tsc_khz can be zero if TSC calibration fails */
1115         if (this_tsc_khz == 0)
1116                 return;
1117
1118         /* Compute a scale to convert nanoseconds in TSC cycles */
1119         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1120                            &vcpu->arch.virtual_tsc_shift,
1121                            &vcpu->arch.virtual_tsc_mult);
1122         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1123
1124         /*
1125          * Compute the variation in TSC rate which is acceptable
1126          * within the range of tolerance and decide if the
1127          * rate being applied is within that bounds of the hardware
1128          * rate.  If so, no scaling or compensation need be done.
1129          */
1130         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1131         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1132         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1133                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1134                 use_scaling = 1;
1135         }
1136         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1137 }
1138
1139 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1140 {
1141         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1142                                       vcpu->arch.virtual_tsc_mult,
1143                                       vcpu->arch.virtual_tsc_shift);
1144         tsc += vcpu->arch.this_tsc_write;
1145         return tsc;
1146 }
1147
1148 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1149 {
1150 #ifdef CONFIG_X86_64
1151         bool vcpus_matched;
1152         bool do_request = false;
1153         struct kvm_arch *ka = &vcpu->kvm->arch;
1154         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1155
1156         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1157                          atomic_read(&vcpu->kvm->online_vcpus));
1158
1159         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1160                 if (!ka->use_master_clock)
1161                         do_request = 1;
1162
1163         if (!vcpus_matched && ka->use_master_clock)
1164                         do_request = 1;
1165
1166         if (do_request)
1167                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1168
1169         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1170                             atomic_read(&vcpu->kvm->online_vcpus),
1171                             ka->use_master_clock, gtod->clock.vclock_mode);
1172 #endif
1173 }
1174
1175 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1176 {
1177         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1178         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1179 }
1180
1181 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1182 {
1183         struct kvm *kvm = vcpu->kvm;
1184         u64 offset, ns, elapsed;
1185         unsigned long flags;
1186         s64 usdiff;
1187         bool matched;
1188         u64 data = msr->data;
1189
1190         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1191         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1192         ns = get_kernel_ns();
1193         elapsed = ns - kvm->arch.last_tsc_nsec;
1194
1195         if (vcpu->arch.virtual_tsc_khz) {
1196                 int faulted = 0;
1197
1198                 /* n.b - signed multiplication and division required */
1199                 usdiff = data - kvm->arch.last_tsc_write;
1200 #ifdef CONFIG_X86_64
1201                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1202 #else
1203                 /* do_div() only does unsigned */
1204                 asm("1: idivl %[divisor]\n"
1205                     "2: xor %%edx, %%edx\n"
1206                     "   movl $0, %[faulted]\n"
1207                     "3:\n"
1208                     ".section .fixup,\"ax\"\n"
1209                     "4: movl $1, %[faulted]\n"
1210                     "   jmp  3b\n"
1211                     ".previous\n"
1212
1213                 _ASM_EXTABLE(1b, 4b)
1214
1215                 : "=A"(usdiff), [faulted] "=r" (faulted)
1216                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1217
1218 #endif
1219                 do_div(elapsed, 1000);
1220                 usdiff -= elapsed;
1221                 if (usdiff < 0)
1222                         usdiff = -usdiff;
1223
1224                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1225                 if (faulted)
1226                         usdiff = USEC_PER_SEC;
1227         } else
1228                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1229
1230         /*
1231          * Special case: TSC write with a small delta (1 second) of virtual
1232          * cycle time against real time is interpreted as an attempt to
1233          * synchronize the CPU.
1234          *
1235          * For a reliable TSC, we can match TSC offsets, and for an unstable
1236          * TSC, we add elapsed time in this computation.  We could let the
1237          * compensation code attempt to catch up if we fall behind, but
1238          * it's better to try to match offsets from the beginning.
1239          */
1240         if (usdiff < USEC_PER_SEC &&
1241             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1242                 if (!check_tsc_unstable()) {
1243                         offset = kvm->arch.cur_tsc_offset;
1244                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1245                 } else {
1246                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1247                         data += delta;
1248                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1249                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1250                 }
1251                 matched = true;
1252         } else {
1253                 /*
1254                  * We split periods of matched TSC writes into generations.
1255                  * For each generation, we track the original measured
1256                  * nanosecond time, offset, and write, so if TSCs are in
1257                  * sync, we can match exact offset, and if not, we can match
1258                  * exact software computation in compute_guest_tsc()
1259                  *
1260                  * These values are tracked in kvm->arch.cur_xxx variables.
1261                  */
1262                 kvm->arch.cur_tsc_generation++;
1263                 kvm->arch.cur_tsc_nsec = ns;
1264                 kvm->arch.cur_tsc_write = data;
1265                 kvm->arch.cur_tsc_offset = offset;
1266                 matched = false;
1267                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1268                          kvm->arch.cur_tsc_generation, data);
1269         }
1270
1271         /*
1272          * We also track th most recent recorded KHZ, write and time to
1273          * allow the matching interval to be extended at each write.
1274          */
1275         kvm->arch.last_tsc_nsec = ns;
1276         kvm->arch.last_tsc_write = data;
1277         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1278
1279         /* Reset of TSC must disable overshoot protection below */
1280         vcpu->arch.hv_clock.tsc_timestamp = 0;
1281         vcpu->arch.last_guest_tsc = data;
1282
1283         /* Keep track of which generation this VCPU has synchronized to */
1284         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1285         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1286         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1287
1288         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1289                 update_ia32_tsc_adjust_msr(vcpu, offset);
1290         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1291         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1292
1293         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1294         if (matched)
1295                 kvm->arch.nr_vcpus_matched_tsc++;
1296         else
1297                 kvm->arch.nr_vcpus_matched_tsc = 0;
1298
1299         kvm_track_tsc_matching(vcpu);
1300         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1301 }
1302
1303 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1304
1305 #ifdef CONFIG_X86_64
1306
1307 static cycle_t read_tsc(void)
1308 {
1309         cycle_t ret;
1310         u64 last;
1311
1312         /*
1313          * Empirically, a fence (of type that depends on the CPU)
1314          * before rdtsc is enough to ensure that rdtsc is ordered
1315          * with respect to loads.  The various CPU manuals are unclear
1316          * as to whether rdtsc can be reordered with later loads,
1317          * but no one has ever seen it happen.
1318          */
1319         rdtsc_barrier();
1320         ret = (cycle_t)vget_cycles();
1321
1322         last = pvclock_gtod_data.clock.cycle_last;
1323
1324         if (likely(ret >= last))
1325                 return ret;
1326
1327         /*
1328          * GCC likes to generate cmov here, but this branch is extremely
1329          * predictable (it's just a funciton of time and the likely is
1330          * very likely) and there's a data dependence, so force GCC
1331          * to generate a branch instead.  I don't barrier() because
1332          * we don't actually need a barrier, and if this function
1333          * ever gets inlined it will generate worse code.
1334          */
1335         asm volatile ("");
1336         return last;
1337 }
1338
1339 static inline u64 vgettsc(cycle_t *cycle_now)
1340 {
1341         long v;
1342         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1343
1344         *cycle_now = read_tsc();
1345
1346         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1347         return v * gtod->clock.mult;
1348 }
1349
1350 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1351 {
1352         unsigned long seq;
1353         u64 ns;
1354         int mode;
1355         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1356
1357         ts->tv_nsec = 0;
1358         do {
1359                 seq = read_seqcount_begin(&gtod->seq);
1360                 mode = gtod->clock.vclock_mode;
1361                 ts->tv_sec = gtod->monotonic_time_sec;
1362                 ns = gtod->monotonic_time_snsec;
1363                 ns += vgettsc(cycle_now);
1364                 ns >>= gtod->clock.shift;
1365         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1366         timespec_add_ns(ts, ns);
1367
1368         return mode;
1369 }
1370
1371 /* returns true if host is using tsc clocksource */
1372 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1373 {
1374         struct timespec ts;
1375
1376         /* checked again under seqlock below */
1377         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1378                 return false;
1379
1380         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1381                 return false;
1382
1383         monotonic_to_bootbased(&ts);
1384         *kernel_ns = timespec_to_ns(&ts);
1385
1386         return true;
1387 }
1388 #endif
1389
1390 /*
1391  *
1392  * Assuming a stable TSC across physical CPUS, and a stable TSC
1393  * across virtual CPUs, the following condition is possible.
1394  * Each numbered line represents an event visible to both
1395  * CPUs at the next numbered event.
1396  *
1397  * "timespecX" represents host monotonic time. "tscX" represents
1398  * RDTSC value.
1399  *
1400  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1401  *
1402  * 1.  read timespec0,tsc0
1403  * 2.                                   | timespec1 = timespec0 + N
1404  *                                      | tsc1 = tsc0 + M
1405  * 3. transition to guest               | transition to guest
1406  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1407  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1408  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1409  *
1410  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1411  *
1412  *      - ret0 < ret1
1413  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1414  *              ...
1415  *      - 0 < N - M => M < N
1416  *
1417  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1418  * always the case (the difference between two distinct xtime instances
1419  * might be smaller then the difference between corresponding TSC reads,
1420  * when updating guest vcpus pvclock areas).
1421  *
1422  * To avoid that problem, do not allow visibility of distinct
1423  * system_timestamp/tsc_timestamp values simultaneously: use a master
1424  * copy of host monotonic time values. Update that master copy
1425  * in lockstep.
1426  *
1427  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1428  *
1429  */
1430
1431 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1432 {
1433 #ifdef CONFIG_X86_64
1434         struct kvm_arch *ka = &kvm->arch;
1435         int vclock_mode;
1436         bool host_tsc_clocksource, vcpus_matched;
1437
1438         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1439                         atomic_read(&kvm->online_vcpus));
1440
1441         /*
1442          * If the host uses TSC clock, then passthrough TSC as stable
1443          * to the guest.
1444          */
1445         host_tsc_clocksource = kvm_get_time_and_clockread(
1446                                         &ka->master_kernel_ns,
1447                                         &ka->master_cycle_now);
1448
1449         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1450
1451         if (ka->use_master_clock)
1452                 atomic_set(&kvm_guest_has_master_clock, 1);
1453
1454         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1455         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1456                                         vcpus_matched);
1457 #endif
1458 }
1459
1460 static int kvm_guest_time_update(struct kvm_vcpu *v)
1461 {
1462         unsigned long flags, this_tsc_khz;
1463         struct kvm_vcpu_arch *vcpu = &v->arch;
1464         struct kvm_arch *ka = &v->kvm->arch;
1465         s64 kernel_ns, max_kernel_ns;
1466         u64 tsc_timestamp, host_tsc;
1467         struct pvclock_vcpu_time_info guest_hv_clock;
1468         u8 pvclock_flags;
1469         bool use_master_clock;
1470
1471         kernel_ns = 0;
1472         host_tsc = 0;
1473
1474         /*
1475          * If the host uses TSC clock, then passthrough TSC as stable
1476          * to the guest.
1477          */
1478         spin_lock(&ka->pvclock_gtod_sync_lock);
1479         use_master_clock = ka->use_master_clock;
1480         if (use_master_clock) {
1481                 host_tsc = ka->master_cycle_now;
1482                 kernel_ns = ka->master_kernel_ns;
1483         }
1484         spin_unlock(&ka->pvclock_gtod_sync_lock);
1485
1486         /* Keep irq disabled to prevent changes to the clock */
1487         local_irq_save(flags);
1488         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1489         if (unlikely(this_tsc_khz == 0)) {
1490                 local_irq_restore(flags);
1491                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1492                 return 1;
1493         }
1494         if (!use_master_clock) {
1495                 host_tsc = native_read_tsc();
1496                 kernel_ns = get_kernel_ns();
1497         }
1498
1499         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1500
1501         /*
1502          * We may have to catch up the TSC to match elapsed wall clock
1503          * time for two reasons, even if kvmclock is used.
1504          *   1) CPU could have been running below the maximum TSC rate
1505          *   2) Broken TSC compensation resets the base at each VCPU
1506          *      entry to avoid unknown leaps of TSC even when running
1507          *      again on the same CPU.  This may cause apparent elapsed
1508          *      time to disappear, and the guest to stand still or run
1509          *      very slowly.
1510          */
1511         if (vcpu->tsc_catchup) {
1512                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1513                 if (tsc > tsc_timestamp) {
1514                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1515                         tsc_timestamp = tsc;
1516                 }
1517         }
1518
1519         local_irq_restore(flags);
1520
1521         if (!vcpu->pv_time_enabled)
1522                 return 0;
1523
1524         /*
1525          * Time as measured by the TSC may go backwards when resetting the base
1526          * tsc_timestamp.  The reason for this is that the TSC resolution is
1527          * higher than the resolution of the other clock scales.  Thus, many
1528          * possible measurments of the TSC correspond to one measurement of any
1529          * other clock, and so a spread of values is possible.  This is not a
1530          * problem for the computation of the nanosecond clock; with TSC rates
1531          * around 1GHZ, there can only be a few cycles which correspond to one
1532          * nanosecond value, and any path through this code will inevitably
1533          * take longer than that.  However, with the kernel_ns value itself,
1534          * the precision may be much lower, down to HZ granularity.  If the
1535          * first sampling of TSC against kernel_ns ends in the low part of the
1536          * range, and the second in the high end of the range, we can get:
1537          *
1538          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1539          *
1540          * As the sampling errors potentially range in the thousands of cycles,
1541          * it is possible such a time value has already been observed by the
1542          * guest.  To protect against this, we must compute the system time as
1543          * observed by the guest and ensure the new system time is greater.
1544          */
1545         max_kernel_ns = 0;
1546         if (vcpu->hv_clock.tsc_timestamp) {
1547                 max_kernel_ns = vcpu->last_guest_tsc -
1548                                 vcpu->hv_clock.tsc_timestamp;
1549                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1550                                     vcpu->hv_clock.tsc_to_system_mul,
1551                                     vcpu->hv_clock.tsc_shift);
1552                 max_kernel_ns += vcpu->last_kernel_ns;
1553         }
1554
1555         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1556                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1557                                    &vcpu->hv_clock.tsc_shift,
1558                                    &vcpu->hv_clock.tsc_to_system_mul);
1559                 vcpu->hw_tsc_khz = this_tsc_khz;
1560         }
1561
1562         /* with a master <monotonic time, tsc value> tuple,
1563          * pvclock clock reads always increase at the (scaled) rate
1564          * of guest TSC - no need to deal with sampling errors.
1565          */
1566         if (!use_master_clock) {
1567                 if (max_kernel_ns > kernel_ns)
1568                         kernel_ns = max_kernel_ns;
1569         }
1570         /* With all the info we got, fill in the values */
1571         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1572         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1573         vcpu->last_kernel_ns = kernel_ns;
1574         vcpu->last_guest_tsc = tsc_timestamp;
1575
1576         /*
1577          * The interface expects us to write an even number signaling that the
1578          * update is finished. Since the guest won't see the intermediate
1579          * state, we just increase by 2 at the end.
1580          */
1581         vcpu->hv_clock.version += 2;
1582
1583         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1584                 &guest_hv_clock, sizeof(guest_hv_clock))))
1585                 return 0;
1586
1587         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1588         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1589
1590         if (vcpu->pvclock_set_guest_stopped_request) {
1591                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1592                 vcpu->pvclock_set_guest_stopped_request = false;
1593         }
1594
1595         /* If the host uses TSC clocksource, then it is stable */
1596         if (use_master_clock)
1597                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1598
1599         vcpu->hv_clock.flags = pvclock_flags;
1600
1601         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1602                                 &vcpu->hv_clock,
1603                                 sizeof(vcpu->hv_clock));
1604         return 0;
1605 }
1606
1607 /*
1608  * kvmclock updates which are isolated to a given vcpu, such as
1609  * vcpu->cpu migration, should not allow system_timestamp from
1610  * the rest of the vcpus to remain static. Otherwise ntp frequency
1611  * correction applies to one vcpu's system_timestamp but not
1612  * the others.
1613  *
1614  * So in those cases, request a kvmclock update for all vcpus.
1615  * The worst case for a remote vcpu to update its kvmclock
1616  * is then bounded by maximum nohz sleep latency.
1617  */
1618
1619 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1620 {
1621         int i;
1622         struct kvm *kvm = v->kvm;
1623         struct kvm_vcpu *vcpu;
1624
1625         kvm_for_each_vcpu(i, vcpu, kvm) {
1626                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1627                 kvm_vcpu_kick(vcpu);
1628         }
1629 }
1630
1631 static bool msr_mtrr_valid(unsigned msr)
1632 {
1633         switch (msr) {
1634         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1635         case MSR_MTRRfix64K_00000:
1636         case MSR_MTRRfix16K_80000:
1637         case MSR_MTRRfix16K_A0000:
1638         case MSR_MTRRfix4K_C0000:
1639         case MSR_MTRRfix4K_C8000:
1640         case MSR_MTRRfix4K_D0000:
1641         case MSR_MTRRfix4K_D8000:
1642         case MSR_MTRRfix4K_E0000:
1643         case MSR_MTRRfix4K_E8000:
1644         case MSR_MTRRfix4K_F0000:
1645         case MSR_MTRRfix4K_F8000:
1646         case MSR_MTRRdefType:
1647         case MSR_IA32_CR_PAT:
1648                 return true;
1649         case 0x2f8:
1650                 return true;
1651         }
1652         return false;
1653 }
1654
1655 static bool valid_pat_type(unsigned t)
1656 {
1657         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1658 }
1659
1660 static bool valid_mtrr_type(unsigned t)
1661 {
1662         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1663 }
1664
1665 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1666 {
1667         int i;
1668
1669         if (!msr_mtrr_valid(msr))
1670                 return false;
1671
1672         if (msr == MSR_IA32_CR_PAT) {
1673                 for (i = 0; i < 8; i++)
1674                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1675                                 return false;
1676                 return true;
1677         } else if (msr == MSR_MTRRdefType) {
1678                 if (data & ~0xcff)
1679                         return false;
1680                 return valid_mtrr_type(data & 0xff);
1681         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1682                 for (i = 0; i < 8 ; i++)
1683                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1684                                 return false;
1685                 return true;
1686         }
1687
1688         /* variable MTRRs */
1689         return valid_mtrr_type(data & 0xff);
1690 }
1691
1692 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1693 {
1694         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1695
1696         if (!mtrr_valid(vcpu, msr, data))
1697                 return 1;
1698
1699         if (msr == MSR_MTRRdefType) {
1700                 vcpu->arch.mtrr_state.def_type = data;
1701                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1702         } else if (msr == MSR_MTRRfix64K_00000)
1703                 p[0] = data;
1704         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1705                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1706         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1707                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1708         else if (msr == MSR_IA32_CR_PAT)
1709                 vcpu->arch.pat = data;
1710         else {  /* Variable MTRRs */
1711                 int idx, is_mtrr_mask;
1712                 u64 *pt;
1713
1714                 idx = (msr - 0x200) / 2;
1715                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1716                 if (!is_mtrr_mask)
1717                         pt =
1718                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1719                 else
1720                         pt =
1721                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1722                 *pt = data;
1723         }
1724
1725         kvm_mmu_reset_context(vcpu);
1726         return 0;
1727 }
1728
1729 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1730 {
1731         u64 mcg_cap = vcpu->arch.mcg_cap;
1732         unsigned bank_num = mcg_cap & 0xff;
1733
1734         switch (msr) {
1735         case MSR_IA32_MCG_STATUS:
1736                 vcpu->arch.mcg_status = data;
1737                 break;
1738         case MSR_IA32_MCG_CTL:
1739                 if (!(mcg_cap & MCG_CTL_P))
1740                         return 1;
1741                 if (data != 0 && data != ~(u64)0)
1742                         return -1;
1743                 vcpu->arch.mcg_ctl = data;
1744                 break;
1745         default:
1746                 if (msr >= MSR_IA32_MC0_CTL &&
1747                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1748                         u32 offset = msr - MSR_IA32_MC0_CTL;
1749                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1750                          * some Linux kernels though clear bit 10 in bank 4 to
1751                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1752                          * this to avoid an uncatched #GP in the guest
1753                          */
1754                         if ((offset & 0x3) == 0 &&
1755                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1756                                 return -1;
1757                         vcpu->arch.mce_banks[offset] = data;
1758                         break;
1759                 }
1760                 return 1;
1761         }
1762         return 0;
1763 }
1764
1765 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1766 {
1767         struct kvm *kvm = vcpu->kvm;
1768         int lm = is_long_mode(vcpu);
1769         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1770                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1771         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1772                 : kvm->arch.xen_hvm_config.blob_size_32;
1773         u32 page_num = data & ~PAGE_MASK;
1774         u64 page_addr = data & PAGE_MASK;
1775         u8 *page;
1776         int r;
1777
1778         r = -E2BIG;
1779         if (page_num >= blob_size)
1780                 goto out;
1781         r = -ENOMEM;
1782         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1783         if (IS_ERR(page)) {
1784                 r = PTR_ERR(page);
1785                 goto out;
1786         }
1787         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1788                 goto out_free;
1789         r = 0;
1790 out_free:
1791         kfree(page);
1792 out:
1793         return r;
1794 }
1795
1796 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1797 {
1798         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1799 }
1800
1801 static bool kvm_hv_msr_partition_wide(u32 msr)
1802 {
1803         bool r = false;
1804         switch (msr) {
1805         case HV_X64_MSR_GUEST_OS_ID:
1806         case HV_X64_MSR_HYPERCALL:
1807                 r = true;
1808                 break;
1809         }
1810
1811         return r;
1812 }
1813
1814 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1815 {
1816         struct kvm *kvm = vcpu->kvm;
1817
1818         switch (msr) {
1819         case HV_X64_MSR_GUEST_OS_ID:
1820                 kvm->arch.hv_guest_os_id = data;
1821                 /* setting guest os id to zero disables hypercall page */
1822                 if (!kvm->arch.hv_guest_os_id)
1823                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1824                 break;
1825         case HV_X64_MSR_HYPERCALL: {
1826                 u64 gfn;
1827                 unsigned long addr;
1828                 u8 instructions[4];
1829
1830                 /* if guest os id is not set hypercall should remain disabled */
1831                 if (!kvm->arch.hv_guest_os_id)
1832                         break;
1833                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1834                         kvm->arch.hv_hypercall = data;
1835                         break;
1836                 }
1837                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1838                 addr = gfn_to_hva(kvm, gfn);
1839                 if (kvm_is_error_hva(addr))
1840                         return 1;
1841                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1842                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1843                 if (__copy_to_user((void __user *)addr, instructions, 4))
1844                         return 1;
1845                 kvm->arch.hv_hypercall = data;
1846                 break;
1847         }
1848         default:
1849                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1850                             "data 0x%llx\n", msr, data);
1851                 return 1;
1852         }
1853         return 0;
1854 }
1855
1856 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1857 {
1858         switch (msr) {
1859         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1860                 unsigned long addr;
1861
1862                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1863                         vcpu->arch.hv_vapic = data;
1864                         break;
1865                 }
1866                 addr = gfn_to_hva(vcpu->kvm, data >>
1867                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1868                 if (kvm_is_error_hva(addr))
1869                         return 1;
1870                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1871                         return 1;
1872                 vcpu->arch.hv_vapic = data;
1873                 break;
1874         }
1875         case HV_X64_MSR_EOI:
1876                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1877         case HV_X64_MSR_ICR:
1878                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1879         case HV_X64_MSR_TPR:
1880                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1881         default:
1882                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1883                             "data 0x%llx\n", msr, data);
1884                 return 1;
1885         }
1886
1887         return 0;
1888 }
1889
1890 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1891 {
1892         gpa_t gpa = data & ~0x3f;
1893
1894         /* Bits 2:5 are reserved, Should be zero */
1895         if (data & 0x3c)
1896                 return 1;
1897
1898         vcpu->arch.apf.msr_val = data;
1899
1900         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1901                 kvm_clear_async_pf_completion_queue(vcpu);
1902                 kvm_async_pf_hash_reset(vcpu);
1903                 return 0;
1904         }
1905
1906         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1907                                         sizeof(u32)))
1908                 return 1;
1909
1910         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1911         kvm_async_pf_wakeup_all(vcpu);
1912         return 0;
1913 }
1914
1915 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1916 {
1917         vcpu->arch.pv_time_enabled = false;
1918 }
1919
1920 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1921 {
1922         u64 delta;
1923
1924         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1925                 return;
1926
1927         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1928         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1929         vcpu->arch.st.accum_steal = delta;
1930 }
1931
1932 static void record_steal_time(struct kvm_vcpu *vcpu)
1933 {
1934         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1935                 return;
1936
1937         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1938                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1939                 return;
1940
1941         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1942         vcpu->arch.st.steal.version += 2;
1943         vcpu->arch.st.accum_steal = 0;
1944
1945         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1946                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1947 }
1948
1949 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1950 {
1951         bool pr = false;
1952         u32 msr = msr_info->index;
1953         u64 data = msr_info->data;
1954
1955         switch (msr) {
1956         case MSR_AMD64_NB_CFG:
1957         case MSR_IA32_UCODE_REV:
1958         case MSR_IA32_UCODE_WRITE:
1959         case MSR_VM_HSAVE_PA:
1960         case MSR_AMD64_PATCH_LOADER:
1961         case MSR_AMD64_BU_CFG2:
1962                 break;
1963
1964         case MSR_EFER:
1965                 return set_efer(vcpu, data);
1966         case MSR_K7_HWCR:
1967                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1968                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1969                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1970                 if (data != 0) {
1971                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1972                                     data);
1973                         return 1;
1974                 }
1975                 break;
1976         case MSR_FAM10H_MMIO_CONF_BASE:
1977                 if (data != 0) {
1978                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1979                                     "0x%llx\n", data);
1980                         return 1;
1981                 }
1982                 break;
1983         case MSR_IA32_DEBUGCTLMSR:
1984                 if (!data) {
1985                         /* We support the non-activated case already */
1986                         break;
1987                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1988                         /* Values other than LBR and BTF are vendor-specific,
1989                            thus reserved and should throw a #GP */
1990                         return 1;
1991                 }
1992                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1993                             __func__, data);
1994                 break;
1995         case 0x200 ... 0x2ff:
1996                 return set_msr_mtrr(vcpu, msr, data);
1997         case MSR_IA32_APICBASE:
1998                 kvm_set_apic_base(vcpu, data);
1999                 break;
2000         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2001                 return kvm_x2apic_msr_write(vcpu, msr, data);
2002         case MSR_IA32_TSCDEADLINE:
2003                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2004                 break;
2005         case MSR_IA32_TSC_ADJUST:
2006                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2007                         if (!msr_info->host_initiated) {
2008                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2009                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2010                         }
2011                         vcpu->arch.ia32_tsc_adjust_msr = data;
2012                 }
2013                 break;
2014         case MSR_IA32_MISC_ENABLE:
2015                 vcpu->arch.ia32_misc_enable_msr = data;
2016                 break;
2017         case MSR_KVM_WALL_CLOCK_NEW:
2018         case MSR_KVM_WALL_CLOCK:
2019                 vcpu->kvm->arch.wall_clock = data;
2020                 kvm_write_wall_clock(vcpu->kvm, data);
2021                 break;
2022         case MSR_KVM_SYSTEM_TIME_NEW:
2023         case MSR_KVM_SYSTEM_TIME: {
2024                 u64 gpa_offset;
2025                 kvmclock_reset(vcpu);
2026
2027                 vcpu->arch.time = data;
2028                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2029
2030                 /* we verify if the enable bit is set... */
2031                 if (!(data & 1))
2032                         break;
2033
2034                 gpa_offset = data & ~(PAGE_MASK | 1);
2035
2036                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2037                      &vcpu->arch.pv_time, data & ~1ULL,
2038                      sizeof(struct pvclock_vcpu_time_info)))
2039                         vcpu->arch.pv_time_enabled = false;
2040                 else
2041                         vcpu->arch.pv_time_enabled = true;
2042
2043                 break;
2044         }
2045         case MSR_KVM_ASYNC_PF_EN:
2046                 if (kvm_pv_enable_async_pf(vcpu, data))
2047                         return 1;
2048                 break;
2049         case MSR_KVM_STEAL_TIME:
2050
2051                 if (unlikely(!sched_info_on()))
2052                         return 1;
2053
2054                 if (data & KVM_STEAL_RESERVED_MASK)
2055                         return 1;
2056
2057                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2058                                                 data & KVM_STEAL_VALID_BITS,
2059                                                 sizeof(struct kvm_steal_time)))
2060                         return 1;
2061
2062                 vcpu->arch.st.msr_val = data;
2063
2064                 if (!(data & KVM_MSR_ENABLED))
2065                         break;
2066
2067                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2068
2069                 preempt_disable();
2070                 accumulate_steal_time(vcpu);
2071                 preempt_enable();
2072
2073                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2074
2075                 break;
2076         case MSR_KVM_PV_EOI_EN:
2077                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2078                         return 1;
2079                 break;
2080
2081         case MSR_IA32_MCG_CTL:
2082         case MSR_IA32_MCG_STATUS:
2083         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2084                 return set_msr_mce(vcpu, msr, data);
2085
2086         /* Performance counters are not protected by a CPUID bit,
2087          * so we should check all of them in the generic path for the sake of
2088          * cross vendor migration.
2089          * Writing a zero into the event select MSRs disables them,
2090          * which we perfectly emulate ;-). Any other value should be at least
2091          * reported, some guests depend on them.
2092          */
2093         case MSR_K7_EVNTSEL0:
2094         case MSR_K7_EVNTSEL1:
2095         case MSR_K7_EVNTSEL2:
2096         case MSR_K7_EVNTSEL3:
2097                 if (data != 0)
2098                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2099                                     "0x%x data 0x%llx\n", msr, data);
2100                 break;
2101         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2102          * so we ignore writes to make it happy.
2103          */
2104         case MSR_K7_PERFCTR0:
2105         case MSR_K7_PERFCTR1:
2106         case MSR_K7_PERFCTR2:
2107         case MSR_K7_PERFCTR3:
2108                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2109                             "0x%x data 0x%llx\n", msr, data);
2110                 break;
2111         case MSR_P6_PERFCTR0:
2112         case MSR_P6_PERFCTR1:
2113                 pr = true;
2114         case MSR_P6_EVNTSEL0:
2115         case MSR_P6_EVNTSEL1:
2116                 if (kvm_pmu_msr(vcpu, msr))
2117                         return kvm_pmu_set_msr(vcpu, msr_info);
2118
2119                 if (pr || data != 0)
2120                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2121                                     "0x%x data 0x%llx\n", msr, data);
2122                 break;
2123         case MSR_K7_CLK_CTL:
2124                 /*
2125                  * Ignore all writes to this no longer documented MSR.
2126                  * Writes are only relevant for old K7 processors,
2127                  * all pre-dating SVM, but a recommended workaround from
2128                  * AMD for these chips. It is possible to specify the
2129                  * affected processor models on the command line, hence
2130                  * the need to ignore the workaround.
2131                  */
2132                 break;
2133         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2134                 if (kvm_hv_msr_partition_wide(msr)) {
2135                         int r;
2136                         mutex_lock(&vcpu->kvm->lock);
2137                         r = set_msr_hyperv_pw(vcpu, msr, data);
2138                         mutex_unlock(&vcpu->kvm->lock);
2139                         return r;
2140                 } else
2141                         return set_msr_hyperv(vcpu, msr, data);
2142                 break;
2143         case MSR_IA32_BBL_CR_CTL3:
2144                 /* Drop writes to this legacy MSR -- see rdmsr
2145                  * counterpart for further detail.
2146                  */
2147                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2148                 break;
2149         case MSR_AMD64_OSVW_ID_LENGTH:
2150                 if (!guest_cpuid_has_osvw(vcpu))
2151                         return 1;
2152                 vcpu->arch.osvw.length = data;
2153                 break;
2154         case MSR_AMD64_OSVW_STATUS:
2155                 if (!guest_cpuid_has_osvw(vcpu))
2156                         return 1;
2157                 vcpu->arch.osvw.status = data;
2158                 break;
2159         default:
2160                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2161                         return xen_hvm_config(vcpu, data);
2162                 if (kvm_pmu_msr(vcpu, msr))
2163                         return kvm_pmu_set_msr(vcpu, msr_info);
2164                 if (!ignore_msrs) {
2165                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2166                                     msr, data);
2167                         return 1;
2168                 } else {
2169                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2170                                     msr, data);
2171                         break;
2172                 }
2173         }
2174         return 0;
2175 }
2176 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2177
2178
2179 /*
2180  * Reads an msr value (of 'msr_index') into 'pdata'.
2181  * Returns 0 on success, non-0 otherwise.
2182  * Assumes vcpu_load() was already called.
2183  */
2184 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2185 {
2186         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2187 }
2188
2189 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2190 {
2191         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2192
2193         if (!msr_mtrr_valid(msr))
2194                 return 1;
2195
2196         if (msr == MSR_MTRRdefType)
2197                 *pdata = vcpu->arch.mtrr_state.def_type +
2198                          (vcpu->arch.mtrr_state.enabled << 10);
2199         else if (msr == MSR_MTRRfix64K_00000)
2200                 *pdata = p[0];
2201         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2202                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2203         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2204                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2205         else if (msr == MSR_IA32_CR_PAT)
2206                 *pdata = vcpu->arch.pat;
2207         else {  /* Variable MTRRs */
2208                 int idx, is_mtrr_mask;
2209                 u64 *pt;
2210
2211                 idx = (msr - 0x200) / 2;
2212                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2213                 if (!is_mtrr_mask)
2214                         pt =
2215                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2216                 else
2217                         pt =
2218                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2219                 *pdata = *pt;
2220         }
2221
2222         return 0;
2223 }
2224
2225 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2226 {
2227         u64 data;
2228         u64 mcg_cap = vcpu->arch.mcg_cap;
2229         unsigned bank_num = mcg_cap & 0xff;
2230
2231         switch (msr) {
2232         case MSR_IA32_P5_MC_ADDR:
2233         case MSR_IA32_P5_MC_TYPE:
2234                 data = 0;
2235                 break;
2236         case MSR_IA32_MCG_CAP:
2237                 data = vcpu->arch.mcg_cap;
2238                 break;
2239         case MSR_IA32_MCG_CTL:
2240                 if (!(mcg_cap & MCG_CTL_P))
2241                         return 1;
2242                 data = vcpu->arch.mcg_ctl;
2243                 break;
2244         case MSR_IA32_MCG_STATUS:
2245                 data = vcpu->arch.mcg_status;
2246                 break;
2247         default:
2248                 if (msr >= MSR_IA32_MC0_CTL &&
2249                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2250                         u32 offset = msr - MSR_IA32_MC0_CTL;
2251                         data = vcpu->arch.mce_banks[offset];
2252                         break;
2253                 }
2254                 return 1;
2255         }
2256         *pdata = data;
2257         return 0;
2258 }
2259
2260 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2261 {
2262         u64 data = 0;
2263         struct kvm *kvm = vcpu->kvm;
2264
2265         switch (msr) {
2266         case HV_X64_MSR_GUEST_OS_ID:
2267                 data = kvm->arch.hv_guest_os_id;
2268                 break;
2269         case HV_X64_MSR_HYPERCALL:
2270                 data = kvm->arch.hv_hypercall;
2271                 break;
2272         default:
2273                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2274                 return 1;
2275         }
2276
2277         *pdata = data;
2278         return 0;
2279 }
2280
2281 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2282 {
2283         u64 data = 0;
2284
2285         switch (msr) {
2286         case HV_X64_MSR_VP_INDEX: {
2287                 int r;
2288                 struct kvm_vcpu *v;
2289                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2290                         if (v == vcpu)
2291                                 data = r;
2292                 break;
2293         }
2294         case HV_X64_MSR_EOI:
2295                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2296         case HV_X64_MSR_ICR:
2297                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2298         case HV_X64_MSR_TPR:
2299                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2300         case HV_X64_MSR_APIC_ASSIST_PAGE:
2301                 data = vcpu->arch.hv_vapic;
2302                 break;
2303         default:
2304                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2305                 return 1;
2306         }
2307         *pdata = data;
2308         return 0;
2309 }
2310
2311 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2312 {
2313         u64 data;
2314
2315         switch (msr) {
2316         case MSR_IA32_PLATFORM_ID:
2317         case MSR_IA32_EBL_CR_POWERON:
2318         case MSR_IA32_DEBUGCTLMSR:
2319         case MSR_IA32_LASTBRANCHFROMIP:
2320         case MSR_IA32_LASTBRANCHTOIP:
2321         case MSR_IA32_LASTINTFROMIP:
2322         case MSR_IA32_LASTINTTOIP:
2323         case MSR_K8_SYSCFG:
2324         case MSR_K7_HWCR:
2325         case MSR_VM_HSAVE_PA:
2326         case MSR_K7_EVNTSEL0:
2327         case MSR_K7_PERFCTR0:
2328         case MSR_K8_INT_PENDING_MSG:
2329         case MSR_AMD64_NB_CFG:
2330         case MSR_FAM10H_MMIO_CONF_BASE:
2331         case MSR_AMD64_BU_CFG2:
2332                 data = 0;
2333                 break;
2334         case MSR_P6_PERFCTR0:
2335         case MSR_P6_PERFCTR1:
2336         case MSR_P6_EVNTSEL0:
2337         case MSR_P6_EVNTSEL1:
2338                 if (kvm_pmu_msr(vcpu, msr))
2339                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2340                 data = 0;
2341                 break;
2342         case MSR_IA32_UCODE_REV:
2343                 data = 0x100000000ULL;
2344                 break;
2345         case MSR_MTRRcap:
2346                 data = 0x500 | KVM_NR_VAR_MTRR;
2347                 break;
2348         case 0x200 ... 0x2ff:
2349                 return get_msr_mtrr(vcpu, msr, pdata);
2350         case 0xcd: /* fsb frequency */
2351                 data = 3;
2352                 break;
2353                 /*
2354                  * MSR_EBC_FREQUENCY_ID
2355                  * Conservative value valid for even the basic CPU models.
2356                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2357                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2358                  * and 266MHz for model 3, or 4. Set Core Clock
2359                  * Frequency to System Bus Frequency Ratio to 1 (bits
2360                  * 31:24) even though these are only valid for CPU
2361                  * models > 2, however guests may end up dividing or
2362                  * multiplying by zero otherwise.
2363                  */
2364         case MSR_EBC_FREQUENCY_ID:
2365                 data = 1 << 24;
2366                 break;
2367         case MSR_IA32_APICBASE:
2368                 data = kvm_get_apic_base(vcpu);
2369                 break;
2370         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2371                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2372                 break;
2373         case MSR_IA32_TSCDEADLINE:
2374                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2375                 break;
2376         case MSR_IA32_TSC_ADJUST:
2377                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2378                 break;
2379         case MSR_IA32_MISC_ENABLE:
2380                 data = vcpu->arch.ia32_misc_enable_msr;
2381                 break;
2382         case MSR_IA32_PERF_STATUS:
2383                 /* TSC increment by tick */
2384                 data = 1000ULL;
2385                 /* CPU multiplier */
2386                 data |= (((uint64_t)4ULL) << 40);
2387                 break;
2388         case MSR_EFER:
2389                 data = vcpu->arch.efer;
2390                 break;
2391         case MSR_KVM_WALL_CLOCK:
2392         case MSR_KVM_WALL_CLOCK_NEW:
2393                 data = vcpu->kvm->arch.wall_clock;
2394                 break;
2395         case MSR_KVM_SYSTEM_TIME:
2396         case MSR_KVM_SYSTEM_TIME_NEW:
2397                 data = vcpu->arch.time;
2398                 break;
2399         case MSR_KVM_ASYNC_PF_EN:
2400                 data = vcpu->arch.apf.msr_val;
2401                 break;
2402         case MSR_KVM_STEAL_TIME:
2403                 data = vcpu->arch.st.msr_val;
2404                 break;
2405         case MSR_KVM_PV_EOI_EN:
2406                 data = vcpu->arch.pv_eoi.msr_val;
2407                 break;
2408         case MSR_IA32_P5_MC_ADDR:
2409         case MSR_IA32_P5_MC_TYPE:
2410         case MSR_IA32_MCG_CAP:
2411         case MSR_IA32_MCG_CTL:
2412         case MSR_IA32_MCG_STATUS:
2413         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2414                 return get_msr_mce(vcpu, msr, pdata);
2415         case MSR_K7_CLK_CTL:
2416                 /*
2417                  * Provide expected ramp-up count for K7. All other
2418                  * are set to zero, indicating minimum divisors for
2419                  * every field.
2420                  *
2421                  * This prevents guest kernels on AMD host with CPU
2422                  * type 6, model 8 and higher from exploding due to
2423                  * the rdmsr failing.
2424                  */
2425                 data = 0x20000000;
2426                 break;
2427         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2428                 if (kvm_hv_msr_partition_wide(msr)) {
2429                         int r;
2430                         mutex_lock(&vcpu->kvm->lock);
2431                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2432                         mutex_unlock(&vcpu->kvm->lock);
2433                         return r;
2434                 } else
2435                         return get_msr_hyperv(vcpu, msr, pdata);
2436                 break;
2437         case MSR_IA32_BBL_CR_CTL3:
2438                 /* This legacy MSR exists but isn't fully documented in current
2439                  * silicon.  It is however accessed by winxp in very narrow
2440                  * scenarios where it sets bit #19, itself documented as
2441                  * a "reserved" bit.  Best effort attempt to source coherent
2442                  * read data here should the balance of the register be
2443                  * interpreted by the guest:
2444                  *
2445                  * L2 cache control register 3: 64GB range, 256KB size,
2446                  * enabled, latency 0x1, configured
2447                  */
2448                 data = 0xbe702111;
2449                 break;
2450         case MSR_AMD64_OSVW_ID_LENGTH:
2451                 if (!guest_cpuid_has_osvw(vcpu))
2452                         return 1;
2453                 data = vcpu->arch.osvw.length;
2454                 break;
2455         case MSR_AMD64_OSVW_STATUS:
2456                 if (!guest_cpuid_has_osvw(vcpu))
2457                         return 1;
2458                 data = vcpu->arch.osvw.status;
2459                 break;
2460         default:
2461                 if (kvm_pmu_msr(vcpu, msr))
2462                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2463                 if (!ignore_msrs) {
2464                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2465                         return 1;
2466                 } else {
2467                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2468                         data = 0;
2469                 }
2470                 break;
2471         }
2472         *pdata = data;
2473         return 0;
2474 }
2475 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2476
2477 /*
2478  * Read or write a bunch of msrs. All parameters are kernel addresses.
2479  *
2480  * @return number of msrs set successfully.
2481  */
2482 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2483                     struct kvm_msr_entry *entries,
2484                     int (*do_msr)(struct kvm_vcpu *vcpu,
2485                                   unsigned index, u64 *data))
2486 {
2487         int i, idx;
2488
2489         idx = srcu_read_lock(&vcpu->kvm->srcu);
2490         for (i = 0; i < msrs->nmsrs; ++i)
2491                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2492                         break;
2493         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2494
2495         return i;
2496 }
2497
2498 /*
2499  * Read or write a bunch of msrs. Parameters are user addresses.
2500  *
2501  * @return number of msrs set successfully.
2502  */
2503 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2504                   int (*do_msr)(struct kvm_vcpu *vcpu,
2505                                 unsigned index, u64 *data),
2506                   int writeback)
2507 {
2508         struct kvm_msrs msrs;
2509         struct kvm_msr_entry *entries;
2510         int r, n;
2511         unsigned size;
2512
2513         r = -EFAULT;
2514         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2515                 goto out;
2516
2517         r = -E2BIG;
2518         if (msrs.nmsrs >= MAX_IO_MSRS)
2519                 goto out;
2520
2521         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2522         entries = memdup_user(user_msrs->entries, size);
2523         if (IS_ERR(entries)) {
2524                 r = PTR_ERR(entries);
2525                 goto out;
2526         }
2527
2528         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2529         if (r < 0)
2530                 goto out_free;
2531
2532         r = -EFAULT;
2533         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2534                 goto out_free;
2535
2536         r = n;
2537
2538 out_free:
2539         kfree(entries);
2540 out:
2541         return r;
2542 }
2543
2544 int kvm_dev_ioctl_check_extension(long ext)
2545 {
2546         int r;
2547
2548         switch (ext) {
2549         case KVM_CAP_IRQCHIP:
2550         case KVM_CAP_HLT:
2551         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2552         case KVM_CAP_SET_TSS_ADDR:
2553         case KVM_CAP_EXT_CPUID:
2554         case KVM_CAP_CLOCKSOURCE:
2555         case KVM_CAP_PIT:
2556         case KVM_CAP_NOP_IO_DELAY:
2557         case KVM_CAP_MP_STATE:
2558         case KVM_CAP_SYNC_MMU:
2559         case KVM_CAP_USER_NMI:
2560         case KVM_CAP_REINJECT_CONTROL:
2561         case KVM_CAP_IRQ_INJECT_STATUS:
2562         case KVM_CAP_IRQFD:
2563         case KVM_CAP_IOEVENTFD:
2564         case KVM_CAP_PIT2:
2565         case KVM_CAP_PIT_STATE2:
2566         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2567         case KVM_CAP_XEN_HVM:
2568         case KVM_CAP_ADJUST_CLOCK:
2569         case KVM_CAP_VCPU_EVENTS:
2570         case KVM_CAP_HYPERV:
2571         case KVM_CAP_HYPERV_VAPIC:
2572         case KVM_CAP_HYPERV_SPIN:
2573         case KVM_CAP_PCI_SEGMENT:
2574         case KVM_CAP_DEBUGREGS:
2575         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2576         case KVM_CAP_XSAVE:
2577         case KVM_CAP_ASYNC_PF:
2578         case KVM_CAP_GET_TSC_KHZ:
2579         case KVM_CAP_KVMCLOCK_CTRL:
2580         case KVM_CAP_READONLY_MEM:
2581 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2582         case KVM_CAP_ASSIGN_DEV_IRQ:
2583         case KVM_CAP_PCI_2_3:
2584 #endif
2585                 r = 1;
2586                 break;
2587         case KVM_CAP_COALESCED_MMIO:
2588                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2589                 break;
2590         case KVM_CAP_VAPIC:
2591                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2592                 break;
2593         case KVM_CAP_NR_VCPUS:
2594                 r = KVM_SOFT_MAX_VCPUS;
2595                 break;
2596         case KVM_CAP_MAX_VCPUS:
2597                 r = KVM_MAX_VCPUS;
2598                 break;
2599         case KVM_CAP_NR_MEMSLOTS:
2600                 r = KVM_USER_MEM_SLOTS;
2601                 break;
2602         case KVM_CAP_PV_MMU:    /* obsolete */
2603                 r = 0;
2604                 break;
2605 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2606         case KVM_CAP_IOMMU:
2607                 r = iommu_present(&pci_bus_type);
2608                 break;
2609 #endif
2610         case KVM_CAP_MCE:
2611                 r = KVM_MAX_MCE_BANKS;
2612                 break;
2613         case KVM_CAP_XCRS:
2614                 r = cpu_has_xsave;
2615                 break;
2616         case KVM_CAP_TSC_CONTROL:
2617                 r = kvm_has_tsc_control;
2618                 break;
2619         case KVM_CAP_TSC_DEADLINE_TIMER:
2620                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2621                 break;
2622         default:
2623                 r = 0;
2624                 break;
2625         }
2626         return r;
2627
2628 }
2629
2630 long kvm_arch_dev_ioctl(struct file *filp,
2631                         unsigned int ioctl, unsigned long arg)
2632 {
2633         void __user *argp = (void __user *)arg;
2634         long r;
2635
2636         switch (ioctl) {
2637         case KVM_GET_MSR_INDEX_LIST: {
2638                 struct kvm_msr_list __user *user_msr_list = argp;
2639                 struct kvm_msr_list msr_list;
2640                 unsigned n;
2641
2642                 r = -EFAULT;
2643                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2644                         goto out;
2645                 n = msr_list.nmsrs;
2646                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2647                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2648                         goto out;
2649                 r = -E2BIG;
2650                 if (n < msr_list.nmsrs)
2651                         goto out;
2652                 r = -EFAULT;
2653                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2654                                  num_msrs_to_save * sizeof(u32)))
2655                         goto out;
2656                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2657                                  &emulated_msrs,
2658                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2659                         goto out;
2660                 r = 0;
2661                 break;
2662         }
2663         case KVM_GET_SUPPORTED_CPUID: {
2664                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2665                 struct kvm_cpuid2 cpuid;
2666
2667                 r = -EFAULT;
2668                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2669                         goto out;
2670                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2671                                                       cpuid_arg->entries);
2672                 if (r)
2673                         goto out;
2674
2675                 r = -EFAULT;
2676                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2677                         goto out;
2678                 r = 0;
2679                 break;
2680         }
2681         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2682                 u64 mce_cap;
2683
2684                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2685                 r = -EFAULT;
2686                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2687                         goto out;
2688                 r = 0;
2689                 break;
2690         }
2691         default:
2692                 r = -EINVAL;
2693         }
2694 out:
2695         return r;
2696 }
2697
2698 static void wbinvd_ipi(void *garbage)
2699 {
2700         wbinvd();
2701 }
2702
2703 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2704 {
2705         return vcpu->kvm->arch.iommu_domain &&
2706                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2707 }
2708
2709 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2710 {
2711         /* Address WBINVD may be executed by guest */
2712         if (need_emulate_wbinvd(vcpu)) {
2713                 if (kvm_x86_ops->has_wbinvd_exit())
2714                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2715                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2716                         smp_call_function_single(vcpu->cpu,
2717                                         wbinvd_ipi, NULL, 1);
2718         }
2719
2720         kvm_x86_ops->vcpu_load(vcpu, cpu);
2721
2722         /* Apply any externally detected TSC adjustments (due to suspend) */
2723         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2724                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2725                 vcpu->arch.tsc_offset_adjustment = 0;
2726                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2727         }
2728
2729         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2730                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2731                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2732                 if (tsc_delta < 0)
2733                         mark_tsc_unstable("KVM discovered backwards TSC");
2734                 if (check_tsc_unstable()) {
2735                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2736                                                 vcpu->arch.last_guest_tsc);
2737                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2738                         vcpu->arch.tsc_catchup = 1;
2739                 }
2740                 /*
2741                  * On a host with synchronized TSC, there is no need to update
2742                  * kvmclock on vcpu->cpu migration
2743                  */
2744                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2745                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2746                 if (vcpu->cpu != cpu)
2747                         kvm_migrate_timers(vcpu);
2748                 vcpu->cpu = cpu;
2749         }
2750
2751         accumulate_steal_time(vcpu);
2752         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2753 }
2754
2755 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2756 {
2757         kvm_x86_ops->vcpu_put(vcpu);
2758         kvm_put_guest_fpu(vcpu);
2759         vcpu->arch.last_host_tsc = native_read_tsc();
2760 }
2761
2762 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2763                                     struct kvm_lapic_state *s)
2764 {
2765         kvm_x86_ops->sync_pir_to_irr(vcpu);
2766         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2767
2768         return 0;
2769 }
2770
2771 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2772                                     struct kvm_lapic_state *s)
2773 {
2774         kvm_apic_post_state_restore(vcpu, s);
2775         update_cr8_intercept(vcpu);
2776
2777         return 0;
2778 }
2779
2780 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2781                                     struct kvm_interrupt *irq)
2782 {
2783         if (irq->irq >= KVM_NR_INTERRUPTS)
2784                 return -EINVAL;
2785         if (irqchip_in_kernel(vcpu->kvm))
2786                 return -ENXIO;
2787
2788         kvm_queue_interrupt(vcpu, irq->irq, false);
2789         kvm_make_request(KVM_REQ_EVENT, vcpu);
2790
2791         return 0;
2792 }
2793
2794 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2795 {
2796         kvm_inject_nmi(vcpu);
2797
2798         return 0;
2799 }
2800
2801 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2802                                            struct kvm_tpr_access_ctl *tac)
2803 {
2804         if (tac->flags)
2805                 return -EINVAL;
2806         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2807         return 0;
2808 }
2809
2810 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2811                                         u64 mcg_cap)
2812 {
2813         int r;
2814         unsigned bank_num = mcg_cap & 0xff, bank;
2815
2816         r = -EINVAL;
2817         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2818                 goto out;
2819         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2820                 goto out;
2821         r = 0;
2822         vcpu->arch.mcg_cap = mcg_cap;
2823         /* Init IA32_MCG_CTL to all 1s */
2824         if (mcg_cap & MCG_CTL_P)
2825                 vcpu->arch.mcg_ctl = ~(u64)0;
2826         /* Init IA32_MCi_CTL to all 1s */
2827         for (bank = 0; bank < bank_num; bank++)
2828                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2829 out:
2830         return r;
2831 }
2832
2833 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2834                                       struct kvm_x86_mce *mce)
2835 {
2836         u64 mcg_cap = vcpu->arch.mcg_cap;
2837         unsigned bank_num = mcg_cap & 0xff;
2838         u64 *banks = vcpu->arch.mce_banks;
2839
2840         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2841                 return -EINVAL;
2842         /*
2843          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2844          * reporting is disabled
2845          */
2846         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2847             vcpu->arch.mcg_ctl != ~(u64)0)
2848                 return 0;
2849         banks += 4 * mce->bank;
2850         /*
2851          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2852          * reporting is disabled for the bank
2853          */
2854         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2855                 return 0;
2856         if (mce->status & MCI_STATUS_UC) {
2857                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2858                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2859                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2860                         return 0;
2861                 }
2862                 if (banks[1] & MCI_STATUS_VAL)
2863                         mce->status |= MCI_STATUS_OVER;
2864                 banks[2] = mce->addr;
2865                 banks[3] = mce->misc;
2866                 vcpu->arch.mcg_status = mce->mcg_status;
2867                 banks[1] = mce->status;
2868                 kvm_queue_exception(vcpu, MC_VECTOR);
2869         } else if (!(banks[1] & MCI_STATUS_VAL)
2870                    || !(banks[1] & MCI_STATUS_UC)) {
2871                 if (banks[1] & MCI_STATUS_VAL)
2872                         mce->status |= MCI_STATUS_OVER;
2873                 banks[2] = mce->addr;
2874                 banks[3] = mce->misc;
2875                 banks[1] = mce->status;
2876         } else
2877                 banks[1] |= MCI_STATUS_OVER;
2878         return 0;
2879 }
2880
2881 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2882                                                struct kvm_vcpu_events *events)
2883 {
2884         process_nmi(vcpu);
2885         events->exception.injected =
2886                 vcpu->arch.exception.pending &&
2887                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2888         events->exception.nr = vcpu->arch.exception.nr;
2889         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2890         events->exception.pad = 0;
2891         events->exception.error_code = vcpu->arch.exception.error_code;
2892
2893         events->interrupt.injected =
2894                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2895         events->interrupt.nr = vcpu->arch.interrupt.nr;
2896         events->interrupt.soft = 0;
2897         events->interrupt.shadow =
2898                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2899                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2900
2901         events->nmi.injected = vcpu->arch.nmi_injected;
2902         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2903         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2904         events->nmi.pad = 0;
2905
2906         events->sipi_vector = 0; /* never valid when reporting to user space */
2907
2908         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2909                          | KVM_VCPUEVENT_VALID_SHADOW);
2910         memset(&events->reserved, 0, sizeof(events->reserved));
2911 }
2912
2913 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2914                                               struct kvm_vcpu_events *events)
2915 {
2916         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2917                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2918                               | KVM_VCPUEVENT_VALID_SHADOW))
2919                 return -EINVAL;
2920
2921         process_nmi(vcpu);
2922         vcpu->arch.exception.pending = events->exception.injected;
2923         vcpu->arch.exception.nr = events->exception.nr;
2924         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2925         vcpu->arch.exception.error_code = events->exception.error_code;
2926
2927         vcpu->arch.interrupt.pending = events->interrupt.injected;
2928         vcpu->arch.interrupt.nr = events->interrupt.nr;
2929         vcpu->arch.interrupt.soft = events->interrupt.soft;
2930         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2931                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2932                                                   events->interrupt.shadow);
2933
2934         vcpu->arch.nmi_injected = events->nmi.injected;
2935         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2936                 vcpu->arch.nmi_pending = events->nmi.pending;
2937         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2938
2939         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2940             kvm_vcpu_has_lapic(vcpu))
2941                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2942
2943         kvm_make_request(KVM_REQ_EVENT, vcpu);
2944
2945         return 0;
2946 }
2947
2948 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2949                                              struct kvm_debugregs *dbgregs)
2950 {
2951         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2952         dbgregs->dr6 = vcpu->arch.dr6;
2953         dbgregs->dr7 = vcpu->arch.dr7;
2954         dbgregs->flags = 0;
2955         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2956 }
2957
2958 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2959                                             struct kvm_debugregs *dbgregs)
2960 {
2961         if (dbgregs->flags)
2962                 return -EINVAL;
2963
2964         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2965         vcpu->arch.dr6 = dbgregs->dr6;
2966         vcpu->arch.dr7 = dbgregs->dr7;
2967
2968         return 0;
2969 }
2970
2971 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2972                                          struct kvm_xsave *guest_xsave)
2973 {
2974         if (cpu_has_xsave)
2975                 memcpy(guest_xsave->region,
2976                         &vcpu->arch.guest_fpu.state->xsave,
2977                         xstate_size);
2978         else {
2979                 memcpy(guest_xsave->region,
2980                         &vcpu->arch.guest_fpu.state->fxsave,
2981                         sizeof(struct i387_fxsave_struct));
2982                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2983                         XSTATE_FPSSE;
2984         }
2985 }
2986
2987 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2988                                         struct kvm_xsave *guest_xsave)
2989 {
2990         u64 xstate_bv =
2991                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2992
2993         if (cpu_has_xsave)
2994                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2995                         guest_xsave->region, xstate_size);
2996         else {
2997                 if (xstate_bv & ~XSTATE_FPSSE)
2998                         return -EINVAL;
2999                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3000                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3001         }
3002         return 0;
3003 }
3004
3005 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3006                                         struct kvm_xcrs *guest_xcrs)
3007 {
3008         if (!cpu_has_xsave) {
3009                 guest_xcrs->nr_xcrs = 0;
3010                 return;
3011         }
3012
3013         guest_xcrs->nr_xcrs = 1;
3014         guest_xcrs->flags = 0;
3015         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3016         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3017 }
3018
3019 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3020                                        struct kvm_xcrs *guest_xcrs)
3021 {
3022         int i, r = 0;
3023
3024         if (!cpu_has_xsave)
3025                 return -EINVAL;
3026
3027         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3028                 return -EINVAL;
3029
3030         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3031                 /* Only support XCR0 currently */
3032                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3033                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3034                                 guest_xcrs->xcrs[0].value);
3035                         break;
3036                 }
3037         if (r)
3038                 r = -EINVAL;
3039         return r;
3040 }
3041
3042 /*
3043  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3044  * stopped by the hypervisor.  This function will be called from the host only.
3045  * EINVAL is returned when the host attempts to set the flag for a guest that
3046  * does not support pv clocks.
3047  */
3048 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3049 {
3050         if (!vcpu->arch.pv_time_enabled)
3051                 return -EINVAL;
3052         vcpu->arch.pvclock_set_guest_stopped_request = true;
3053         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3054         return 0;
3055 }
3056
3057 long kvm_arch_vcpu_ioctl(struct file *filp,
3058                          unsigned int ioctl, unsigned long arg)
3059 {
3060         struct kvm_vcpu *vcpu = filp->private_data;
3061         void __user *argp = (void __user *)arg;
3062         int r;
3063         union {
3064                 struct kvm_lapic_state *lapic;
3065                 struct kvm_xsave *xsave;
3066                 struct kvm_xcrs *xcrs;
3067                 void *buffer;
3068         } u;
3069
3070         u.buffer = NULL;
3071         switch (ioctl) {
3072         case KVM_GET_LAPIC: {
3073                 r = -EINVAL;
3074                 if (!vcpu->arch.apic)
3075                         goto out;
3076                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3077
3078                 r = -ENOMEM;
3079                 if (!u.lapic)
3080                         goto out;
3081                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3082                 if (r)
3083                         goto out;
3084                 r = -EFAULT;
3085                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3086                         goto out;
3087                 r = 0;
3088                 break;
3089         }
3090         case KVM_SET_LAPIC: {
3091                 r = -EINVAL;
3092                 if (!vcpu->arch.apic)
3093                         goto out;
3094                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3095                 if (IS_ERR(u.lapic))
3096                         return PTR_ERR(u.lapic);
3097
3098                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3099                 break;
3100         }
3101         case KVM_INTERRUPT: {
3102                 struct kvm_interrupt irq;
3103
3104                 r = -EFAULT;
3105                 if (copy_from_user(&irq, argp, sizeof irq))
3106                         goto out;
3107                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3108                 break;
3109         }
3110         case KVM_NMI: {
3111                 r = kvm_vcpu_ioctl_nmi(vcpu);
3112                 break;
3113         }
3114         case KVM_SET_CPUID: {
3115                 struct kvm_cpuid __user *cpuid_arg = argp;
3116                 struct kvm_cpuid cpuid;
3117
3118                 r = -EFAULT;
3119                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3120                         goto out;
3121                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3122                 break;
3123         }
3124         case KVM_SET_CPUID2: {
3125                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3126                 struct kvm_cpuid2 cpuid;
3127
3128                 r = -EFAULT;
3129                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3130                         goto out;
3131                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3132                                               cpuid_arg->entries);
3133                 break;
3134         }
3135         case KVM_GET_CPUID2: {
3136                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3137                 struct kvm_cpuid2 cpuid;
3138
3139                 r = -EFAULT;
3140                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3141                         goto out;
3142                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3143                                               cpuid_arg->entries);
3144                 if (r)
3145                         goto out;
3146                 r = -EFAULT;
3147                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3148                         goto out;
3149                 r = 0;
3150                 break;
3151         }
3152         case KVM_GET_MSRS:
3153                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3154                 break;
3155         case KVM_SET_MSRS:
3156                 r = msr_io(vcpu, argp, do_set_msr, 0);
3157                 break;
3158         case KVM_TPR_ACCESS_REPORTING: {
3159                 struct kvm_tpr_access_ctl tac;
3160
3161                 r = -EFAULT;
3162                 if (copy_from_user(&tac, argp, sizeof tac))
3163                         goto out;
3164                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3165                 if (r)
3166                         goto out;
3167                 r = -EFAULT;
3168                 if (copy_to_user(argp, &tac, sizeof tac))
3169                         goto out;
3170                 r = 0;
3171                 break;
3172         };
3173         case KVM_SET_VAPIC_ADDR: {
3174                 struct kvm_vapic_addr va;
3175
3176                 r = -EINVAL;
3177                 if (!irqchip_in_kernel(vcpu->kvm))
3178                         goto out;
3179                 r = -EFAULT;
3180                 if (copy_from_user(&va, argp, sizeof va))
3181                         goto out;
3182                 r = 0;
3183                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3184                 break;
3185         }
3186         case KVM_X86_SETUP_MCE: {
3187                 u64 mcg_cap;
3188
3189                 r = -EFAULT;
3190                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3191                         goto out;
3192                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3193                 break;
3194         }
3195         case KVM_X86_SET_MCE: {
3196                 struct kvm_x86_mce mce;
3197
3198                 r = -EFAULT;
3199                 if (copy_from_user(&mce, argp, sizeof mce))
3200                         goto out;
3201                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3202                 break;
3203         }
3204         case KVM_GET_VCPU_EVENTS: {
3205                 struct kvm_vcpu_events events;
3206
3207                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3208
3209                 r = -EFAULT;
3210                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3211                         break;
3212                 r = 0;
3213                 break;
3214         }
3215         case KVM_SET_VCPU_EVENTS: {
3216                 struct kvm_vcpu_events events;
3217
3218                 r = -EFAULT;
3219                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3220                         break;
3221
3222                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3223                 break;
3224         }
3225         case KVM_GET_DEBUGREGS: {
3226                 struct kvm_debugregs dbgregs;
3227
3228                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3229
3230                 r = -EFAULT;
3231                 if (copy_to_user(argp, &dbgregs,
3232                                  sizeof(struct kvm_debugregs)))
3233                         break;
3234                 r = 0;
3235                 break;
3236         }
3237         case KVM_SET_DEBUGREGS: {
3238                 struct kvm_debugregs dbgregs;
3239
3240                 r = -EFAULT;
3241                 if (copy_from_user(&dbgregs, argp,
3242                                    sizeof(struct kvm_debugregs)))
3243                         break;
3244
3245                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3246                 break;
3247         }
3248         case KVM_GET_XSAVE: {
3249                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3250                 r = -ENOMEM;
3251                 if (!u.xsave)
3252                         break;
3253
3254                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3255
3256                 r = -EFAULT;
3257                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3258                         break;
3259                 r = 0;
3260                 break;
3261         }
3262         case KVM_SET_XSAVE: {
3263                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3264                 if (IS_ERR(u.xsave))
3265                         return PTR_ERR(u.xsave);
3266
3267                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3268                 break;
3269         }
3270         case KVM_GET_XCRS: {
3271                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3272                 r = -ENOMEM;
3273                 if (!u.xcrs)
3274                         break;
3275
3276                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3277
3278                 r = -EFAULT;
3279                 if (copy_to_user(argp, u.xcrs,
3280                                  sizeof(struct kvm_xcrs)))
3281                         break;
3282                 r = 0;
3283                 break;
3284         }
3285         case KVM_SET_XCRS: {
3286                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3287                 if (IS_ERR(u.xcrs))
3288                         return PTR_ERR(u.xcrs);
3289
3290                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3291                 break;
3292         }
3293         case KVM_SET_TSC_KHZ: {
3294                 u32 user_tsc_khz;
3295
3296                 r = -EINVAL;
3297                 user_tsc_khz = (u32)arg;
3298
3299                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3300                         goto out;
3301
3302                 if (user_tsc_khz == 0)
3303                         user_tsc_khz = tsc_khz;
3304
3305                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3306
3307                 r = 0;
3308                 goto out;
3309         }
3310         case KVM_GET_TSC_KHZ: {
3311                 r = vcpu->arch.virtual_tsc_khz;
3312                 goto out;
3313         }
3314         case KVM_KVMCLOCK_CTRL: {
3315                 r = kvm_set_guest_paused(vcpu);
3316                 goto out;
3317         }
3318         default:
3319                 r = -EINVAL;
3320         }
3321 out:
3322         kfree(u.buffer);
3323         return r;
3324 }
3325
3326 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3327 {
3328         return VM_FAULT_SIGBUS;
3329 }
3330
3331 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3332 {
3333         int ret;
3334
3335         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3336                 return -EINVAL;
3337         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3338         return ret;
3339 }
3340
3341 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3342                                               u64 ident_addr)
3343 {
3344         kvm->arch.ept_identity_map_addr = ident_addr;
3345         return 0;
3346 }
3347
3348 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3349                                           u32 kvm_nr_mmu_pages)
3350 {
3351         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3352                 return -EINVAL;
3353
3354         mutex_lock(&kvm->slots_lock);
3355
3356         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3357         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3358
3359         mutex_unlock(&kvm->slots_lock);
3360         return 0;
3361 }
3362
3363 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3364 {
3365         return kvm->arch.n_max_mmu_pages;
3366 }
3367
3368 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3369 {
3370         int r;
3371
3372         r = 0;
3373         switch (chip->chip_id) {
3374         case KVM_IRQCHIP_PIC_MASTER:
3375                 memcpy(&chip->chip.pic,
3376                         &pic_irqchip(kvm)->pics[0],
3377                         sizeof(struct kvm_pic_state));
3378                 break;
3379         case KVM_IRQCHIP_PIC_SLAVE:
3380                 memcpy(&chip->chip.pic,
3381                         &pic_irqchip(kvm)->pics[1],
3382                         sizeof(struct kvm_pic_state));
3383                 break;
3384         case KVM_IRQCHIP_IOAPIC:
3385                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3386                 break;
3387         default:
3388                 r = -EINVAL;
3389                 break;
3390         }
3391         return r;
3392 }
3393
3394 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3395 {
3396         int r;
3397
3398         r = 0;
3399         switch (chip->chip_id) {
3400         case KVM_IRQCHIP_PIC_MASTER:
3401                 spin_lock(&pic_irqchip(kvm)->lock);
3402                 memcpy(&pic_irqchip(kvm)->pics[0],
3403                         &chip->chip.pic,
3404                         sizeof(struct kvm_pic_state));
3405                 spin_unlock(&pic_irqchip(kvm)->lock);
3406                 break;
3407         case KVM_IRQCHIP_PIC_SLAVE:
3408                 spin_lock(&pic_irqchip(kvm)->lock);
3409                 memcpy(&pic_irqchip(kvm)->pics[1],
3410                         &chip->chip.pic,
3411                         sizeof(struct kvm_pic_state));
3412                 spin_unlock(&pic_irqchip(kvm)->lock);
3413                 break;
3414         case KVM_IRQCHIP_IOAPIC:
3415                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3416                 break;
3417         default:
3418                 r = -EINVAL;
3419                 break;
3420         }
3421         kvm_pic_update_irq(pic_irqchip(kvm));
3422         return r;
3423 }
3424
3425 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3426 {
3427         int r = 0;
3428
3429         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3430         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3431         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3432         return r;
3433 }
3434
3435 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3436 {
3437         int r = 0;
3438
3439         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3440         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3441         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3442         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3443         return r;
3444 }
3445
3446 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3447 {
3448         int r = 0;
3449
3450         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3451         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3452                 sizeof(ps->channels));
3453         ps->flags = kvm->arch.vpit->pit_state.flags;
3454         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3455         memset(&ps->reserved, 0, sizeof(ps->reserved));
3456         return r;
3457 }
3458
3459 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3460 {
3461         int r = 0, start = 0;
3462         u32 prev_legacy, cur_legacy;
3463         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3465         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3466         if (!prev_legacy && cur_legacy)
3467                 start = 1;
3468         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3469                sizeof(kvm->arch.vpit->pit_state.channels));
3470         kvm->arch.vpit->pit_state.flags = ps->flags;
3471         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3472         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3473         return r;
3474 }
3475
3476 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3477                                  struct kvm_reinject_control *control)
3478 {
3479         if (!kvm->arch.vpit)
3480                 return -ENXIO;
3481         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3482         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3483         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3484         return 0;
3485 }
3486
3487 /**
3488  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3489  * @kvm: kvm instance
3490  * @log: slot id and address to which we copy the log
3491  *
3492  * We need to keep it in mind that VCPU threads can write to the bitmap
3493  * concurrently.  So, to avoid losing data, we keep the following order for
3494  * each bit:
3495  *
3496  *   1. Take a snapshot of the bit and clear it if needed.
3497  *   2. Write protect the corresponding page.
3498  *   3. Flush TLB's if needed.
3499  *   4. Copy the snapshot to the userspace.
3500  *
3501  * Between 2 and 3, the guest may write to the page using the remaining TLB
3502  * entry.  This is not a problem because the page will be reported dirty at
3503  * step 4 using the snapshot taken before and step 3 ensures that successive
3504  * writes will be logged for the next call.
3505  */
3506 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3507 {
3508         int r;
3509         struct kvm_memory_slot *memslot;
3510         unsigned long n, i;
3511         unsigned long *dirty_bitmap;
3512         unsigned long *dirty_bitmap_buffer;
3513         bool is_dirty = false;
3514
3515         mutex_lock(&kvm->slots_lock);
3516
3517         r = -EINVAL;
3518         if (log->slot >= KVM_USER_MEM_SLOTS)
3519                 goto out;
3520
3521         memslot = id_to_memslot(kvm->memslots, log->slot);
3522
3523         dirty_bitmap = memslot->dirty_bitmap;
3524         r = -ENOENT;
3525         if (!dirty_bitmap)
3526                 goto out;
3527
3528         n = kvm_dirty_bitmap_bytes(memslot);
3529
3530         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3531         memset(dirty_bitmap_buffer, 0, n);
3532
3533         spin_lock(&kvm->mmu_lock);
3534
3535         for (i = 0; i < n / sizeof(long); i++) {
3536                 unsigned long mask;
3537                 gfn_t offset;
3538
3539                 if (!dirty_bitmap[i])
3540                         continue;
3541
3542                 is_dirty = true;
3543
3544                 mask = xchg(&dirty_bitmap[i], 0);
3545                 dirty_bitmap_buffer[i] = mask;
3546
3547                 offset = i * BITS_PER_LONG;
3548                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3549         }
3550         if (is_dirty)
3551                 kvm_flush_remote_tlbs(kvm);
3552
3553         spin_unlock(&kvm->mmu_lock);
3554
3555         r = -EFAULT;
3556         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3557                 goto out;
3558
3559         r = 0;
3560 out:
3561         mutex_unlock(&kvm->slots_lock);
3562         return r;
3563 }
3564
3565 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3566                         bool line_status)
3567 {
3568         if (!irqchip_in_kernel(kvm))
3569                 return -ENXIO;
3570
3571         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3572                                         irq_event->irq, irq_event->level,
3573                                         line_status);
3574         return 0;
3575 }
3576
3577 long kvm_arch_vm_ioctl(struct file *filp,
3578                        unsigned int ioctl, unsigned long arg)
3579 {
3580         struct kvm *kvm = filp->private_data;
3581         void __user *argp = (void __user *)arg;
3582         int r = -ENOTTY;
3583         /*
3584          * This union makes it completely explicit to gcc-3.x
3585          * that these two variables' stack usage should be
3586          * combined, not added together.
3587          */
3588         union {
3589                 struct kvm_pit_state ps;
3590                 struct kvm_pit_state2 ps2;
3591                 struct kvm_pit_config pit_config;
3592         } u;
3593
3594         switch (ioctl) {
3595         case KVM_SET_TSS_ADDR:
3596                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3597                 break;
3598         case KVM_SET_IDENTITY_MAP_ADDR: {
3599                 u64 ident_addr;
3600
3601                 r = -EFAULT;
3602                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3603                         goto out;
3604                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3605                 break;
3606         }
3607         case KVM_SET_NR_MMU_PAGES:
3608                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3609                 break;
3610         case KVM_GET_NR_MMU_PAGES:
3611                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3612                 break;
3613         case KVM_CREATE_IRQCHIP: {
3614                 struct kvm_pic *vpic;
3615
3616                 mutex_lock(&kvm->lock);
3617                 r = -EEXIST;
3618                 if (kvm->arch.vpic)
3619                         goto create_irqchip_unlock;
3620                 r = -EINVAL;
3621                 if (atomic_read(&kvm->online_vcpus))
3622                         goto create_irqchip_unlock;
3623                 r = -ENOMEM;
3624                 vpic = kvm_create_pic(kvm);
3625                 if (vpic) {
3626                         r = kvm_ioapic_init(kvm);
3627                         if (r) {
3628                                 mutex_lock(&kvm->slots_lock);
3629                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3630                                                           &vpic->dev_master);
3631                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3632                                                           &vpic->dev_slave);
3633                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3634                                                           &vpic->dev_eclr);
3635                                 mutex_unlock(&kvm->slots_lock);
3636                                 kfree(vpic);
3637                                 goto create_irqchip_unlock;
3638                         }
3639                 } else
3640                         goto create_irqchip_unlock;
3641                 smp_wmb();
3642                 kvm->arch.vpic = vpic;
3643                 smp_wmb();
3644                 r = kvm_setup_default_irq_routing(kvm);
3645                 if (r) {
3646                         mutex_lock(&kvm->slots_lock);
3647                         mutex_lock(&kvm->irq_lock);
3648                         kvm_ioapic_destroy(kvm);
3649                         kvm_destroy_pic(kvm);
3650                         mutex_unlock(&kvm->irq_lock);
3651                         mutex_unlock(&kvm->slots_lock);
3652                 }
3653         create_irqchip_unlock:
3654                 mutex_unlock(&kvm->lock);
3655                 break;
3656         }
3657         case KVM_CREATE_PIT:
3658                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3659                 goto create_pit;
3660         case KVM_CREATE_PIT2:
3661                 r = -EFAULT;
3662                 if (copy_from_user(&u.pit_config, argp,
3663                                    sizeof(struct kvm_pit_config)))
3664                         goto out;
3665         create_pit:
3666                 mutex_lock(&kvm->slots_lock);
3667                 r = -EEXIST;
3668                 if (kvm->arch.vpit)
3669                         goto create_pit_unlock;
3670                 r = -ENOMEM;
3671                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3672                 if (kvm->arch.vpit)
3673                         r = 0;
3674         create_pit_unlock:
3675                 mutex_unlock(&kvm->slots_lock);
3676                 break;
3677         case KVM_GET_IRQCHIP: {
3678                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3679                 struct kvm_irqchip *chip;
3680
3681                 chip = memdup_user(argp, sizeof(*chip));
3682                 if (IS_ERR(chip)) {
3683                         r = PTR_ERR(chip);
3684                         goto out;
3685                 }
3686
3687                 r = -ENXIO;
3688                 if (!irqchip_in_kernel(kvm))
3689                         goto get_irqchip_out;
3690                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3691                 if (r)
3692                         goto get_irqchip_out;
3693                 r = -EFAULT;
3694                 if (copy_to_user(argp, chip, sizeof *chip))
3695                         goto get_irqchip_out;
3696                 r = 0;
3697         get_irqchip_out:
3698                 kfree(chip);
3699                 break;
3700         }
3701         case KVM_SET_IRQCHIP: {
3702                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3703                 struct kvm_irqchip *chip;
3704
3705                 chip = memdup_user(argp, sizeof(*chip));
3706                 if (IS_ERR(chip)) {
3707                         r = PTR_ERR(chip);
3708                         goto out;
3709                 }
3710
3711                 r = -ENXIO;
3712                 if (!irqchip_in_kernel(kvm))
3713                         goto set_irqchip_out;
3714                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3715                 if (r)
3716                         goto set_irqchip_out;
3717                 r = 0;
3718         set_irqchip_out:
3719                 kfree(chip);
3720                 break;
3721         }
3722         case KVM_GET_PIT: {
3723                 r = -EFAULT;
3724                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3725                         goto out;
3726                 r = -ENXIO;
3727                 if (!kvm->arch.vpit)
3728                         goto out;
3729                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3730                 if (r)
3731                         goto out;
3732                 r = -EFAULT;
3733                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3734                         goto out;
3735                 r = 0;
3736                 break;
3737         }
3738         case KVM_SET_PIT: {
3739                 r = -EFAULT;
3740                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3741                         goto out;
3742                 r = -ENXIO;
3743                 if (!kvm->arch.vpit)
3744                         goto out;
3745                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3746                 break;
3747         }
3748         case KVM_GET_PIT2: {
3749                 r = -ENXIO;
3750                 if (!kvm->arch.vpit)
3751                         goto out;
3752                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3753                 if (r)
3754                         goto out;
3755                 r = -EFAULT;
3756                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3757                         goto out;
3758                 r = 0;
3759                 break;
3760         }
3761         case KVM_SET_PIT2: {
3762                 r = -EFAULT;
3763                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3764                         goto out;
3765                 r = -ENXIO;
3766                 if (!kvm->arch.vpit)
3767                         goto out;
3768                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3769                 break;
3770         }
3771         case KVM_REINJECT_CONTROL: {
3772                 struct kvm_reinject_control control;
3773                 r =  -EFAULT;
3774                 if (copy_from_user(&control, argp, sizeof(control)))
3775                         goto out;
3776                 r = kvm_vm_ioctl_reinject(kvm, &control);
3777                 break;
3778         }
3779         case KVM_XEN_HVM_CONFIG: {
3780                 r = -EFAULT;
3781                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3782                                    sizeof(struct kvm_xen_hvm_config)))
3783                         goto out;
3784                 r = -EINVAL;
3785                 if (kvm->arch.xen_hvm_config.flags)
3786                         goto out;
3787                 r = 0;
3788                 break;
3789         }
3790         case KVM_SET_CLOCK: {
3791                 struct kvm_clock_data user_ns;
3792                 u64 now_ns;
3793                 s64 delta;
3794
3795                 r = -EFAULT;
3796                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3797                         goto out;
3798
3799                 r = -EINVAL;
3800                 if (user_ns.flags)
3801                         goto out;
3802
3803                 r = 0;
3804                 local_irq_disable();
3805                 now_ns = get_kernel_ns();
3806                 delta = user_ns.clock - now_ns;
3807                 local_irq_enable();
3808                 kvm->arch.kvmclock_offset = delta;
3809                 break;
3810         }
3811         case KVM_GET_CLOCK: {
3812                 struct kvm_clock_data user_ns;
3813                 u64 now_ns;
3814
3815                 local_irq_disable();
3816                 now_ns = get_kernel_ns();
3817                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3818                 local_irq_enable();
3819                 user_ns.flags = 0;
3820                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3821
3822                 r = -EFAULT;
3823                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3824                         goto out;
3825                 r = 0;
3826                 break;
3827         }
3828
3829         default:
3830                 ;
3831         }
3832 out:
3833         return r;
3834 }
3835
3836 static void kvm_init_msr_list(void)
3837 {
3838         u32 dummy[2];
3839         unsigned i, j;
3840
3841         /* skip the first msrs in the list. KVM-specific */
3842         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3843                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3844                         continue;
3845                 if (j < i)
3846                         msrs_to_save[j] = msrs_to_save[i];
3847                 j++;
3848         }
3849         num_msrs_to_save = j;
3850 }
3851
3852 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3853                            const void *v)
3854 {
3855         int handled = 0;
3856         int n;
3857
3858         do {
3859                 n = min(len, 8);
3860                 if (!(vcpu->arch.apic &&
3861                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3862                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3863                         break;
3864                 handled += n;
3865                 addr += n;
3866                 len -= n;
3867                 v += n;
3868         } while (len);
3869
3870         return handled;
3871 }
3872
3873 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3874 {
3875         int handled = 0;
3876         int n;
3877
3878         do {
3879                 n = min(len, 8);
3880                 if (!(vcpu->arch.apic &&
3881                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3882                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3883                         break;
3884                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3885                 handled += n;
3886                 addr += n;
3887                 len -= n;
3888                 v += n;
3889         } while (len);
3890
3891         return handled;
3892 }
3893
3894 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3895                         struct kvm_segment *var, int seg)
3896 {
3897         kvm_x86_ops->set_segment(vcpu, var, seg);
3898 }
3899
3900 void kvm_get_segment(struct kvm_vcpu *vcpu,
3901                      struct kvm_segment *var, int seg)
3902 {
3903         kvm_x86_ops->get_segment(vcpu, var, seg);
3904 }
3905
3906 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3907 {
3908         gpa_t t_gpa;
3909         struct x86_exception exception;
3910
3911         BUG_ON(!mmu_is_nested(vcpu));
3912
3913         /* NPT walks are always user-walks */
3914         access |= PFERR_USER_MASK;
3915         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3916
3917         return t_gpa;
3918 }
3919
3920 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3921                               struct x86_exception *exception)
3922 {
3923         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3924         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3925 }
3926
3927  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3928                                 struct x86_exception *exception)
3929 {
3930         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3931         access |= PFERR_FETCH_MASK;
3932         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3933 }
3934
3935 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3936                                struct x86_exception *exception)
3937 {
3938         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3939         access |= PFERR_WRITE_MASK;
3940         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3941 }
3942
3943 /* uses this to access any guest's mapped memory without checking CPL */
3944 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3945                                 struct x86_exception *exception)
3946 {
3947         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3948 }
3949
3950 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3951                                       struct kvm_vcpu *vcpu, u32 access,
3952                                       struct x86_exception *exception)
3953 {
3954         void *data = val;
3955         int r = X86EMUL_CONTINUE;
3956
3957         while (bytes) {
3958                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3959                                                             exception);
3960                 unsigned offset = addr & (PAGE_SIZE-1);
3961                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3962                 int ret;
3963
3964                 if (gpa == UNMAPPED_GVA)
3965                         return X86EMUL_PROPAGATE_FAULT;
3966                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3967                 if (ret < 0) {
3968                         r = X86EMUL_IO_NEEDED;
3969                         goto out;
3970                 }
3971
3972                 bytes -= toread;
3973                 data += toread;
3974                 addr += toread;
3975         }
3976 out:
3977         return r;
3978 }
3979
3980 /* used for instruction fetching */
3981 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3982                                 gva_t addr, void *val, unsigned int bytes,
3983                                 struct x86_exception *exception)
3984 {
3985         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3986         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3987
3988         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3989                                           access | PFERR_FETCH_MASK,
3990                                           exception);
3991 }
3992
3993 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3994                                gva_t addr, void *val, unsigned int bytes,
3995                                struct x86_exception *exception)
3996 {
3997         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3998         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3999
4000         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4001                                           exception);
4002 }
4003 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4004
4005 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4006                                       gva_t addr, void *val, unsigned int bytes,
4007                                       struct x86_exception *exception)
4008 {
4009         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4010         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4011 }
4012
4013 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4014                                        gva_t addr, void *val,
4015                                        unsigned int bytes,
4016                                        struct x86_exception *exception)
4017 {
4018         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4019         void *data = val;
4020         int r = X86EMUL_CONTINUE;
4021
4022         while (bytes) {
4023                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4024                                                              PFERR_WRITE_MASK,
4025                                                              exception);
4026                 unsigned offset = addr & (PAGE_SIZE-1);
4027                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4028                 int ret;
4029
4030                 if (gpa == UNMAPPED_GVA)
4031                         return X86EMUL_PROPAGATE_FAULT;
4032                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4033                 if (ret < 0) {
4034                         r = X86EMUL_IO_NEEDED;
4035                         goto out;
4036                 }
4037
4038                 bytes -= towrite;
4039                 data += towrite;
4040                 addr += towrite;
4041         }
4042 out:
4043         return r;
4044 }
4045 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4046
4047 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4048                                 gpa_t *gpa, struct x86_exception *exception,
4049                                 bool write)
4050 {
4051         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4052                 | (write ? PFERR_WRITE_MASK : 0);
4053
4054         if (vcpu_match_mmio_gva(vcpu, gva)
4055             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4056                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4057                                         (gva & (PAGE_SIZE - 1));
4058                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4059                 return 1;
4060         }
4061
4062         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4063
4064         if (*gpa == UNMAPPED_GVA)
4065                 return -1;
4066
4067         /* For APIC access vmexit */
4068         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4069                 return 1;
4070
4071         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4072                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4073                 return 1;
4074         }
4075
4076         return 0;
4077 }
4078
4079 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4080                         const void *val, int bytes)
4081 {
4082         int ret;
4083
4084         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4085         if (ret < 0)
4086                 return 0;
4087         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4088         return 1;
4089 }
4090
4091 struct read_write_emulator_ops {
4092         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4093                                   int bytes);
4094         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4095                                   void *val, int bytes);
4096         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4097                                int bytes, void *val);
4098         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4099                                     void *val, int bytes);
4100         bool write;
4101 };
4102
4103 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4104 {
4105         if (vcpu->mmio_read_completed) {
4106                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4107                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4108                 vcpu->mmio_read_completed = 0;
4109                 return 1;
4110         }
4111
4112         return 0;
4113 }
4114
4115 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4116                         void *val, int bytes)
4117 {
4118         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4119 }
4120
4121 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4122                          void *val, int bytes)
4123 {
4124         return emulator_write_phys(vcpu, gpa, val, bytes);
4125 }
4126
4127 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4128 {
4129         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4130         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4131 }
4132
4133 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4134                           void *val, int bytes)
4135 {
4136         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4137         return X86EMUL_IO_NEEDED;
4138 }
4139
4140 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4141                            void *val, int bytes)
4142 {
4143         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4144
4145         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4146         return X86EMUL_CONTINUE;
4147 }
4148
4149 static const struct read_write_emulator_ops read_emultor = {
4150         .read_write_prepare = read_prepare,
4151         .read_write_emulate = read_emulate,
4152         .read_write_mmio = vcpu_mmio_read,
4153         .read_write_exit_mmio = read_exit_mmio,
4154 };
4155
4156 static const struct read_write_emulator_ops write_emultor = {
4157         .read_write_emulate = write_emulate,
4158         .read_write_mmio = write_mmio,
4159         .read_write_exit_mmio = write_exit_mmio,
4160         .write = true,
4161 };
4162
4163 static int emulator_read_write_onepage(unsigned long addr, void *val,
4164                                        unsigned int bytes,
4165                                        struct x86_exception *exception,
4166                                        struct kvm_vcpu *vcpu,
4167                                        const struct read_write_emulator_ops *ops)
4168 {
4169         gpa_t gpa;
4170         int handled, ret;
4171         bool write = ops->write;
4172         struct kvm_mmio_fragment *frag;
4173
4174         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4175
4176         if (ret < 0)
4177                 return X86EMUL_PROPAGATE_FAULT;
4178
4179         /* For APIC access vmexit */
4180         if (ret)
4181                 goto mmio;
4182
4183         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4184                 return X86EMUL_CONTINUE;
4185
4186 mmio:
4187         /*
4188          * Is this MMIO handled locally?
4189          */
4190         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4191         if (handled == bytes)
4192                 return X86EMUL_CONTINUE;
4193
4194         gpa += handled;
4195         bytes -= handled;
4196         val += handled;
4197
4198         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4199         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4200         frag->gpa = gpa;
4201         frag->data = val;
4202         frag->len = bytes;
4203         return X86EMUL_CONTINUE;
4204 }
4205
4206 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4207                         void *val, unsigned int bytes,
4208                         struct x86_exception *exception,
4209                         const struct read_write_emulator_ops *ops)
4210 {
4211         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4212         gpa_t gpa;
4213         int rc;
4214
4215         if (ops->read_write_prepare &&
4216                   ops->read_write_prepare(vcpu, val, bytes))
4217                 return X86EMUL_CONTINUE;
4218
4219         vcpu->mmio_nr_fragments = 0;
4220
4221         /* Crossing a page boundary? */
4222         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4223                 int now;
4224
4225                 now = -addr & ~PAGE_MASK;
4226                 rc = emulator_read_write_onepage(addr, val, now, exception,
4227                                                  vcpu, ops);
4228
4229                 if (rc != X86EMUL_CONTINUE)
4230                         return rc;
4231                 addr += now;
4232                 val += now;
4233                 bytes -= now;
4234         }
4235
4236         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4237                                          vcpu, ops);
4238         if (rc != X86EMUL_CONTINUE)
4239                 return rc;
4240
4241         if (!vcpu->mmio_nr_fragments)
4242                 return rc;
4243
4244         gpa = vcpu->mmio_fragments[0].gpa;
4245
4246         vcpu->mmio_needed = 1;
4247         vcpu->mmio_cur_fragment = 0;
4248
4249         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4250         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4251         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4252         vcpu->run->mmio.phys_addr = gpa;
4253
4254         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4255 }
4256
4257 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4258                                   unsigned long addr,
4259                                   void *val,
4260                                   unsigned int bytes,
4261                                   struct x86_exception *exception)
4262 {
4263         return emulator_read_write(ctxt, addr, val, bytes,
4264                                    exception, &read_emultor);
4265 }
4266
4267 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4268                             unsigned long addr,
4269                             const void *val,
4270                             unsigned int bytes,
4271                             struct x86_exception *exception)
4272 {
4273         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4274                                    exception, &write_emultor);
4275 }
4276
4277 #define CMPXCHG_TYPE(t, ptr, old, new) \
4278         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4279
4280 #ifdef CONFIG_X86_64
4281 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4282 #else
4283 #  define CMPXCHG64(ptr, old, new) \
4284         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4285 #endif
4286
4287 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4288                                      unsigned long addr,
4289                                      const void *old,
4290                                      const void *new,
4291                                      unsigned int bytes,
4292                                      struct x86_exception *exception)
4293 {
4294         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4295         gpa_t gpa;
4296         struct page *page;
4297         char *kaddr;
4298         bool exchanged;
4299
4300         /* guests cmpxchg8b have to be emulated atomically */
4301         if (bytes > 8 || (bytes & (bytes - 1)))
4302                 goto emul_write;
4303
4304         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4305
4306         if (gpa == UNMAPPED_GVA ||
4307             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4308                 goto emul_write;
4309
4310         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4311                 goto emul_write;
4312
4313         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4314         if (is_error_page(page))
4315                 goto emul_write;
4316
4317         kaddr = kmap_atomic(page);
4318         kaddr += offset_in_page(gpa);
4319         switch (bytes) {
4320         case 1:
4321                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4322                 break;
4323         case 2:
4324                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4325                 break;
4326         case 4:
4327                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4328                 break;
4329         case 8:
4330                 exchanged = CMPXCHG64(kaddr, old, new);
4331                 break;
4332         default:
4333                 BUG();
4334         }
4335         kunmap_atomic(kaddr);
4336         kvm_release_page_dirty(page);
4337
4338         if (!exchanged)
4339                 return X86EMUL_CMPXCHG_FAILED;
4340
4341         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4342
4343         return X86EMUL_CONTINUE;
4344
4345 emul_write:
4346         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4347
4348         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4349 }
4350
4351 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4352 {
4353         /* TODO: String I/O for in kernel device */
4354         int r;
4355
4356         if (vcpu->arch.pio.in)
4357                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4358                                     vcpu->arch.pio.size, pd);
4359         else
4360                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4361                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4362                                      pd);
4363         return r;
4364 }
4365
4366 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4367                                unsigned short port, void *val,
4368                                unsigned int count, bool in)
4369 {
4370         trace_kvm_pio(!in, port, size, count);
4371
4372         vcpu->arch.pio.port = port;
4373         vcpu->arch.pio.in = in;
4374         vcpu->arch.pio.count  = count;
4375         vcpu->arch.pio.size = size;
4376
4377         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4378                 vcpu->arch.pio.count = 0;
4379                 return 1;
4380         }
4381
4382         vcpu->run->exit_reason = KVM_EXIT_IO;
4383         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4384         vcpu->run->io.size = size;
4385         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4386         vcpu->run->io.count = count;
4387         vcpu->run->io.port = port;
4388
4389         return 0;
4390 }
4391
4392 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4393                                     int size, unsigned short port, void *val,
4394                                     unsigned int count)
4395 {
4396         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4397         int ret;
4398
4399         if (vcpu->arch.pio.count)
4400                 goto data_avail;
4401
4402         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4403         if (ret) {
4404 data_avail:
4405                 memcpy(val, vcpu->arch.pio_data, size * count);
4406                 vcpu->arch.pio.count = 0;
4407                 return 1;
4408         }
4409
4410         return 0;
4411 }
4412
4413 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4414                                      int size, unsigned short port,
4415                                      const void *val, unsigned int count)
4416 {
4417         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4418
4419         memcpy(vcpu->arch.pio_data, val, size * count);
4420         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4421 }
4422
4423 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4424 {
4425         return kvm_x86_ops->get_segment_base(vcpu, seg);
4426 }
4427
4428 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4429 {
4430         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4431 }
4432
4433 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4434 {
4435         if (!need_emulate_wbinvd(vcpu))
4436                 return X86EMUL_CONTINUE;
4437
4438         if (kvm_x86_ops->has_wbinvd_exit()) {
4439                 int cpu = get_cpu();
4440
4441                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4442                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4443                                 wbinvd_ipi, NULL, 1);
4444                 put_cpu();
4445                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4446         } else
4447                 wbinvd();
4448         return X86EMUL_CONTINUE;
4449 }
4450 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4451
4452 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4453 {
4454         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4455 }
4456
4457 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4458 {
4459         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4460 }
4461
4462 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4463 {
4464
4465         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4466 }
4467
4468 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4469 {
4470         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4471 }
4472
4473 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4474 {
4475         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4476         unsigned long value;
4477
4478         switch (cr) {
4479         case 0:
4480                 value = kvm_read_cr0(vcpu);
4481                 break;
4482         case 2:
4483                 value = vcpu->arch.cr2;
4484                 break;
4485         case 3:
4486                 value = kvm_read_cr3(vcpu);
4487                 break;
4488         case 4:
4489                 value = kvm_read_cr4(vcpu);
4490                 break;
4491         case 8:
4492                 value = kvm_get_cr8(vcpu);
4493                 break;
4494         default:
4495                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4496                 return 0;
4497         }
4498
4499         return value;
4500 }
4501
4502 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4503 {
4504         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4505         int res = 0;
4506
4507         switch (cr) {
4508         case 0:
4509                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4510                 break;
4511         case 2:
4512                 vcpu->arch.cr2 = val;
4513                 break;
4514         case 3:
4515                 res = kvm_set_cr3(vcpu, val);
4516                 break;
4517         case 4:
4518                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4519                 break;
4520         case 8:
4521                 res = kvm_set_cr8(vcpu, val);
4522                 break;
4523         default:
4524                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4525                 res = -1;
4526         }
4527
4528         return res;
4529 }
4530
4531 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4532 {
4533         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4534 }
4535
4536 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4537 {
4538         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4539 }
4540
4541 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4542 {
4543         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4544 }
4545
4546 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4547 {
4548         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4549 }
4550
4551 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4552 {
4553         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4554 }
4555
4556 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4557 {
4558         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4559 }
4560
4561 static unsigned long emulator_get_cached_segment_base(
4562         struct x86_emulate_ctxt *ctxt, int seg)
4563 {
4564         return get_segment_base(emul_to_vcpu(ctxt), seg);
4565 }
4566
4567 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4568                                  struct desc_struct *desc, u32 *base3,
4569                                  int seg)
4570 {
4571         struct kvm_segment var;
4572
4573         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4574         *selector = var.selector;
4575
4576         if (var.unusable) {
4577                 memset(desc, 0, sizeof(*desc));
4578                 return false;
4579         }
4580
4581         if (var.g)
4582                 var.limit >>= 12;
4583         set_desc_limit(desc, var.limit);
4584         set_desc_base(desc, (unsigned long)var.base);
4585 #ifdef CONFIG_X86_64
4586         if (base3)
4587                 *base3 = var.base >> 32;
4588 #endif
4589         desc->type = var.type;
4590         desc->s = var.s;
4591         desc->dpl = var.dpl;
4592         desc->p = var.present;
4593         desc->avl = var.avl;
4594         desc->l = var.l;
4595         desc->d = var.db;
4596         desc->g = var.g;
4597
4598         return true;
4599 }
4600
4601 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4602                                  struct desc_struct *desc, u32 base3,
4603                                  int seg)
4604 {
4605         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4606         struct kvm_segment var;
4607
4608         var.selector = selector;
4609         var.base = get_desc_base(desc);
4610 #ifdef CONFIG_X86_64
4611         var.base |= ((u64)base3) << 32;
4612 #endif
4613         var.limit = get_desc_limit(desc);
4614         if (desc->g)
4615                 var.limit = (var.limit << 12) | 0xfff;
4616         var.type = desc->type;
4617         var.present = desc->p;
4618         var.dpl = desc->dpl;
4619         var.db = desc->d;
4620         var.s = desc->s;
4621         var.l = desc->l;
4622         var.g = desc->g;
4623         var.avl = desc->avl;
4624         var.present = desc->p;
4625         var.unusable = !var.present;
4626         var.padding = 0;
4627
4628         kvm_set_segment(vcpu, &var, seg);
4629         return;
4630 }
4631
4632 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4633                             u32 msr_index, u64 *pdata)
4634 {
4635         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4636 }
4637
4638 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4639                             u32 msr_index, u64 data)
4640 {
4641         struct msr_data msr;
4642
4643         msr.data = data;
4644         msr.index = msr_index;
4645         msr.host_initiated = false;
4646         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4647 }
4648
4649 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4650                              u32 pmc, u64 *pdata)
4651 {
4652         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4653 }
4654
4655 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4656 {
4657         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4658 }
4659
4660 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4661 {
4662         preempt_disable();
4663         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4664         /*
4665          * CR0.TS may reference the host fpu state, not the guest fpu state,
4666          * so it may be clear at this point.
4667          */
4668         clts();
4669 }
4670
4671 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4672 {
4673         preempt_enable();
4674 }
4675
4676 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4677                               struct x86_instruction_info *info,
4678                               enum x86_intercept_stage stage)
4679 {
4680         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4681 }
4682
4683 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4684                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4685 {
4686         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4687 }
4688
4689 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4690 {
4691         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4692 }
4693
4694 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4695 {
4696         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4697 }
4698
4699 static const struct x86_emulate_ops emulate_ops = {
4700         .read_gpr            = emulator_read_gpr,
4701         .write_gpr           = emulator_write_gpr,
4702         .read_std            = kvm_read_guest_virt_system,
4703         .write_std           = kvm_write_guest_virt_system,
4704         .fetch               = kvm_fetch_guest_virt,
4705         .read_emulated       = emulator_read_emulated,
4706         .write_emulated      = emulator_write_emulated,
4707         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4708         .invlpg              = emulator_invlpg,
4709         .pio_in_emulated     = emulator_pio_in_emulated,
4710         .pio_out_emulated    = emulator_pio_out_emulated,
4711         .get_segment         = emulator_get_segment,
4712         .set_segment         = emulator_set_segment,
4713         .get_cached_segment_base = emulator_get_cached_segment_base,
4714         .get_gdt             = emulator_get_gdt,
4715         .get_idt             = emulator_get_idt,
4716         .set_gdt             = emulator_set_gdt,
4717         .set_idt             = emulator_set_idt,
4718         .get_cr              = emulator_get_cr,
4719         .set_cr              = emulator_set_cr,
4720         .set_rflags          = emulator_set_rflags,
4721         .cpl                 = emulator_get_cpl,
4722         .get_dr              = emulator_get_dr,
4723         .set_dr              = emulator_set_dr,
4724         .set_msr             = emulator_set_msr,
4725         .get_msr             = emulator_get_msr,
4726         .read_pmc            = emulator_read_pmc,
4727         .halt                = emulator_halt,
4728         .wbinvd              = emulator_wbinvd,
4729         .fix_hypercall       = emulator_fix_hypercall,
4730         .get_fpu             = emulator_get_fpu,
4731         .put_fpu             = emulator_put_fpu,
4732         .intercept           = emulator_intercept,
4733         .get_cpuid           = emulator_get_cpuid,
4734 };
4735
4736 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4737 {
4738         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4739         /*
4740          * an sti; sti; sequence only disable interrupts for the first
4741          * instruction. So, if the last instruction, be it emulated or
4742          * not, left the system with the INT_STI flag enabled, it
4743          * means that the last instruction is an sti. We should not
4744          * leave the flag on in this case. The same goes for mov ss
4745          */
4746         if (!(int_shadow & mask))
4747                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4748 }
4749
4750 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4751 {
4752         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4753         if (ctxt->exception.vector == PF_VECTOR)
4754                 kvm_propagate_fault(vcpu, &ctxt->exception);
4755         else if (ctxt->exception.error_code_valid)
4756                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4757                                       ctxt->exception.error_code);
4758         else
4759                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4760 }
4761
4762 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4763 {
4764         memset(&ctxt->twobyte, 0,
4765                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4766
4767         ctxt->fetch.start = 0;
4768         ctxt->fetch.end = 0;
4769         ctxt->io_read.pos = 0;
4770         ctxt->io_read.end = 0;
4771         ctxt->mem_read.pos = 0;
4772         ctxt->mem_read.end = 0;
4773 }
4774
4775 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4776 {
4777         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4778         int cs_db, cs_l;
4779
4780         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4781
4782         ctxt->eflags = kvm_get_rflags(vcpu);
4783         ctxt->eip = kvm_rip_read(vcpu);
4784         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4785                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4786                      cs_l                               ? X86EMUL_MODE_PROT64 :
4787                      cs_db                              ? X86EMUL_MODE_PROT32 :
4788                                                           X86EMUL_MODE_PROT16;
4789         ctxt->guest_mode = is_guest_mode(vcpu);
4790
4791         init_decode_cache(ctxt);
4792         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4793 }
4794
4795 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4796 {
4797         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4798         int ret;
4799
4800         init_emulate_ctxt(vcpu);
4801
4802         ctxt->op_bytes = 2;
4803         ctxt->ad_bytes = 2;
4804         ctxt->_eip = ctxt->eip + inc_eip;
4805         ret = emulate_int_real(ctxt, irq);
4806
4807         if (ret != X86EMUL_CONTINUE)
4808                 return EMULATE_FAIL;
4809
4810         ctxt->eip = ctxt->_eip;
4811         kvm_rip_write(vcpu, ctxt->eip);
4812         kvm_set_rflags(vcpu, ctxt->eflags);
4813
4814         if (irq == NMI_VECTOR)
4815                 vcpu->arch.nmi_pending = 0;
4816         else
4817                 vcpu->arch.interrupt.pending = false;
4818
4819         return EMULATE_DONE;
4820 }
4821 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4822
4823 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4824 {
4825         int r = EMULATE_DONE;
4826
4827         ++vcpu->stat.insn_emulation_fail;
4828         trace_kvm_emulate_insn_failed(vcpu);
4829         if (!is_guest_mode(vcpu)) {
4830                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4831                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4832                 vcpu->run->internal.ndata = 0;
4833                 r = EMULATE_FAIL;
4834         }
4835         kvm_queue_exception(vcpu, UD_VECTOR);
4836
4837         return r;
4838 }
4839
4840 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4841                                   bool write_fault_to_shadow_pgtable,
4842                                   int emulation_type)
4843 {
4844         gpa_t gpa = cr2;
4845         pfn_t pfn;
4846
4847         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4848                 return false;
4849
4850         if (!vcpu->arch.mmu.direct_map) {
4851                 /*
4852                  * Write permission should be allowed since only
4853                  * write access need to be emulated.
4854                  */
4855                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4856
4857                 /*
4858                  * If the mapping is invalid in guest, let cpu retry
4859                  * it to generate fault.
4860                  */
4861                 if (gpa == UNMAPPED_GVA)
4862                         return true;
4863         }
4864
4865         /*
4866          * Do not retry the unhandleable instruction if it faults on the
4867          * readonly host memory, otherwise it will goto a infinite loop:
4868          * retry instruction -> write #PF -> emulation fail -> retry
4869          * instruction -> ...
4870          */
4871         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4872
4873         /*
4874          * If the instruction failed on the error pfn, it can not be fixed,
4875          * report the error to userspace.
4876          */
4877         if (is_error_noslot_pfn(pfn))
4878                 return false;
4879
4880         kvm_release_pfn_clean(pfn);
4881
4882         /* The instructions are well-emulated on direct mmu. */
4883         if (vcpu->arch.mmu.direct_map) {
4884                 unsigned int indirect_shadow_pages;
4885
4886                 spin_lock(&vcpu->kvm->mmu_lock);
4887                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4888                 spin_unlock(&vcpu->kvm->mmu_lock);
4889
4890                 if (indirect_shadow_pages)
4891                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4892
4893                 return true;
4894         }
4895
4896         /*
4897          * if emulation was due to access to shadowed page table
4898          * and it failed try to unshadow page and re-enter the
4899          * guest to let CPU execute the instruction.
4900          */
4901         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4902
4903         /*
4904          * If the access faults on its page table, it can not
4905          * be fixed by unprotecting shadow page and it should
4906          * be reported to userspace.
4907          */
4908         return !write_fault_to_shadow_pgtable;
4909 }
4910
4911 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4912                               unsigned long cr2,  int emulation_type)
4913 {
4914         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4915         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4916
4917         last_retry_eip = vcpu->arch.last_retry_eip;
4918         last_retry_addr = vcpu->arch.last_retry_addr;
4919
4920         /*
4921          * If the emulation is caused by #PF and it is non-page_table
4922          * writing instruction, it means the VM-EXIT is caused by shadow
4923          * page protected, we can zap the shadow page and retry this
4924          * instruction directly.
4925          *
4926          * Note: if the guest uses a non-page-table modifying instruction
4927          * on the PDE that points to the instruction, then we will unmap
4928          * the instruction and go to an infinite loop. So, we cache the
4929          * last retried eip and the last fault address, if we meet the eip
4930          * and the address again, we can break out of the potential infinite
4931          * loop.
4932          */
4933         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4934
4935         if (!(emulation_type & EMULTYPE_RETRY))
4936                 return false;
4937
4938         if (x86_page_table_writing_insn(ctxt))
4939                 return false;
4940
4941         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4942                 return false;
4943
4944         vcpu->arch.last_retry_eip = ctxt->eip;
4945         vcpu->arch.last_retry_addr = cr2;
4946
4947         if (!vcpu->arch.mmu.direct_map)
4948                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4949
4950         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4951
4952         return true;
4953 }
4954
4955 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4956 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4957
4958 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4959                             unsigned long cr2,
4960                             int emulation_type,
4961                             void *insn,
4962                             int insn_len)
4963 {
4964         int r;
4965         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4966         bool writeback = true;
4967         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4968
4969         /*
4970          * Clear write_fault_to_shadow_pgtable here to ensure it is
4971          * never reused.
4972          */
4973         vcpu->arch.write_fault_to_shadow_pgtable = false;
4974         kvm_clear_exception_queue(vcpu);
4975
4976         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4977                 init_emulate_ctxt(vcpu);
4978                 ctxt->interruptibility = 0;
4979                 ctxt->have_exception = false;
4980                 ctxt->perm_ok = false;
4981
4982                 ctxt->only_vendor_specific_insn
4983                         = emulation_type & EMULTYPE_TRAP_UD;
4984
4985                 r = x86_decode_insn(ctxt, insn, insn_len);
4986
4987                 trace_kvm_emulate_insn_start(vcpu);
4988                 ++vcpu->stat.insn_emulation;
4989                 if (r != EMULATION_OK)  {
4990                         if (emulation_type & EMULTYPE_TRAP_UD)
4991                                 return EMULATE_FAIL;
4992                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4993                                                 emulation_type))
4994                                 return EMULATE_DONE;
4995                         if (emulation_type & EMULTYPE_SKIP)
4996                                 return EMULATE_FAIL;
4997                         return handle_emulation_failure(vcpu);
4998                 }
4999         }
5000
5001         if (emulation_type & EMULTYPE_SKIP) {
5002                 kvm_rip_write(vcpu, ctxt->_eip);
5003                 return EMULATE_DONE;
5004         }
5005
5006         if (retry_instruction(ctxt, cr2, emulation_type))
5007                 return EMULATE_DONE;
5008
5009         /* this is needed for vmware backdoor interface to work since it
5010            changes registers values  during IO operation */
5011         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5012                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5013                 emulator_invalidate_register_cache(ctxt);
5014         }
5015
5016 restart:
5017         r = x86_emulate_insn(ctxt);
5018
5019         if (r == EMULATION_INTERCEPTED)
5020                 return EMULATE_DONE;
5021
5022         if (r == EMULATION_FAILED) {
5023                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5024                                         emulation_type))
5025                         return EMULATE_DONE;
5026
5027                 return handle_emulation_failure(vcpu);
5028         }
5029
5030         if (ctxt->have_exception) {
5031                 inject_emulated_exception(vcpu);
5032                 r = EMULATE_DONE;
5033         } else if (vcpu->arch.pio.count) {
5034                 if (!vcpu->arch.pio.in)
5035                         vcpu->arch.pio.count = 0;
5036                 else {
5037                         writeback = false;
5038                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5039                 }
5040                 r = EMULATE_DO_MMIO;
5041         } else if (vcpu->mmio_needed) {
5042                 if (!vcpu->mmio_is_write)
5043                         writeback = false;
5044                 r = EMULATE_DO_MMIO;
5045                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5046         } else if (r == EMULATION_RESTART)
5047                 goto restart;
5048         else
5049                 r = EMULATE_DONE;
5050
5051         if (writeback) {
5052                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5053                 kvm_set_rflags(vcpu, ctxt->eflags);
5054                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5055                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5056                 kvm_rip_write(vcpu, ctxt->eip);
5057         } else
5058                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5059
5060         return r;
5061 }
5062 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5063
5064 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5065 {
5066         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5067         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5068                                             size, port, &val, 1);
5069         /* do not return to emulator after return from userspace */
5070         vcpu->arch.pio.count = 0;
5071         return ret;
5072 }
5073 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5074
5075 static void tsc_bad(void *info)
5076 {
5077         __this_cpu_write(cpu_tsc_khz, 0);
5078 }
5079
5080 static void tsc_khz_changed(void *data)
5081 {
5082         struct cpufreq_freqs *freq = data;
5083         unsigned long khz = 0;
5084
5085         if (data)
5086                 khz = freq->new;
5087         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5088                 khz = cpufreq_quick_get(raw_smp_processor_id());
5089         if (!khz)
5090                 khz = tsc_khz;
5091         __this_cpu_write(cpu_tsc_khz, khz);
5092 }
5093
5094 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5095                                      void *data)
5096 {
5097         struct cpufreq_freqs *freq = data;
5098         struct kvm *kvm;
5099         struct kvm_vcpu *vcpu;
5100         int i, send_ipi = 0;
5101
5102         /*
5103          * We allow guests to temporarily run on slowing clocks,
5104          * provided we notify them after, or to run on accelerating
5105          * clocks, provided we notify them before.  Thus time never
5106          * goes backwards.
5107          *
5108          * However, we have a problem.  We can't atomically update
5109          * the frequency of a given CPU from this function; it is
5110          * merely a notifier, which can be called from any CPU.
5111          * Changing the TSC frequency at arbitrary points in time
5112          * requires a recomputation of local variables related to
5113          * the TSC for each VCPU.  We must flag these local variables
5114          * to be updated and be sure the update takes place with the
5115          * new frequency before any guests proceed.
5116          *
5117          * Unfortunately, the combination of hotplug CPU and frequency
5118          * change creates an intractable locking scenario; the order
5119          * of when these callouts happen is undefined with respect to
5120          * CPU hotplug, and they can race with each other.  As such,
5121          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5122          * undefined; you can actually have a CPU frequency change take
5123          * place in between the computation of X and the setting of the
5124          * variable.  To protect against this problem, all updates of
5125          * the per_cpu tsc_khz variable are done in an interrupt
5126          * protected IPI, and all callers wishing to update the value
5127          * must wait for a synchronous IPI to complete (which is trivial
5128          * if the caller is on the CPU already).  This establishes the
5129          * necessary total order on variable updates.
5130          *
5131          * Note that because a guest time update may take place
5132          * anytime after the setting of the VCPU's request bit, the
5133          * correct TSC value must be set before the request.  However,
5134          * to ensure the update actually makes it to any guest which
5135          * starts running in hardware virtualization between the set
5136          * and the acquisition of the spinlock, we must also ping the
5137          * CPU after setting the request bit.
5138          *
5139          */
5140
5141         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5142                 return 0;
5143         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5144                 return 0;
5145
5146         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5147
5148         raw_spin_lock(&kvm_lock);
5149         list_for_each_entry(kvm, &vm_list, vm_list) {
5150                 kvm_for_each_vcpu(i, vcpu, kvm) {
5151                         if (vcpu->cpu != freq->cpu)
5152                                 continue;
5153                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5154                         if (vcpu->cpu != smp_processor_id())
5155                                 send_ipi = 1;
5156                 }
5157         }
5158         raw_spin_unlock(&kvm_lock);
5159
5160         if (freq->old < freq->new && send_ipi) {
5161                 /*
5162                  * We upscale the frequency.  Must make the guest
5163                  * doesn't see old kvmclock values while running with
5164                  * the new frequency, otherwise we risk the guest sees
5165                  * time go backwards.
5166                  *
5167                  * In case we update the frequency for another cpu
5168                  * (which might be in guest context) send an interrupt
5169                  * to kick the cpu out of guest context.  Next time
5170                  * guest context is entered kvmclock will be updated,
5171                  * so the guest will not see stale values.
5172                  */
5173                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5174         }
5175         return 0;
5176 }
5177
5178 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5179         .notifier_call  = kvmclock_cpufreq_notifier
5180 };
5181
5182 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5183                                         unsigned long action, void *hcpu)
5184 {
5185         unsigned int cpu = (unsigned long)hcpu;
5186
5187         switch (action) {
5188                 case CPU_ONLINE:
5189                 case CPU_DOWN_FAILED:
5190                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5191                         break;
5192                 case CPU_DOWN_PREPARE:
5193                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5194                         break;
5195         }
5196         return NOTIFY_OK;
5197 }
5198
5199 static struct notifier_block kvmclock_cpu_notifier_block = {
5200         .notifier_call  = kvmclock_cpu_notifier,
5201         .priority = -INT_MAX
5202 };
5203
5204 static void kvm_timer_init(void)
5205 {
5206         int cpu;
5207
5208         max_tsc_khz = tsc_khz;
5209         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5210         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5211 #ifdef CONFIG_CPU_FREQ
5212                 struct cpufreq_policy policy;
5213                 memset(&policy, 0, sizeof(policy));
5214                 cpu = get_cpu();
5215                 cpufreq_get_policy(&policy, cpu);
5216                 if (policy.cpuinfo.max_freq)
5217                         max_tsc_khz = policy.cpuinfo.max_freq;
5218                 put_cpu();
5219 #endif
5220                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5221                                           CPUFREQ_TRANSITION_NOTIFIER);
5222         }
5223         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5224         for_each_online_cpu(cpu)
5225                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5226 }
5227
5228 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5229
5230 int kvm_is_in_guest(void)
5231 {
5232         return __this_cpu_read(current_vcpu) != NULL;
5233 }
5234
5235 static int kvm_is_user_mode(void)
5236 {
5237         int user_mode = 3;
5238
5239         if (__this_cpu_read(current_vcpu))
5240                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5241
5242         return user_mode != 0;
5243 }
5244
5245 static unsigned long kvm_get_guest_ip(void)
5246 {
5247         unsigned long ip = 0;
5248
5249         if (__this_cpu_read(current_vcpu))
5250                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5251
5252         return ip;
5253 }
5254
5255 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5256         .is_in_guest            = kvm_is_in_guest,
5257         .is_user_mode           = kvm_is_user_mode,
5258         .get_guest_ip           = kvm_get_guest_ip,
5259 };
5260
5261 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5262 {
5263         __this_cpu_write(current_vcpu, vcpu);
5264 }
5265 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5266
5267 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5268 {
5269         __this_cpu_write(current_vcpu, NULL);
5270 }
5271 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5272
5273 static void kvm_set_mmio_spte_mask(void)
5274 {
5275         u64 mask;
5276         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5277
5278         /*
5279          * Set the reserved bits and the present bit of an paging-structure
5280          * entry to generate page fault with PFER.RSV = 1.
5281          */
5282          /* Mask the reserved physical address bits. */
5283         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5284
5285         /* Bit 62 is always reserved for 32bit host. */
5286         mask |= 0x3ull << 62;
5287
5288         /* Set the present bit. */
5289         mask |= 1ull;
5290
5291 #ifdef CONFIG_X86_64
5292         /*
5293          * If reserved bit is not supported, clear the present bit to disable
5294          * mmio page fault.
5295          */
5296         if (maxphyaddr == 52)
5297                 mask &= ~1ull;
5298 #endif
5299
5300         kvm_mmu_set_mmio_spte_mask(mask);
5301 }
5302
5303 #ifdef CONFIG_X86_64
5304 static void pvclock_gtod_update_fn(struct work_struct *work)
5305 {
5306         struct kvm *kvm;
5307
5308         struct kvm_vcpu *vcpu;
5309         int i;
5310
5311         raw_spin_lock(&kvm_lock);
5312         list_for_each_entry(kvm, &vm_list, vm_list)
5313                 kvm_for_each_vcpu(i, vcpu, kvm)
5314                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5315         atomic_set(&kvm_guest_has_master_clock, 0);
5316         raw_spin_unlock(&kvm_lock);
5317 }
5318
5319 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5320
5321 /*
5322  * Notification about pvclock gtod data update.
5323  */
5324 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5325                                void *priv)
5326 {
5327         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5328         struct timekeeper *tk = priv;
5329
5330         update_pvclock_gtod(tk);
5331
5332         /* disable master clock if host does not trust, or does not
5333          * use, TSC clocksource
5334          */
5335         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5336             atomic_read(&kvm_guest_has_master_clock) != 0)
5337                 queue_work(system_long_wq, &pvclock_gtod_work);
5338
5339         return 0;
5340 }
5341
5342 static struct notifier_block pvclock_gtod_notifier = {
5343         .notifier_call = pvclock_gtod_notify,
5344 };
5345 #endif
5346
5347 int kvm_arch_init(void *opaque)
5348 {
5349         int r;
5350         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5351
5352         if (kvm_x86_ops) {
5353                 printk(KERN_ERR "kvm: already loaded the other module\n");
5354                 r = -EEXIST;
5355                 goto out;
5356         }
5357
5358         if (!ops->cpu_has_kvm_support()) {
5359                 printk(KERN_ERR "kvm: no hardware support\n");
5360                 r = -EOPNOTSUPP;
5361                 goto out;
5362         }
5363         if (ops->disabled_by_bios()) {
5364                 printk(KERN_ERR "kvm: disabled by bios\n");
5365                 r = -EOPNOTSUPP;
5366                 goto out;
5367         }
5368
5369         r = -ENOMEM;
5370         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5371         if (!shared_msrs) {
5372                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5373                 goto out;
5374         }
5375
5376         r = kvm_mmu_module_init();
5377         if (r)
5378                 goto out_free_percpu;
5379
5380         kvm_set_mmio_spte_mask();
5381         kvm_init_msr_list();
5382
5383         kvm_x86_ops = ops;
5384         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5385                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5386
5387         kvm_timer_init();
5388
5389         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5390
5391         if (cpu_has_xsave)
5392                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5393
5394         kvm_lapic_init();
5395 #ifdef CONFIG_X86_64
5396         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5397 #endif
5398
5399         return 0;
5400
5401 out_free_percpu:
5402         free_percpu(shared_msrs);
5403 out:
5404         return r;
5405 }
5406
5407 void kvm_arch_exit(void)
5408 {
5409         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5410
5411         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5412                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5413                                             CPUFREQ_TRANSITION_NOTIFIER);
5414         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5415 #ifdef CONFIG_X86_64
5416         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5417 #endif
5418         kvm_x86_ops = NULL;
5419         kvm_mmu_module_exit();
5420         free_percpu(shared_msrs);
5421 }
5422
5423 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5424 {
5425         ++vcpu->stat.halt_exits;
5426         if (irqchip_in_kernel(vcpu->kvm)) {
5427                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5428                 return 1;
5429         } else {
5430                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5431                 return 0;
5432         }
5433 }
5434 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5435
5436 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5437 {
5438         u64 param, ingpa, outgpa, ret;
5439         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5440         bool fast, longmode;
5441         int cs_db, cs_l;
5442
5443         /*
5444          * hypercall generates UD from non zero cpl and real mode
5445          * per HYPER-V spec
5446          */
5447         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5448                 kvm_queue_exception(vcpu, UD_VECTOR);
5449                 return 0;
5450         }
5451
5452         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5453         longmode = is_long_mode(vcpu) && cs_l == 1;
5454
5455         if (!longmode) {
5456                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5457                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5458                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5459                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5460                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5461                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5462         }
5463 #ifdef CONFIG_X86_64
5464         else {
5465                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5466                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5467                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5468         }
5469 #endif
5470
5471         code = param & 0xffff;
5472         fast = (param >> 16) & 0x1;
5473         rep_cnt = (param >> 32) & 0xfff;
5474         rep_idx = (param >> 48) & 0xfff;
5475
5476         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5477
5478         switch (code) {
5479         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5480                 kvm_vcpu_on_spin(vcpu);
5481                 break;
5482         default:
5483                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5484                 break;
5485         }
5486
5487         ret = res | (((u64)rep_done & 0xfff) << 32);
5488         if (longmode) {
5489                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5490         } else {
5491                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5492                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5493         }
5494
5495         return 1;
5496 }
5497
5498 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5499 {
5500         unsigned long nr, a0, a1, a2, a3, ret;
5501         int r = 1;
5502
5503         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5504                 return kvm_hv_hypercall(vcpu);
5505
5506         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5507         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5508         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5509         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5510         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5511
5512         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5513
5514         if (!is_long_mode(vcpu)) {
5515                 nr &= 0xFFFFFFFF;
5516                 a0 &= 0xFFFFFFFF;
5517                 a1 &= 0xFFFFFFFF;
5518                 a2 &= 0xFFFFFFFF;
5519                 a3 &= 0xFFFFFFFF;
5520         }
5521
5522         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5523                 ret = -KVM_EPERM;
5524                 goto out;
5525         }
5526
5527         switch (nr) {
5528         case KVM_HC_VAPIC_POLL_IRQ:
5529                 ret = 0;
5530                 break;
5531         default:
5532                 ret = -KVM_ENOSYS;
5533                 break;
5534         }
5535 out:
5536         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5537         ++vcpu->stat.hypercalls;
5538         return r;
5539 }
5540 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5541
5542 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5543 {
5544         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5545         char instruction[3];
5546         unsigned long rip = kvm_rip_read(vcpu);
5547
5548         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5549
5550         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5551 }
5552
5553 /*
5554  * Check if userspace requested an interrupt window, and that the
5555  * interrupt window is open.
5556  *
5557  * No need to exit to userspace if we already have an interrupt queued.
5558  */
5559 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5560 {
5561         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5562                 vcpu->run->request_interrupt_window &&
5563                 kvm_arch_interrupt_allowed(vcpu));
5564 }
5565
5566 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5567 {
5568         struct kvm_run *kvm_run = vcpu->run;
5569
5570         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5571         kvm_run->cr8 = kvm_get_cr8(vcpu);
5572         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5573         if (irqchip_in_kernel(vcpu->kvm))
5574                 kvm_run->ready_for_interrupt_injection = 1;
5575         else
5576                 kvm_run->ready_for_interrupt_injection =
5577                         kvm_arch_interrupt_allowed(vcpu) &&
5578                         !kvm_cpu_has_interrupt(vcpu) &&
5579                         !kvm_event_needs_reinjection(vcpu);
5580 }
5581
5582 static int vapic_enter(struct kvm_vcpu *vcpu)
5583 {
5584         struct kvm_lapic *apic = vcpu->arch.apic;
5585         struct page *page;
5586
5587         if (!apic || !apic->vapic_addr)
5588                 return 0;
5589
5590         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5591         if (is_error_page(page))
5592                 return -EFAULT;
5593
5594         vcpu->arch.apic->vapic_page = page;
5595         return 0;
5596 }
5597
5598 static void vapic_exit(struct kvm_vcpu *vcpu)
5599 {
5600         struct kvm_lapic *apic = vcpu->arch.apic;
5601         int idx;
5602
5603         if (!apic || !apic->vapic_addr)
5604                 return;
5605
5606         idx = srcu_read_lock(&vcpu->kvm->srcu);
5607         kvm_release_page_dirty(apic->vapic_page);
5608         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5609         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5610 }
5611
5612 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5613 {
5614         int max_irr, tpr;
5615
5616         if (!kvm_x86_ops->update_cr8_intercept)
5617                 return;
5618
5619         if (!vcpu->arch.apic)
5620                 return;
5621
5622         if (!vcpu->arch.apic->vapic_addr)
5623                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5624         else
5625                 max_irr = -1;
5626
5627         if (max_irr != -1)
5628                 max_irr >>= 4;
5629
5630         tpr = kvm_lapic_get_cr8(vcpu);
5631
5632         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5633 }
5634
5635 static void inject_pending_event(struct kvm_vcpu *vcpu)
5636 {
5637         /* try to reinject previous events if any */
5638         if (vcpu->arch.exception.pending) {
5639                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5640                                         vcpu->arch.exception.has_error_code,
5641                                         vcpu->arch.exception.error_code);
5642                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5643                                           vcpu->arch.exception.has_error_code,
5644                                           vcpu->arch.exception.error_code,
5645                                           vcpu->arch.exception.reinject);
5646                 return;
5647         }
5648
5649         if (vcpu->arch.nmi_injected) {
5650                 kvm_x86_ops->set_nmi(vcpu);
5651                 return;
5652         }
5653
5654         if (vcpu->arch.interrupt.pending) {
5655                 kvm_x86_ops->set_irq(vcpu);
5656                 return;
5657         }
5658
5659         /* try to inject new event if pending */
5660         if (vcpu->arch.nmi_pending) {
5661                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5662                         --vcpu->arch.nmi_pending;
5663                         vcpu->arch.nmi_injected = true;
5664                         kvm_x86_ops->set_nmi(vcpu);
5665                 }
5666         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5667                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5668                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5669                                             false);
5670                         kvm_x86_ops->set_irq(vcpu);
5671                 }
5672         }
5673 }
5674
5675 static void process_nmi(struct kvm_vcpu *vcpu)
5676 {
5677         unsigned limit = 2;
5678
5679         /*
5680          * x86 is limited to one NMI running, and one NMI pending after it.
5681          * If an NMI is already in progress, limit further NMIs to just one.
5682          * Otherwise, allow two (and we'll inject the first one immediately).
5683          */
5684         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5685                 limit = 1;
5686
5687         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5688         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5689         kvm_make_request(KVM_REQ_EVENT, vcpu);
5690 }
5691
5692 static void kvm_gen_update_masterclock(struct kvm *kvm)
5693 {
5694 #ifdef CONFIG_X86_64
5695         int i;
5696         struct kvm_vcpu *vcpu;
5697         struct kvm_arch *ka = &kvm->arch;
5698
5699         spin_lock(&ka->pvclock_gtod_sync_lock);
5700         kvm_make_mclock_inprogress_request(kvm);
5701         /* no guest entries from this point */
5702         pvclock_update_vm_gtod_copy(kvm);
5703
5704         kvm_for_each_vcpu(i, vcpu, kvm)
5705                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5706
5707         /* guest entries allowed */
5708         kvm_for_each_vcpu(i, vcpu, kvm)
5709                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5710
5711         spin_unlock(&ka->pvclock_gtod_sync_lock);
5712 #endif
5713 }
5714
5715 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5716 {
5717         u64 eoi_exit_bitmap[4];
5718         u32 tmr[8];
5719
5720         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5721                 return;
5722
5723         memset(eoi_exit_bitmap, 0, 32);
5724         memset(tmr, 0, 32);
5725
5726         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5727         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5728         kvm_apic_update_tmr(vcpu, tmr);
5729 }
5730
5731 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5732 {
5733         int r;
5734         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5735                 vcpu->run->request_interrupt_window;
5736         bool req_immediate_exit = false;
5737
5738         if (vcpu->requests) {
5739                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5740                         kvm_mmu_unload(vcpu);
5741                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5742                         __kvm_migrate_timers(vcpu);
5743                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5744                         kvm_gen_update_masterclock(vcpu->kvm);
5745                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5746                         kvm_gen_kvmclock_update(vcpu);
5747                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5748                         r = kvm_guest_time_update(vcpu);
5749                         if (unlikely(r))
5750                                 goto out;
5751                 }
5752                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5753                         kvm_mmu_sync_roots(vcpu);
5754                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5755                         kvm_x86_ops->tlb_flush(vcpu);
5756                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5757                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5758                         r = 0;
5759                         goto out;
5760                 }
5761                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5762                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5763                         r = 0;
5764                         goto out;
5765                 }
5766                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5767                         vcpu->fpu_active = 0;
5768                         kvm_x86_ops->fpu_deactivate(vcpu);
5769                 }
5770                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5771                         /* Page is swapped out. Do synthetic halt */
5772                         vcpu->arch.apf.halted = true;
5773                         r = 1;
5774                         goto out;
5775                 }
5776                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5777                         record_steal_time(vcpu);
5778                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5779                         process_nmi(vcpu);
5780                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5781                         kvm_handle_pmu_event(vcpu);
5782                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5783                         kvm_deliver_pmi(vcpu);
5784                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5785                         vcpu_scan_ioapic(vcpu);
5786         }
5787
5788         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5789                 kvm_apic_accept_events(vcpu);
5790                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5791                         r = 1;
5792                         goto out;
5793                 }
5794
5795                 inject_pending_event(vcpu);
5796
5797                 /* enable NMI/IRQ window open exits if needed */
5798                 if (vcpu->arch.nmi_pending)
5799                         req_immediate_exit =
5800                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5801                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5802                         req_immediate_exit =
5803                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5804
5805                 if (kvm_lapic_enabled(vcpu)) {
5806                         /*
5807                          * Update architecture specific hints for APIC
5808                          * virtual interrupt delivery.
5809                          */
5810                         if (kvm_x86_ops->hwapic_irr_update)
5811                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5812                                         kvm_lapic_find_highest_irr(vcpu));
5813                         update_cr8_intercept(vcpu);
5814                         kvm_lapic_sync_to_vapic(vcpu);
5815                 }
5816         }
5817
5818         r = kvm_mmu_reload(vcpu);
5819         if (unlikely(r)) {
5820                 goto cancel_injection;
5821         }
5822
5823         preempt_disable();
5824
5825         kvm_x86_ops->prepare_guest_switch(vcpu);
5826         if (vcpu->fpu_active)
5827                 kvm_load_guest_fpu(vcpu);
5828         kvm_load_guest_xcr0(vcpu);
5829
5830         vcpu->mode = IN_GUEST_MODE;
5831
5832         /* We should set ->mode before check ->requests,
5833          * see the comment in make_all_cpus_request.
5834          */
5835         smp_mb();
5836
5837         local_irq_disable();
5838
5839         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5840             || need_resched() || signal_pending(current)) {
5841                 vcpu->mode = OUTSIDE_GUEST_MODE;
5842                 smp_wmb();
5843                 local_irq_enable();
5844                 preempt_enable();
5845                 r = 1;
5846                 goto cancel_injection;
5847         }
5848
5849         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5850
5851         if (req_immediate_exit)
5852                 smp_send_reschedule(vcpu->cpu);
5853
5854         kvm_guest_enter();
5855
5856         if (unlikely(vcpu->arch.switch_db_regs)) {
5857                 set_debugreg(0, 7);
5858                 set_debugreg(vcpu->arch.eff_db[0], 0);
5859                 set_debugreg(vcpu->arch.eff_db[1], 1);
5860                 set_debugreg(vcpu->arch.eff_db[2], 2);
5861                 set_debugreg(vcpu->arch.eff_db[3], 3);
5862         }
5863
5864         trace_kvm_entry(vcpu->vcpu_id);
5865         kvm_x86_ops->run(vcpu);
5866
5867         /*
5868          * If the guest has used debug registers, at least dr7
5869          * will be disabled while returning to the host.
5870          * If we don't have active breakpoints in the host, we don't
5871          * care about the messed up debug address registers. But if
5872          * we have some of them active, restore the old state.
5873          */
5874         if (hw_breakpoint_active())
5875                 hw_breakpoint_restore();
5876
5877         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5878                                                            native_read_tsc());
5879
5880         vcpu->mode = OUTSIDE_GUEST_MODE;
5881         smp_wmb();
5882
5883         /* Interrupt is enabled by handle_external_intr() */
5884         kvm_x86_ops->handle_external_intr(vcpu);
5885
5886         ++vcpu->stat.exits;
5887
5888         /*
5889          * We must have an instruction between local_irq_enable() and
5890          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5891          * the interrupt shadow.  The stat.exits increment will do nicely.
5892          * But we need to prevent reordering, hence this barrier():
5893          */
5894         barrier();
5895
5896         kvm_guest_exit();
5897
5898         preempt_enable();
5899
5900         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5901
5902         /*
5903          * Profile KVM exit RIPs:
5904          */
5905         if (unlikely(prof_on == KVM_PROFILING)) {
5906                 unsigned long rip = kvm_rip_read(vcpu);
5907                 profile_hit(KVM_PROFILING, (void *)rip);
5908         }
5909
5910         if (unlikely(vcpu->arch.tsc_always_catchup))
5911                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5912
5913         if (vcpu->arch.apic_attention)
5914                 kvm_lapic_sync_from_vapic(vcpu);
5915
5916         r = kvm_x86_ops->handle_exit(vcpu);
5917         return r;
5918
5919 cancel_injection:
5920         kvm_x86_ops->cancel_injection(vcpu);
5921         if (unlikely(vcpu->arch.apic_attention))
5922                 kvm_lapic_sync_from_vapic(vcpu);
5923 out:
5924         return r;
5925 }
5926
5927
5928 static int __vcpu_run(struct kvm_vcpu *vcpu)
5929 {
5930         int r;
5931         struct kvm *kvm = vcpu->kvm;
5932
5933         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5934         r = vapic_enter(vcpu);
5935         if (r) {
5936                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5937                 return r;
5938         }
5939
5940         r = 1;
5941         while (r > 0) {
5942                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5943                     !vcpu->arch.apf.halted)
5944                         r = vcpu_enter_guest(vcpu);
5945                 else {
5946                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5947                         kvm_vcpu_block(vcpu);
5948                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5949                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5950                                 kvm_apic_accept_events(vcpu);
5951                                 switch(vcpu->arch.mp_state) {
5952                                 case KVM_MP_STATE_HALTED:
5953                                         vcpu->arch.mp_state =
5954                                                 KVM_MP_STATE_RUNNABLE;
5955                                 case KVM_MP_STATE_RUNNABLE:
5956                                         vcpu->arch.apf.halted = false;
5957                                         break;
5958                                 case KVM_MP_STATE_INIT_RECEIVED:
5959                                         break;
5960                                 default:
5961                                         r = -EINTR;
5962                                         break;
5963                                 }
5964                         }
5965                 }
5966
5967                 if (r <= 0)
5968                         break;
5969
5970                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5971                 if (kvm_cpu_has_pending_timer(vcpu))
5972                         kvm_inject_pending_timer_irqs(vcpu);
5973
5974                 if (dm_request_for_irq_injection(vcpu)) {
5975                         r = -EINTR;
5976                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5977                         ++vcpu->stat.request_irq_exits;
5978                 }
5979
5980                 kvm_check_async_pf_completion(vcpu);
5981
5982                 if (signal_pending(current)) {
5983                         r = -EINTR;
5984                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5985                         ++vcpu->stat.signal_exits;
5986                 }
5987                 if (need_resched()) {
5988                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5989                         kvm_resched(vcpu);
5990                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5991                 }
5992         }
5993
5994         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5995
5996         vapic_exit(vcpu);
5997
5998         return r;
5999 }
6000
6001 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6002 {
6003         int r;
6004         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6005         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6006         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6007         if (r != EMULATE_DONE)
6008                 return 0;
6009         return 1;
6010 }
6011
6012 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6013 {
6014         BUG_ON(!vcpu->arch.pio.count);
6015
6016         return complete_emulated_io(vcpu);
6017 }
6018
6019 /*
6020  * Implements the following, as a state machine:
6021  *
6022  * read:
6023  *   for each fragment
6024  *     for each mmio piece in the fragment
6025  *       write gpa, len
6026  *       exit
6027  *       copy data
6028  *   execute insn
6029  *
6030  * write:
6031  *   for each fragment
6032  *     for each mmio piece in the fragment
6033  *       write gpa, len
6034  *       copy data
6035  *       exit
6036  */
6037 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6038 {
6039         struct kvm_run *run = vcpu->run;
6040         struct kvm_mmio_fragment *frag;
6041         unsigned len;
6042
6043         BUG_ON(!vcpu->mmio_needed);
6044
6045         /* Complete previous fragment */
6046         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6047         len = min(8u, frag->len);
6048         if (!vcpu->mmio_is_write)
6049                 memcpy(frag->data, run->mmio.data, len);
6050
6051         if (frag->len <= 8) {
6052                 /* Switch to the next fragment. */
6053                 frag++;
6054                 vcpu->mmio_cur_fragment++;
6055         } else {
6056                 /* Go forward to the next mmio piece. */
6057                 frag->data += len;
6058                 frag->gpa += len;
6059                 frag->len -= len;
6060         }
6061
6062         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6063                 vcpu->mmio_needed = 0;
6064                 if (vcpu->mmio_is_write)
6065                         return 1;
6066                 vcpu->mmio_read_completed = 1;
6067                 return complete_emulated_io(vcpu);
6068         }
6069
6070         run->exit_reason = KVM_EXIT_MMIO;
6071         run->mmio.phys_addr = frag->gpa;
6072         if (vcpu->mmio_is_write)
6073                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6074         run->mmio.len = min(8u, frag->len);
6075         run->mmio.is_write = vcpu->mmio_is_write;
6076         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6077         return 0;
6078 }
6079
6080
6081 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6082 {
6083         int r;
6084         sigset_t sigsaved;
6085
6086         if (!tsk_used_math(current) && init_fpu(current))
6087                 return -ENOMEM;
6088
6089         if (vcpu->sigset_active)
6090                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6091
6092         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6093                 kvm_vcpu_block(vcpu);
6094                 kvm_apic_accept_events(vcpu);
6095                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6096                 r = -EAGAIN;
6097                 goto out;
6098         }
6099
6100         /* re-sync apic's tpr */
6101         if (!irqchip_in_kernel(vcpu->kvm)) {
6102                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6103                         r = -EINVAL;
6104                         goto out;
6105                 }
6106         }
6107
6108         if (unlikely(vcpu->arch.complete_userspace_io)) {
6109                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6110                 vcpu->arch.complete_userspace_io = NULL;
6111                 r = cui(vcpu);
6112                 if (r <= 0)
6113                         goto out;
6114         } else
6115                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6116
6117         r = __vcpu_run(vcpu);
6118
6119 out:
6120         post_kvm_run_save(vcpu);
6121         if (vcpu->sigset_active)
6122                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6123
6124         return r;
6125 }
6126
6127 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6128 {
6129         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6130                 /*
6131                  * We are here if userspace calls get_regs() in the middle of
6132                  * instruction emulation. Registers state needs to be copied
6133                  * back from emulation context to vcpu. Userspace shouldn't do
6134                  * that usually, but some bad designed PV devices (vmware
6135                  * backdoor interface) need this to work
6136                  */
6137                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6138                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6139         }
6140         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6141         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6142         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6143         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6144         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6145         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6146         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6147         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6148 #ifdef CONFIG_X86_64
6149         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6150         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6151         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6152         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6153         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6154         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6155         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6156         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6157 #endif
6158
6159         regs->rip = kvm_rip_read(vcpu);
6160         regs->rflags = kvm_get_rflags(vcpu);
6161
6162         return 0;
6163 }
6164
6165 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6166 {
6167         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6168         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6169
6170         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6171         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6172         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6173         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6174         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6175         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6176         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6177         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6178 #ifdef CONFIG_X86_64
6179         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6180         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6181         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6182         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6183         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6184         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6185         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6186         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6187 #endif
6188
6189         kvm_rip_write(vcpu, regs->rip);
6190         kvm_set_rflags(vcpu, regs->rflags);
6191
6192         vcpu->arch.exception.pending = false;
6193
6194         kvm_make_request(KVM_REQ_EVENT, vcpu);
6195
6196         return 0;
6197 }
6198
6199 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6200 {
6201         struct kvm_segment cs;
6202
6203         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6204         *db = cs.db;
6205         *l = cs.l;
6206 }
6207 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6208
6209 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6210                                   struct kvm_sregs *sregs)
6211 {
6212         struct desc_ptr dt;
6213
6214         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6215         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6216         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6217         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6218         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6219         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6220
6221         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6222         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6223
6224         kvm_x86_ops->get_idt(vcpu, &dt);
6225         sregs->idt.limit = dt.size;
6226         sregs->idt.base = dt.address;
6227         kvm_x86_ops->get_gdt(vcpu, &dt);
6228         sregs->gdt.limit = dt.size;
6229         sregs->gdt.base = dt.address;
6230
6231         sregs->cr0 = kvm_read_cr0(vcpu);
6232         sregs->cr2 = vcpu->arch.cr2;
6233         sregs->cr3 = kvm_read_cr3(vcpu);
6234         sregs->cr4 = kvm_read_cr4(vcpu);
6235         sregs->cr8 = kvm_get_cr8(vcpu);
6236         sregs->efer = vcpu->arch.efer;
6237         sregs->apic_base = kvm_get_apic_base(vcpu);
6238
6239         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6240
6241         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6242                 set_bit(vcpu->arch.interrupt.nr,
6243                         (unsigned long *)sregs->interrupt_bitmap);
6244
6245         return 0;
6246 }
6247
6248 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6249                                     struct kvm_mp_state *mp_state)
6250 {
6251         kvm_apic_accept_events(vcpu);
6252         mp_state->mp_state = vcpu->arch.mp_state;
6253         return 0;
6254 }
6255
6256 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6257                                     struct kvm_mp_state *mp_state)
6258 {
6259         if (!kvm_vcpu_has_lapic(vcpu) &&
6260             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6261                 return -EINVAL;
6262
6263         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6264                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6265                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6266         } else
6267                 vcpu->arch.mp_state = mp_state->mp_state;
6268         kvm_make_request(KVM_REQ_EVENT, vcpu);
6269         return 0;
6270 }
6271
6272 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6273                     int reason, bool has_error_code, u32 error_code)
6274 {
6275         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6276         int ret;
6277
6278         init_emulate_ctxt(vcpu);
6279
6280         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6281                                    has_error_code, error_code);
6282
6283         if (ret)
6284                 return EMULATE_FAIL;
6285
6286         kvm_rip_write(vcpu, ctxt->eip);
6287         kvm_set_rflags(vcpu, ctxt->eflags);
6288         kvm_make_request(KVM_REQ_EVENT, vcpu);
6289         return EMULATE_DONE;
6290 }
6291 EXPORT_SYMBOL_GPL(kvm_task_switch);
6292
6293 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6294                                   struct kvm_sregs *sregs)
6295 {
6296         int mmu_reset_needed = 0;
6297         int pending_vec, max_bits, idx;
6298         struct desc_ptr dt;
6299
6300         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6301                 return -EINVAL;
6302
6303         dt.size = sregs->idt.limit;
6304         dt.address = sregs->idt.base;
6305         kvm_x86_ops->set_idt(vcpu, &dt);
6306         dt.size = sregs->gdt.limit;
6307         dt.address = sregs->gdt.base;
6308         kvm_x86_ops->set_gdt(vcpu, &dt);
6309
6310         vcpu->arch.cr2 = sregs->cr2;
6311         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6312         vcpu->arch.cr3 = sregs->cr3;
6313         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6314
6315         kvm_set_cr8(vcpu, sregs->cr8);
6316
6317         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6318         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6319         kvm_set_apic_base(vcpu, sregs->apic_base);
6320
6321         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6322         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6323         vcpu->arch.cr0 = sregs->cr0;
6324
6325         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6326         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6327         if (sregs->cr4 & X86_CR4_OSXSAVE)
6328                 kvm_update_cpuid(vcpu);
6329
6330         idx = srcu_read_lock(&vcpu->kvm->srcu);
6331         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6332                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6333                 mmu_reset_needed = 1;
6334         }
6335         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6336
6337         if (mmu_reset_needed)
6338                 kvm_mmu_reset_context(vcpu);
6339
6340         max_bits = KVM_NR_INTERRUPTS;
6341         pending_vec = find_first_bit(
6342                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6343         if (pending_vec < max_bits) {
6344                 kvm_queue_interrupt(vcpu, pending_vec, false);
6345                 pr_debug("Set back pending irq %d\n", pending_vec);
6346         }
6347
6348         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6349         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6350         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6351         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6352         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6353         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6354
6355         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6356         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6357
6358         update_cr8_intercept(vcpu);
6359
6360         /* Older userspace won't unhalt the vcpu on reset. */
6361         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6362             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6363             !is_protmode(vcpu))
6364                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6365
6366         kvm_make_request(KVM_REQ_EVENT, vcpu);
6367
6368         return 0;
6369 }
6370
6371 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6372                                         struct kvm_guest_debug *dbg)
6373 {
6374         unsigned long rflags;
6375         int i, r;
6376
6377         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6378                 r = -EBUSY;
6379                 if (vcpu->arch.exception.pending)
6380                         goto out;
6381                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6382                         kvm_queue_exception(vcpu, DB_VECTOR);
6383                 else
6384                         kvm_queue_exception(vcpu, BP_VECTOR);
6385         }
6386
6387         /*
6388          * Read rflags as long as potentially injected trace flags are still
6389          * filtered out.
6390          */
6391         rflags = kvm_get_rflags(vcpu);
6392
6393         vcpu->guest_debug = dbg->control;
6394         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6395                 vcpu->guest_debug = 0;
6396
6397         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6398                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6399                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6400                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6401         } else {
6402                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6403                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6404         }
6405         kvm_update_dr7(vcpu);
6406
6407         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6408                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6409                         get_segment_base(vcpu, VCPU_SREG_CS);
6410
6411         /*
6412          * Trigger an rflags update that will inject or remove the trace
6413          * flags.
6414          */
6415         kvm_set_rflags(vcpu, rflags);
6416
6417         kvm_x86_ops->update_db_bp_intercept(vcpu);
6418
6419         r = 0;
6420
6421 out:
6422
6423         return r;
6424 }
6425
6426 /*
6427  * Translate a guest virtual address to a guest physical address.
6428  */
6429 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6430                                     struct kvm_translation *tr)
6431 {
6432         unsigned long vaddr = tr->linear_address;
6433         gpa_t gpa;
6434         int idx;
6435
6436         idx = srcu_read_lock(&vcpu->kvm->srcu);
6437         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6438         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6439         tr->physical_address = gpa;
6440         tr->valid = gpa != UNMAPPED_GVA;
6441         tr->writeable = 1;
6442         tr->usermode = 0;
6443
6444         return 0;
6445 }
6446
6447 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6448 {
6449         struct i387_fxsave_struct *fxsave =
6450                         &vcpu->arch.guest_fpu.state->fxsave;
6451
6452         memcpy(fpu->fpr, fxsave->st_space, 128);
6453         fpu->fcw = fxsave->cwd;
6454         fpu->fsw = fxsave->swd;
6455         fpu->ftwx = fxsave->twd;
6456         fpu->last_opcode = fxsave->fop;
6457         fpu->last_ip = fxsave->rip;
6458         fpu->last_dp = fxsave->rdp;
6459         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6460
6461         return 0;
6462 }
6463
6464 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6465 {
6466         struct i387_fxsave_struct *fxsave =
6467                         &vcpu->arch.guest_fpu.state->fxsave;
6468
6469         memcpy(fxsave->st_space, fpu->fpr, 128);
6470         fxsave->cwd = fpu->fcw;
6471         fxsave->swd = fpu->fsw;
6472         fxsave->twd = fpu->ftwx;
6473         fxsave->fop = fpu->last_opcode;
6474         fxsave->rip = fpu->last_ip;
6475         fxsave->rdp = fpu->last_dp;
6476         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6477
6478         return 0;
6479 }
6480
6481 int fx_init(struct kvm_vcpu *vcpu)
6482 {
6483         int err;
6484
6485         err = fpu_alloc(&vcpu->arch.guest_fpu);
6486         if (err)
6487                 return err;
6488
6489         fpu_finit(&vcpu->arch.guest_fpu);
6490
6491         /*
6492          * Ensure guest xcr0 is valid for loading
6493          */
6494         vcpu->arch.xcr0 = XSTATE_FP;
6495
6496         vcpu->arch.cr0 |= X86_CR0_ET;
6497
6498         return 0;
6499 }
6500 EXPORT_SYMBOL_GPL(fx_init);
6501
6502 static void fx_free(struct kvm_vcpu *vcpu)
6503 {
6504         fpu_free(&vcpu->arch.guest_fpu);
6505 }
6506
6507 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6508 {
6509         if (vcpu->guest_fpu_loaded)
6510                 return;
6511
6512         /*
6513          * Restore all possible states in the guest,
6514          * and assume host would use all available bits.
6515          * Guest xcr0 would be loaded later.
6516          */
6517         kvm_put_guest_xcr0(vcpu);
6518         vcpu->guest_fpu_loaded = 1;
6519         __kernel_fpu_begin();
6520         fpu_restore_checking(&vcpu->arch.guest_fpu);
6521         trace_kvm_fpu(1);
6522 }
6523
6524 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6525 {
6526         kvm_put_guest_xcr0(vcpu);
6527
6528         if (!vcpu->guest_fpu_loaded)
6529                 return;
6530
6531         vcpu->guest_fpu_loaded = 0;
6532         fpu_save_init(&vcpu->arch.guest_fpu);
6533         __kernel_fpu_end();
6534         ++vcpu->stat.fpu_reload;
6535         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6536         trace_kvm_fpu(0);
6537 }
6538
6539 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6540 {
6541         kvmclock_reset(vcpu);
6542
6543         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6544         fx_free(vcpu);
6545         kvm_x86_ops->vcpu_free(vcpu);
6546 }
6547
6548 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6549                                                 unsigned int id)
6550 {
6551         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6552                 printk_once(KERN_WARNING
6553                 "kvm: SMP vm created on host with unstable TSC; "
6554                 "guest TSC will not be reliable\n");
6555         return kvm_x86_ops->vcpu_create(kvm, id);
6556 }
6557
6558 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6559 {
6560         int r;
6561
6562         vcpu->arch.mtrr_state.have_fixed = 1;
6563         r = vcpu_load(vcpu);
6564         if (r)
6565                 return r;
6566         kvm_vcpu_reset(vcpu);
6567         r = kvm_mmu_setup(vcpu);
6568         vcpu_put(vcpu);
6569
6570         return r;
6571 }
6572
6573 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6574 {
6575         int r;
6576         struct msr_data msr;
6577
6578         r = vcpu_load(vcpu);
6579         if (r)
6580                 return r;
6581         msr.data = 0x0;
6582         msr.index = MSR_IA32_TSC;
6583         msr.host_initiated = true;
6584         kvm_write_tsc(vcpu, &msr);
6585         vcpu_put(vcpu);
6586
6587         return r;
6588 }
6589
6590 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6591 {
6592         int r;
6593         vcpu->arch.apf.msr_val = 0;
6594
6595         r = vcpu_load(vcpu);
6596         BUG_ON(r);
6597         kvm_mmu_unload(vcpu);
6598         vcpu_put(vcpu);
6599
6600         fx_free(vcpu);
6601         kvm_x86_ops->vcpu_free(vcpu);
6602 }
6603
6604 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6605 {
6606         atomic_set(&vcpu->arch.nmi_queued, 0);
6607         vcpu->arch.nmi_pending = 0;
6608         vcpu->arch.nmi_injected = false;
6609
6610         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6611         vcpu->arch.dr6 = DR6_FIXED_1;
6612         vcpu->arch.dr7 = DR7_FIXED_1;
6613         kvm_update_dr7(vcpu);
6614
6615         kvm_make_request(KVM_REQ_EVENT, vcpu);
6616         vcpu->arch.apf.msr_val = 0;
6617         vcpu->arch.st.msr_val = 0;
6618
6619         kvmclock_reset(vcpu);
6620
6621         kvm_clear_async_pf_completion_queue(vcpu);
6622         kvm_async_pf_hash_reset(vcpu);
6623         vcpu->arch.apf.halted = false;
6624
6625         kvm_pmu_reset(vcpu);
6626
6627         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6628         vcpu->arch.regs_avail = ~0;
6629         vcpu->arch.regs_dirty = ~0;
6630
6631         kvm_x86_ops->vcpu_reset(vcpu);
6632 }
6633
6634 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6635 {
6636         struct kvm_segment cs;
6637
6638         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6639         cs.selector = vector << 8;
6640         cs.base = vector << 12;
6641         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6642         kvm_rip_write(vcpu, 0);
6643 }
6644
6645 int kvm_arch_hardware_enable(void *garbage)
6646 {
6647         struct kvm *kvm;
6648         struct kvm_vcpu *vcpu;
6649         int i;
6650         int ret;
6651         u64 local_tsc;
6652         u64 max_tsc = 0;
6653         bool stable, backwards_tsc = false;
6654
6655         kvm_shared_msr_cpu_online();
6656         ret = kvm_x86_ops->hardware_enable(garbage);
6657         if (ret != 0)
6658                 return ret;
6659
6660         local_tsc = native_read_tsc();
6661         stable = !check_tsc_unstable();
6662         list_for_each_entry(kvm, &vm_list, vm_list) {
6663                 kvm_for_each_vcpu(i, vcpu, kvm) {
6664                         if (!stable && vcpu->cpu == smp_processor_id())
6665                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6666                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6667                                 backwards_tsc = true;
6668                                 if (vcpu->arch.last_host_tsc > max_tsc)
6669                                         max_tsc = vcpu->arch.last_host_tsc;
6670                         }
6671                 }
6672         }
6673
6674         /*
6675          * Sometimes, even reliable TSCs go backwards.  This happens on
6676          * platforms that reset TSC during suspend or hibernate actions, but
6677          * maintain synchronization.  We must compensate.  Fortunately, we can
6678          * detect that condition here, which happens early in CPU bringup,
6679          * before any KVM threads can be running.  Unfortunately, we can't
6680          * bring the TSCs fully up to date with real time, as we aren't yet far
6681          * enough into CPU bringup that we know how much real time has actually
6682          * elapsed; our helper function, get_kernel_ns() will be using boot
6683          * variables that haven't been updated yet.
6684          *
6685          * So we simply find the maximum observed TSC above, then record the
6686          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6687          * the adjustment will be applied.  Note that we accumulate
6688          * adjustments, in case multiple suspend cycles happen before some VCPU
6689          * gets a chance to run again.  In the event that no KVM threads get a
6690          * chance to run, we will miss the entire elapsed period, as we'll have
6691          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6692          * loose cycle time.  This isn't too big a deal, since the loss will be
6693          * uniform across all VCPUs (not to mention the scenario is extremely
6694          * unlikely). It is possible that a second hibernate recovery happens
6695          * much faster than a first, causing the observed TSC here to be
6696          * smaller; this would require additional padding adjustment, which is
6697          * why we set last_host_tsc to the local tsc observed here.
6698          *
6699          * N.B. - this code below runs only on platforms with reliable TSC,
6700          * as that is the only way backwards_tsc is set above.  Also note
6701          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6702          * have the same delta_cyc adjustment applied if backwards_tsc
6703          * is detected.  Note further, this adjustment is only done once,
6704          * as we reset last_host_tsc on all VCPUs to stop this from being
6705          * called multiple times (one for each physical CPU bringup).
6706          *
6707          * Platforms with unreliable TSCs don't have to deal with this, they
6708          * will be compensated by the logic in vcpu_load, which sets the TSC to
6709          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6710          * guarantee that they stay in perfect synchronization.
6711          */
6712         if (backwards_tsc) {
6713                 u64 delta_cyc = max_tsc - local_tsc;
6714                 list_for_each_entry(kvm, &vm_list, vm_list) {
6715                         kvm_for_each_vcpu(i, vcpu, kvm) {
6716                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6717                                 vcpu->arch.last_host_tsc = local_tsc;
6718                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6719                                         &vcpu->requests);
6720                         }
6721
6722                         /*
6723                          * We have to disable TSC offset matching.. if you were
6724                          * booting a VM while issuing an S4 host suspend....
6725                          * you may have some problem.  Solving this issue is
6726                          * left as an exercise to the reader.
6727                          */
6728                         kvm->arch.last_tsc_nsec = 0;
6729                         kvm->arch.last_tsc_write = 0;
6730                 }
6731
6732         }
6733         return 0;
6734 }
6735
6736 void kvm_arch_hardware_disable(void *garbage)
6737 {
6738         kvm_x86_ops->hardware_disable(garbage);
6739         drop_user_return_notifiers(garbage);
6740 }
6741
6742 int kvm_arch_hardware_setup(void)
6743 {
6744         return kvm_x86_ops->hardware_setup();
6745 }
6746
6747 void kvm_arch_hardware_unsetup(void)
6748 {
6749         kvm_x86_ops->hardware_unsetup();
6750 }
6751
6752 void kvm_arch_check_processor_compat(void *rtn)
6753 {
6754         kvm_x86_ops->check_processor_compatibility(rtn);
6755 }
6756
6757 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6758 {
6759         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6760 }
6761
6762 struct static_key kvm_no_apic_vcpu __read_mostly;
6763
6764 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6765 {
6766         struct page *page;
6767         struct kvm *kvm;
6768         int r;
6769
6770         BUG_ON(vcpu->kvm == NULL);
6771         kvm = vcpu->kvm;
6772
6773         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6774         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6775                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6776         else
6777                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6778
6779         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6780         if (!page) {
6781                 r = -ENOMEM;
6782                 goto fail;
6783         }
6784         vcpu->arch.pio_data = page_address(page);
6785
6786         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6787
6788         r = kvm_mmu_create(vcpu);
6789         if (r < 0)
6790                 goto fail_free_pio_data;
6791
6792         if (irqchip_in_kernel(kvm)) {
6793                 r = kvm_create_lapic(vcpu);
6794                 if (r < 0)
6795                         goto fail_mmu_destroy;
6796         } else
6797                 static_key_slow_inc(&kvm_no_apic_vcpu);
6798
6799         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6800                                        GFP_KERNEL);
6801         if (!vcpu->arch.mce_banks) {
6802                 r = -ENOMEM;
6803                 goto fail_free_lapic;
6804         }
6805         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6806
6807         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6808                 r = -ENOMEM;
6809                 goto fail_free_mce_banks;
6810         }
6811
6812         r = fx_init(vcpu);
6813         if (r)
6814                 goto fail_free_wbinvd_dirty_mask;
6815
6816         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6817         vcpu->arch.pv_time_enabled = false;
6818         kvm_async_pf_hash_reset(vcpu);
6819         kvm_pmu_init(vcpu);
6820
6821         return 0;
6822 fail_free_wbinvd_dirty_mask:
6823         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6824 fail_free_mce_banks:
6825         kfree(vcpu->arch.mce_banks);
6826 fail_free_lapic:
6827         kvm_free_lapic(vcpu);
6828 fail_mmu_destroy:
6829         kvm_mmu_destroy(vcpu);
6830 fail_free_pio_data:
6831         free_page((unsigned long)vcpu->arch.pio_data);
6832 fail:
6833         return r;
6834 }
6835
6836 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6837 {
6838         int idx;
6839
6840         kvm_pmu_destroy(vcpu);
6841         kfree(vcpu->arch.mce_banks);
6842         kvm_free_lapic(vcpu);
6843         idx = srcu_read_lock(&vcpu->kvm->srcu);
6844         kvm_mmu_destroy(vcpu);
6845         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6846         free_page((unsigned long)vcpu->arch.pio_data);
6847         if (!irqchip_in_kernel(vcpu->kvm))
6848                 static_key_slow_dec(&kvm_no_apic_vcpu);
6849 }
6850
6851 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6852 {
6853         if (type)
6854                 return -EINVAL;
6855
6856         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6857         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6858         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6859
6860         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6861         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6862         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6863         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6864                 &kvm->arch.irq_sources_bitmap);
6865
6866         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6867         mutex_init(&kvm->arch.apic_map_lock);
6868         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6869
6870         pvclock_update_vm_gtod_copy(kvm);
6871
6872         return 0;
6873 }
6874
6875 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6876 {
6877         int r;
6878         r = vcpu_load(vcpu);
6879         BUG_ON(r);
6880         kvm_mmu_unload(vcpu);
6881         vcpu_put(vcpu);
6882 }
6883
6884 static void kvm_free_vcpus(struct kvm *kvm)
6885 {
6886         unsigned int i;
6887         struct kvm_vcpu *vcpu;
6888
6889         /*
6890          * Unpin any mmu pages first.
6891          */
6892         kvm_for_each_vcpu(i, vcpu, kvm) {
6893                 kvm_clear_async_pf_completion_queue(vcpu);
6894                 kvm_unload_vcpu_mmu(vcpu);
6895         }
6896         kvm_for_each_vcpu(i, vcpu, kvm)
6897                 kvm_arch_vcpu_free(vcpu);
6898
6899         mutex_lock(&kvm->lock);
6900         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6901                 kvm->vcpus[i] = NULL;
6902
6903         atomic_set(&kvm->online_vcpus, 0);
6904         mutex_unlock(&kvm->lock);
6905 }
6906
6907 void kvm_arch_sync_events(struct kvm *kvm)
6908 {
6909         kvm_free_all_assigned_devices(kvm);
6910         kvm_free_pit(kvm);
6911 }
6912
6913 void kvm_arch_destroy_vm(struct kvm *kvm)
6914 {
6915         if (current->mm == kvm->mm) {
6916                 /*
6917                  * Free memory regions allocated on behalf of userspace,
6918                  * unless the the memory map has changed due to process exit
6919                  * or fd copying.
6920                  */
6921                 struct kvm_userspace_memory_region mem;
6922                 memset(&mem, 0, sizeof(mem));
6923                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6924                 kvm_set_memory_region(kvm, &mem);
6925
6926                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6927                 kvm_set_memory_region(kvm, &mem);
6928
6929                 mem.slot = TSS_PRIVATE_MEMSLOT;
6930                 kvm_set_memory_region(kvm, &mem);
6931         }
6932         kvm_iommu_unmap_guest(kvm);
6933         kfree(kvm->arch.vpic);
6934         kfree(kvm->arch.vioapic);
6935         kvm_free_vcpus(kvm);
6936         if (kvm->arch.apic_access_page)
6937                 put_page(kvm->arch.apic_access_page);
6938         if (kvm->arch.ept_identity_pagetable)
6939                 put_page(kvm->arch.ept_identity_pagetable);
6940         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6941 }
6942
6943 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6944                            struct kvm_memory_slot *dont)
6945 {
6946         int i;
6947
6948         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6949                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6950                         kvm_kvfree(free->arch.rmap[i]);
6951                         free->arch.rmap[i] = NULL;
6952                 }
6953                 if (i == 0)
6954                         continue;
6955
6956                 if (!dont || free->arch.lpage_info[i - 1] !=
6957                              dont->arch.lpage_info[i - 1]) {
6958                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6959                         free->arch.lpage_info[i - 1] = NULL;
6960                 }
6961         }
6962 }
6963
6964 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6965 {
6966         int i;
6967
6968         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6969                 unsigned long ugfn;
6970                 int lpages;
6971                 int level = i + 1;
6972
6973                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6974                                       slot->base_gfn, level) + 1;
6975
6976                 slot->arch.rmap[i] =
6977                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6978                 if (!slot->arch.rmap[i])
6979                         goto out_free;
6980                 if (i == 0)
6981                         continue;
6982
6983                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6984                                         sizeof(*slot->arch.lpage_info[i - 1]));
6985                 if (!slot->arch.lpage_info[i - 1])
6986                         goto out_free;
6987
6988                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6989                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6990                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6991                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6992                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6993                 /*
6994                  * If the gfn and userspace address are not aligned wrt each
6995                  * other, or if explicitly asked to, disable large page
6996                  * support for this slot
6997                  */
6998                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6999                     !kvm_largepages_enabled()) {
7000                         unsigned long j;
7001
7002                         for (j = 0; j < lpages; ++j)
7003                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7004                 }
7005         }
7006
7007         return 0;
7008
7009 out_free:
7010         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7011                 kvm_kvfree(slot->arch.rmap[i]);
7012                 slot->arch.rmap[i] = NULL;
7013                 if (i == 0)
7014                         continue;
7015
7016                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7017                 slot->arch.lpage_info[i - 1] = NULL;
7018         }
7019         return -ENOMEM;
7020 }
7021
7022 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7023                                 struct kvm_memory_slot *memslot,
7024                                 struct kvm_userspace_memory_region *mem,
7025                                 enum kvm_mr_change change)
7026 {
7027         /*
7028          * Only private memory slots need to be mapped here since
7029          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7030          */
7031         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7032                 unsigned long userspace_addr;
7033
7034                 /*
7035                  * MAP_SHARED to prevent internal slot pages from being moved
7036                  * by fork()/COW.
7037                  */
7038                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7039                                          PROT_READ | PROT_WRITE,
7040                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7041
7042                 if (IS_ERR((void *)userspace_addr))
7043                         return PTR_ERR((void *)userspace_addr);
7044
7045                 memslot->userspace_addr = userspace_addr;
7046         }
7047
7048         return 0;
7049 }
7050
7051 void kvm_arch_commit_memory_region(struct kvm *kvm,
7052                                 struct kvm_userspace_memory_region *mem,
7053                                 const struct kvm_memory_slot *old,
7054                                 enum kvm_mr_change change)
7055 {
7056
7057         int nr_mmu_pages = 0;
7058
7059         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7060                 int ret;
7061
7062                 ret = vm_munmap(old->userspace_addr,
7063                                 old->npages * PAGE_SIZE);
7064                 if (ret < 0)
7065                         printk(KERN_WARNING
7066                                "kvm_vm_ioctl_set_memory_region: "
7067                                "failed to munmap memory\n");
7068         }
7069
7070         if (!kvm->arch.n_requested_mmu_pages)
7071                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7072
7073         if (nr_mmu_pages)
7074                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7075         /*
7076          * Write protect all pages for dirty logging.
7077          * Existing largepage mappings are destroyed here and new ones will
7078          * not be created until the end of the logging.
7079          */
7080         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7081                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7082         /*
7083          * If memory slot is created, or moved, we need to clear all
7084          * mmio sptes.
7085          */
7086         kvm_mmu_invalidate_mmio_sptes(kvm);
7087 }
7088
7089 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7090 {
7091         kvm_mmu_invalidate_zap_all_pages(kvm);
7092 }
7093
7094 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7095                                    struct kvm_memory_slot *slot)
7096 {
7097         kvm_mmu_invalidate_zap_all_pages(kvm);
7098 }
7099
7100 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7101 {
7102         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7103                 !vcpu->arch.apf.halted)
7104                 || !list_empty_careful(&vcpu->async_pf.done)
7105                 || kvm_apic_has_events(vcpu)
7106                 || atomic_read(&vcpu->arch.nmi_queued) ||
7107                 (kvm_arch_interrupt_allowed(vcpu) &&
7108                  kvm_cpu_has_interrupt(vcpu));
7109 }
7110
7111 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7112 {
7113         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7114 }
7115
7116 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7117 {
7118         return kvm_x86_ops->interrupt_allowed(vcpu);
7119 }
7120
7121 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7122 {
7123         unsigned long current_rip = kvm_rip_read(vcpu) +
7124                 get_segment_base(vcpu, VCPU_SREG_CS);
7125
7126         return current_rip == linear_rip;
7127 }
7128 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7129
7130 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7131 {
7132         unsigned long rflags;
7133
7134         rflags = kvm_x86_ops->get_rflags(vcpu);
7135         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7136                 rflags &= ~X86_EFLAGS_TF;
7137         return rflags;
7138 }
7139 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7140
7141 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7142 {
7143         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7144             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7145                 rflags |= X86_EFLAGS_TF;
7146         kvm_x86_ops->set_rflags(vcpu, rflags);
7147         kvm_make_request(KVM_REQ_EVENT, vcpu);
7148 }
7149 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7150
7151 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7152 {
7153         int r;
7154
7155         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7156               is_error_page(work->page))
7157                 return;
7158
7159         r = kvm_mmu_reload(vcpu);
7160         if (unlikely(r))
7161                 return;
7162
7163         if (!vcpu->arch.mmu.direct_map &&
7164               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7165                 return;
7166
7167         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7168 }
7169
7170 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7171 {
7172         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7173 }
7174
7175 static inline u32 kvm_async_pf_next_probe(u32 key)
7176 {
7177         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7178 }
7179
7180 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7181 {
7182         u32 key = kvm_async_pf_hash_fn(gfn);
7183
7184         while (vcpu->arch.apf.gfns[key] != ~0)
7185                 key = kvm_async_pf_next_probe(key);
7186
7187         vcpu->arch.apf.gfns[key] = gfn;
7188 }
7189
7190 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7191 {
7192         int i;
7193         u32 key = kvm_async_pf_hash_fn(gfn);
7194
7195         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7196                      (vcpu->arch.apf.gfns[key] != gfn &&
7197                       vcpu->arch.apf.gfns[key] != ~0); i++)
7198                 key = kvm_async_pf_next_probe(key);
7199
7200         return key;
7201 }
7202
7203 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7204 {
7205         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7206 }
7207
7208 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7209 {
7210         u32 i, j, k;
7211
7212         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7213         while (true) {
7214                 vcpu->arch.apf.gfns[i] = ~0;
7215                 do {
7216                         j = kvm_async_pf_next_probe(j);
7217                         if (vcpu->arch.apf.gfns[j] == ~0)
7218                                 return;
7219                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7220                         /*
7221                          * k lies cyclically in ]i,j]
7222                          * |    i.k.j |
7223                          * |....j i.k.| or  |.k..j i...|
7224                          */
7225                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7226                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7227                 i = j;
7228         }
7229 }
7230
7231 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7232 {
7233
7234         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7235                                       sizeof(val));
7236 }
7237
7238 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7239                                      struct kvm_async_pf *work)
7240 {
7241         struct x86_exception fault;
7242
7243         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7244         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7245
7246         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7247             (vcpu->arch.apf.send_user_only &&
7248              kvm_x86_ops->get_cpl(vcpu) == 0))
7249                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7250         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7251                 fault.vector = PF_VECTOR;
7252                 fault.error_code_valid = true;
7253                 fault.error_code = 0;
7254                 fault.nested_page_fault = false;
7255                 fault.address = work->arch.token;
7256                 kvm_inject_page_fault(vcpu, &fault);
7257         }
7258 }
7259
7260 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7261                                  struct kvm_async_pf *work)
7262 {
7263         struct x86_exception fault;
7264
7265         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7266         if (is_error_page(work->page))
7267                 work->arch.token = ~0; /* broadcast wakeup */
7268         else
7269                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7270
7271         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7272             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7273                 fault.vector = PF_VECTOR;
7274                 fault.error_code_valid = true;
7275                 fault.error_code = 0;
7276                 fault.nested_page_fault = false;
7277                 fault.address = work->arch.token;
7278                 kvm_inject_page_fault(vcpu, &fault);
7279         }
7280         vcpu->arch.apf.halted = false;
7281         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7282 }
7283
7284 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7285 {
7286         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7287                 return true;
7288         else
7289                 return !kvm_event_needs_reinjection(vcpu) &&
7290                         kvm_x86_ops->interrupt_allowed(vcpu);
7291 }
7292
7293 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7294 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7295 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);