]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/vmx.c
KVM: VMX: Add support for guest/host-only profiling
[~andy/linux] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42 #include <asm/perf_event.h>
43
44 #include "trace.h"
45
46 #define __ex(x) __kvm_handle_fault_on_reboot(x)
47 #define __ex_clear(x, reg) \
48         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
49
50 MODULE_AUTHOR("Qumranet");
51 MODULE_LICENSE("GPL");
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 static int __read_mostly yield_on_hlt = 1;
73 module_param(yield_on_hlt, bool, S_IRUGO);
74
75 static int __read_mostly fasteoi = 1;
76 module_param(fasteoi, bool, S_IRUGO);
77
78 /*
79  * If nested=1, nested virtualization is supported, i.e., guests may use
80  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
81  * use VMX instructions.
82  */
83 static int __read_mostly nested = 0;
84 module_param(nested, bool, S_IRUGO);
85
86 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
87         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
88 #define KVM_GUEST_CR0_MASK                                              \
89         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
90 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
91         (X86_CR0_WP | X86_CR0_NE)
92 #define KVM_VM_CR0_ALWAYS_ON                                            \
93         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
94 #define KVM_CR4_GUEST_OWNED_BITS                                      \
95         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
96          | X86_CR4_OSXMMEXCPT)
97
98 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
99 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
100
101 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
102
103 /*
104  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
105  * ple_gap:    upper bound on the amount of time between two successive
106  *             executions of PAUSE in a loop. Also indicate if ple enabled.
107  *             According to test, this time is usually smaller than 128 cycles.
108  * ple_window: upper bound on the amount of time a guest is allowed to execute
109  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
110  *             less than 2^12 cycles
111  * Time is measured based on a counter that runs at the same rate as the TSC,
112  * refer SDM volume 3b section 21.6.13 & 22.1.3.
113  */
114 #define KVM_VMX_DEFAULT_PLE_GAP    128
115 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
116 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
117 module_param(ple_gap, int, S_IRUGO);
118
119 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
120 module_param(ple_window, int, S_IRUGO);
121
122 #define NR_AUTOLOAD_MSRS 8
123 #define VMCS02_POOL_SIZE 1
124
125 struct vmcs {
126         u32 revision_id;
127         u32 abort;
128         char data[0];
129 };
130
131 /*
132  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
133  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
134  * loaded on this CPU (so we can clear them if the CPU goes down).
135  */
136 struct loaded_vmcs {
137         struct vmcs *vmcs;
138         int cpu;
139         int launched;
140         struct list_head loaded_vmcss_on_cpu_link;
141 };
142
143 struct shared_msr_entry {
144         unsigned index;
145         u64 data;
146         u64 mask;
147 };
148
149 /*
150  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
151  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
152  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
153  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
154  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
155  * More than one of these structures may exist, if L1 runs multiple L2 guests.
156  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
157  * underlying hardware which will be used to run L2.
158  * This structure is packed to ensure that its layout is identical across
159  * machines (necessary for live migration).
160  * If there are changes in this struct, VMCS12_REVISION must be changed.
161  */
162 typedef u64 natural_width;
163 struct __packed vmcs12 {
164         /* According to the Intel spec, a VMCS region must start with the
165          * following two fields. Then follow implementation-specific data.
166          */
167         u32 revision_id;
168         u32 abort;
169
170         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
171         u32 padding[7]; /* room for future expansion */
172
173         u64 io_bitmap_a;
174         u64 io_bitmap_b;
175         u64 msr_bitmap;
176         u64 vm_exit_msr_store_addr;
177         u64 vm_exit_msr_load_addr;
178         u64 vm_entry_msr_load_addr;
179         u64 tsc_offset;
180         u64 virtual_apic_page_addr;
181         u64 apic_access_addr;
182         u64 ept_pointer;
183         u64 guest_physical_address;
184         u64 vmcs_link_pointer;
185         u64 guest_ia32_debugctl;
186         u64 guest_ia32_pat;
187         u64 guest_ia32_efer;
188         u64 guest_ia32_perf_global_ctrl;
189         u64 guest_pdptr0;
190         u64 guest_pdptr1;
191         u64 guest_pdptr2;
192         u64 guest_pdptr3;
193         u64 host_ia32_pat;
194         u64 host_ia32_efer;
195         u64 host_ia32_perf_global_ctrl;
196         u64 padding64[8]; /* room for future expansion */
197         /*
198          * To allow migration of L1 (complete with its L2 guests) between
199          * machines of different natural widths (32 or 64 bit), we cannot have
200          * unsigned long fields with no explict size. We use u64 (aliased
201          * natural_width) instead. Luckily, x86 is little-endian.
202          */
203         natural_width cr0_guest_host_mask;
204         natural_width cr4_guest_host_mask;
205         natural_width cr0_read_shadow;
206         natural_width cr4_read_shadow;
207         natural_width cr3_target_value0;
208         natural_width cr3_target_value1;
209         natural_width cr3_target_value2;
210         natural_width cr3_target_value3;
211         natural_width exit_qualification;
212         natural_width guest_linear_address;
213         natural_width guest_cr0;
214         natural_width guest_cr3;
215         natural_width guest_cr4;
216         natural_width guest_es_base;
217         natural_width guest_cs_base;
218         natural_width guest_ss_base;
219         natural_width guest_ds_base;
220         natural_width guest_fs_base;
221         natural_width guest_gs_base;
222         natural_width guest_ldtr_base;
223         natural_width guest_tr_base;
224         natural_width guest_gdtr_base;
225         natural_width guest_idtr_base;
226         natural_width guest_dr7;
227         natural_width guest_rsp;
228         natural_width guest_rip;
229         natural_width guest_rflags;
230         natural_width guest_pending_dbg_exceptions;
231         natural_width guest_sysenter_esp;
232         natural_width guest_sysenter_eip;
233         natural_width host_cr0;
234         natural_width host_cr3;
235         natural_width host_cr4;
236         natural_width host_fs_base;
237         natural_width host_gs_base;
238         natural_width host_tr_base;
239         natural_width host_gdtr_base;
240         natural_width host_idtr_base;
241         natural_width host_ia32_sysenter_esp;
242         natural_width host_ia32_sysenter_eip;
243         natural_width host_rsp;
244         natural_width host_rip;
245         natural_width paddingl[8]; /* room for future expansion */
246         u32 pin_based_vm_exec_control;
247         u32 cpu_based_vm_exec_control;
248         u32 exception_bitmap;
249         u32 page_fault_error_code_mask;
250         u32 page_fault_error_code_match;
251         u32 cr3_target_count;
252         u32 vm_exit_controls;
253         u32 vm_exit_msr_store_count;
254         u32 vm_exit_msr_load_count;
255         u32 vm_entry_controls;
256         u32 vm_entry_msr_load_count;
257         u32 vm_entry_intr_info_field;
258         u32 vm_entry_exception_error_code;
259         u32 vm_entry_instruction_len;
260         u32 tpr_threshold;
261         u32 secondary_vm_exec_control;
262         u32 vm_instruction_error;
263         u32 vm_exit_reason;
264         u32 vm_exit_intr_info;
265         u32 vm_exit_intr_error_code;
266         u32 idt_vectoring_info_field;
267         u32 idt_vectoring_error_code;
268         u32 vm_exit_instruction_len;
269         u32 vmx_instruction_info;
270         u32 guest_es_limit;
271         u32 guest_cs_limit;
272         u32 guest_ss_limit;
273         u32 guest_ds_limit;
274         u32 guest_fs_limit;
275         u32 guest_gs_limit;
276         u32 guest_ldtr_limit;
277         u32 guest_tr_limit;
278         u32 guest_gdtr_limit;
279         u32 guest_idtr_limit;
280         u32 guest_es_ar_bytes;
281         u32 guest_cs_ar_bytes;
282         u32 guest_ss_ar_bytes;
283         u32 guest_ds_ar_bytes;
284         u32 guest_fs_ar_bytes;
285         u32 guest_gs_ar_bytes;
286         u32 guest_ldtr_ar_bytes;
287         u32 guest_tr_ar_bytes;
288         u32 guest_interruptibility_info;
289         u32 guest_activity_state;
290         u32 guest_sysenter_cs;
291         u32 host_ia32_sysenter_cs;
292         u32 padding32[8]; /* room for future expansion */
293         u16 virtual_processor_id;
294         u16 guest_es_selector;
295         u16 guest_cs_selector;
296         u16 guest_ss_selector;
297         u16 guest_ds_selector;
298         u16 guest_fs_selector;
299         u16 guest_gs_selector;
300         u16 guest_ldtr_selector;
301         u16 guest_tr_selector;
302         u16 host_es_selector;
303         u16 host_cs_selector;
304         u16 host_ss_selector;
305         u16 host_ds_selector;
306         u16 host_fs_selector;
307         u16 host_gs_selector;
308         u16 host_tr_selector;
309 };
310
311 /*
312  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
313  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
314  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
315  */
316 #define VMCS12_REVISION 0x11e57ed0
317
318 /*
319  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
320  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
321  * current implementation, 4K are reserved to avoid future complications.
322  */
323 #define VMCS12_SIZE 0x1000
324
325 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
326 struct vmcs02_list {
327         struct list_head list;
328         gpa_t vmptr;
329         struct loaded_vmcs vmcs02;
330 };
331
332 /*
333  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
334  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
335  */
336 struct nested_vmx {
337         /* Has the level1 guest done vmxon? */
338         bool vmxon;
339
340         /* The guest-physical address of the current VMCS L1 keeps for L2 */
341         gpa_t current_vmptr;
342         /* The host-usable pointer to the above */
343         struct page *current_vmcs12_page;
344         struct vmcs12 *current_vmcs12;
345
346         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
347         struct list_head vmcs02_pool;
348         int vmcs02_num;
349         u64 vmcs01_tsc_offset;
350         /* L2 must run next, and mustn't decide to exit to L1. */
351         bool nested_run_pending;
352         /*
353          * Guest pages referred to in vmcs02 with host-physical pointers, so
354          * we must keep them pinned while L2 runs.
355          */
356         struct page *apic_access_page;
357 };
358
359 struct vcpu_vmx {
360         struct kvm_vcpu       vcpu;
361         unsigned long         host_rsp;
362         u8                    fail;
363         u8                    cpl;
364         bool                  nmi_known_unmasked;
365         u32                   exit_intr_info;
366         u32                   idt_vectoring_info;
367         ulong                 rflags;
368         struct shared_msr_entry *guest_msrs;
369         int                   nmsrs;
370         int                   save_nmsrs;
371 #ifdef CONFIG_X86_64
372         u64                   msr_host_kernel_gs_base;
373         u64                   msr_guest_kernel_gs_base;
374 #endif
375         /*
376          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
377          * non-nested (L1) guest, it always points to vmcs01. For a nested
378          * guest (L2), it points to a different VMCS.
379          */
380         struct loaded_vmcs    vmcs01;
381         struct loaded_vmcs   *loaded_vmcs;
382         bool                  __launched; /* temporary, used in vmx_vcpu_run */
383         struct msr_autoload {
384                 unsigned nr;
385                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
386                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
387         } msr_autoload;
388         struct {
389                 int           loaded;
390                 u16           fs_sel, gs_sel, ldt_sel;
391                 int           gs_ldt_reload_needed;
392                 int           fs_reload_needed;
393         } host_state;
394         struct {
395                 int vm86_active;
396                 ulong save_rflags;
397                 struct kvm_save_segment {
398                         u16 selector;
399                         unsigned long base;
400                         u32 limit;
401                         u32 ar;
402                 } tr, es, ds, fs, gs;
403         } rmode;
404         struct {
405                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
406                 struct kvm_save_segment seg[8];
407         } segment_cache;
408         int vpid;
409         bool emulation_required;
410
411         /* Support for vnmi-less CPUs */
412         int soft_vnmi_blocked;
413         ktime_t entry_time;
414         s64 vnmi_blocked_time;
415         u32 exit_reason;
416
417         bool rdtscp_enabled;
418
419         /* Support for a guest hypervisor (nested VMX) */
420         struct nested_vmx nested;
421 };
422
423 enum segment_cache_field {
424         SEG_FIELD_SEL = 0,
425         SEG_FIELD_BASE = 1,
426         SEG_FIELD_LIMIT = 2,
427         SEG_FIELD_AR = 3,
428
429         SEG_FIELD_NR = 4
430 };
431
432 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
433 {
434         return container_of(vcpu, struct vcpu_vmx, vcpu);
435 }
436
437 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
438 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
439 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
440                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
441
442 static unsigned short vmcs_field_to_offset_table[] = {
443         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
444         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
445         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
446         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
447         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
448         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
449         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
450         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
451         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
452         FIELD(HOST_ES_SELECTOR, host_es_selector),
453         FIELD(HOST_CS_SELECTOR, host_cs_selector),
454         FIELD(HOST_SS_SELECTOR, host_ss_selector),
455         FIELD(HOST_DS_SELECTOR, host_ds_selector),
456         FIELD(HOST_FS_SELECTOR, host_fs_selector),
457         FIELD(HOST_GS_SELECTOR, host_gs_selector),
458         FIELD(HOST_TR_SELECTOR, host_tr_selector),
459         FIELD64(IO_BITMAP_A, io_bitmap_a),
460         FIELD64(IO_BITMAP_B, io_bitmap_b),
461         FIELD64(MSR_BITMAP, msr_bitmap),
462         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
463         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
464         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
465         FIELD64(TSC_OFFSET, tsc_offset),
466         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
467         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
468         FIELD64(EPT_POINTER, ept_pointer),
469         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
470         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
471         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
472         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
473         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
474         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
475         FIELD64(GUEST_PDPTR0, guest_pdptr0),
476         FIELD64(GUEST_PDPTR1, guest_pdptr1),
477         FIELD64(GUEST_PDPTR2, guest_pdptr2),
478         FIELD64(GUEST_PDPTR3, guest_pdptr3),
479         FIELD64(HOST_IA32_PAT, host_ia32_pat),
480         FIELD64(HOST_IA32_EFER, host_ia32_efer),
481         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
482         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
483         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
484         FIELD(EXCEPTION_BITMAP, exception_bitmap),
485         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
486         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
487         FIELD(CR3_TARGET_COUNT, cr3_target_count),
488         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
489         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
490         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
491         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
492         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
493         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
494         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
495         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
496         FIELD(TPR_THRESHOLD, tpr_threshold),
497         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
498         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
499         FIELD(VM_EXIT_REASON, vm_exit_reason),
500         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
501         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
502         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
503         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
504         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
505         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
506         FIELD(GUEST_ES_LIMIT, guest_es_limit),
507         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
508         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
509         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
510         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
511         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
512         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
513         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
514         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
515         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
516         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
517         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
518         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
519         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
520         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
521         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
522         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
523         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
524         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
525         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
526         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
527         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
528         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
529         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
530         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
531         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
532         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
533         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
534         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
535         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
536         FIELD(EXIT_QUALIFICATION, exit_qualification),
537         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
538         FIELD(GUEST_CR0, guest_cr0),
539         FIELD(GUEST_CR3, guest_cr3),
540         FIELD(GUEST_CR4, guest_cr4),
541         FIELD(GUEST_ES_BASE, guest_es_base),
542         FIELD(GUEST_CS_BASE, guest_cs_base),
543         FIELD(GUEST_SS_BASE, guest_ss_base),
544         FIELD(GUEST_DS_BASE, guest_ds_base),
545         FIELD(GUEST_FS_BASE, guest_fs_base),
546         FIELD(GUEST_GS_BASE, guest_gs_base),
547         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
548         FIELD(GUEST_TR_BASE, guest_tr_base),
549         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
550         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
551         FIELD(GUEST_DR7, guest_dr7),
552         FIELD(GUEST_RSP, guest_rsp),
553         FIELD(GUEST_RIP, guest_rip),
554         FIELD(GUEST_RFLAGS, guest_rflags),
555         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
556         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
557         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
558         FIELD(HOST_CR0, host_cr0),
559         FIELD(HOST_CR3, host_cr3),
560         FIELD(HOST_CR4, host_cr4),
561         FIELD(HOST_FS_BASE, host_fs_base),
562         FIELD(HOST_GS_BASE, host_gs_base),
563         FIELD(HOST_TR_BASE, host_tr_base),
564         FIELD(HOST_GDTR_BASE, host_gdtr_base),
565         FIELD(HOST_IDTR_BASE, host_idtr_base),
566         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
567         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
568         FIELD(HOST_RSP, host_rsp),
569         FIELD(HOST_RIP, host_rip),
570 };
571 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
572
573 static inline short vmcs_field_to_offset(unsigned long field)
574 {
575         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
576                 return -1;
577         return vmcs_field_to_offset_table[field];
578 }
579
580 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
581 {
582         return to_vmx(vcpu)->nested.current_vmcs12;
583 }
584
585 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
586 {
587         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
588         if (is_error_page(page)) {
589                 kvm_release_page_clean(page);
590                 return NULL;
591         }
592         return page;
593 }
594
595 static void nested_release_page(struct page *page)
596 {
597         kvm_release_page_dirty(page);
598 }
599
600 static void nested_release_page_clean(struct page *page)
601 {
602         kvm_release_page_clean(page);
603 }
604
605 static u64 construct_eptp(unsigned long root_hpa);
606 static void kvm_cpu_vmxon(u64 addr);
607 static void kvm_cpu_vmxoff(void);
608 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
609 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
610
611 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
612 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
613 /*
614  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
615  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
616  */
617 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
618 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
619
620 static unsigned long *vmx_io_bitmap_a;
621 static unsigned long *vmx_io_bitmap_b;
622 static unsigned long *vmx_msr_bitmap_legacy;
623 static unsigned long *vmx_msr_bitmap_longmode;
624
625 static bool cpu_has_load_ia32_efer;
626 static bool cpu_has_load_perf_global_ctrl;
627
628 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
629 static DEFINE_SPINLOCK(vmx_vpid_lock);
630
631 static struct vmcs_config {
632         int size;
633         int order;
634         u32 revision_id;
635         u32 pin_based_exec_ctrl;
636         u32 cpu_based_exec_ctrl;
637         u32 cpu_based_2nd_exec_ctrl;
638         u32 vmexit_ctrl;
639         u32 vmentry_ctrl;
640 } vmcs_config;
641
642 static struct vmx_capability {
643         u32 ept;
644         u32 vpid;
645 } vmx_capability;
646
647 #define VMX_SEGMENT_FIELD(seg)                                  \
648         [VCPU_SREG_##seg] = {                                   \
649                 .selector = GUEST_##seg##_SELECTOR,             \
650                 .base = GUEST_##seg##_BASE,                     \
651                 .limit = GUEST_##seg##_LIMIT,                   \
652                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
653         }
654
655 static struct kvm_vmx_segment_field {
656         unsigned selector;
657         unsigned base;
658         unsigned limit;
659         unsigned ar_bytes;
660 } kvm_vmx_segment_fields[] = {
661         VMX_SEGMENT_FIELD(CS),
662         VMX_SEGMENT_FIELD(DS),
663         VMX_SEGMENT_FIELD(ES),
664         VMX_SEGMENT_FIELD(FS),
665         VMX_SEGMENT_FIELD(GS),
666         VMX_SEGMENT_FIELD(SS),
667         VMX_SEGMENT_FIELD(TR),
668         VMX_SEGMENT_FIELD(LDTR),
669 };
670
671 static u64 host_efer;
672
673 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
674
675 /*
676  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
677  * away by decrementing the array size.
678  */
679 static const u32 vmx_msr_index[] = {
680 #ifdef CONFIG_X86_64
681         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
682 #endif
683         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
684 };
685 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
686
687 static inline bool is_page_fault(u32 intr_info)
688 {
689         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
690                              INTR_INFO_VALID_MASK)) ==
691                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
692 }
693
694 static inline bool is_no_device(u32 intr_info)
695 {
696         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
697                              INTR_INFO_VALID_MASK)) ==
698                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
699 }
700
701 static inline bool is_invalid_opcode(u32 intr_info)
702 {
703         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
704                              INTR_INFO_VALID_MASK)) ==
705                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
706 }
707
708 static inline bool is_external_interrupt(u32 intr_info)
709 {
710         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
711                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
712 }
713
714 static inline bool is_machine_check(u32 intr_info)
715 {
716         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
717                              INTR_INFO_VALID_MASK)) ==
718                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
719 }
720
721 static inline bool cpu_has_vmx_msr_bitmap(void)
722 {
723         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
724 }
725
726 static inline bool cpu_has_vmx_tpr_shadow(void)
727 {
728         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
729 }
730
731 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
732 {
733         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
734 }
735
736 static inline bool cpu_has_secondary_exec_ctrls(void)
737 {
738         return vmcs_config.cpu_based_exec_ctrl &
739                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
740 }
741
742 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
743 {
744         return vmcs_config.cpu_based_2nd_exec_ctrl &
745                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
746 }
747
748 static inline bool cpu_has_vmx_flexpriority(void)
749 {
750         return cpu_has_vmx_tpr_shadow() &&
751                 cpu_has_vmx_virtualize_apic_accesses();
752 }
753
754 static inline bool cpu_has_vmx_ept_execute_only(void)
755 {
756         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
757 }
758
759 static inline bool cpu_has_vmx_eptp_uncacheable(void)
760 {
761         return vmx_capability.ept & VMX_EPTP_UC_BIT;
762 }
763
764 static inline bool cpu_has_vmx_eptp_writeback(void)
765 {
766         return vmx_capability.ept & VMX_EPTP_WB_BIT;
767 }
768
769 static inline bool cpu_has_vmx_ept_2m_page(void)
770 {
771         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
772 }
773
774 static inline bool cpu_has_vmx_ept_1g_page(void)
775 {
776         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
777 }
778
779 static inline bool cpu_has_vmx_ept_4levels(void)
780 {
781         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
782 }
783
784 static inline bool cpu_has_vmx_invept_individual_addr(void)
785 {
786         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
787 }
788
789 static inline bool cpu_has_vmx_invept_context(void)
790 {
791         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
792 }
793
794 static inline bool cpu_has_vmx_invept_global(void)
795 {
796         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
797 }
798
799 static inline bool cpu_has_vmx_invvpid_single(void)
800 {
801         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
802 }
803
804 static inline bool cpu_has_vmx_invvpid_global(void)
805 {
806         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
807 }
808
809 static inline bool cpu_has_vmx_ept(void)
810 {
811         return vmcs_config.cpu_based_2nd_exec_ctrl &
812                 SECONDARY_EXEC_ENABLE_EPT;
813 }
814
815 static inline bool cpu_has_vmx_unrestricted_guest(void)
816 {
817         return vmcs_config.cpu_based_2nd_exec_ctrl &
818                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
819 }
820
821 static inline bool cpu_has_vmx_ple(void)
822 {
823         return vmcs_config.cpu_based_2nd_exec_ctrl &
824                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
825 }
826
827 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
828 {
829         return flexpriority_enabled && irqchip_in_kernel(kvm);
830 }
831
832 static inline bool cpu_has_vmx_vpid(void)
833 {
834         return vmcs_config.cpu_based_2nd_exec_ctrl &
835                 SECONDARY_EXEC_ENABLE_VPID;
836 }
837
838 static inline bool cpu_has_vmx_rdtscp(void)
839 {
840         return vmcs_config.cpu_based_2nd_exec_ctrl &
841                 SECONDARY_EXEC_RDTSCP;
842 }
843
844 static inline bool cpu_has_virtual_nmis(void)
845 {
846         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
847 }
848
849 static inline bool cpu_has_vmx_wbinvd_exit(void)
850 {
851         return vmcs_config.cpu_based_2nd_exec_ctrl &
852                 SECONDARY_EXEC_WBINVD_EXITING;
853 }
854
855 static inline bool report_flexpriority(void)
856 {
857         return flexpriority_enabled;
858 }
859
860 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
861 {
862         return vmcs12->cpu_based_vm_exec_control & bit;
863 }
864
865 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
866 {
867         return (vmcs12->cpu_based_vm_exec_control &
868                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
869                 (vmcs12->secondary_vm_exec_control & bit);
870 }
871
872 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
873         struct kvm_vcpu *vcpu)
874 {
875         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
876 }
877
878 static inline bool is_exception(u32 intr_info)
879 {
880         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
881                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
882 }
883
884 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
885 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
886                         struct vmcs12 *vmcs12,
887                         u32 reason, unsigned long qualification);
888
889 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
890 {
891         int i;
892
893         for (i = 0; i < vmx->nmsrs; ++i)
894                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
895                         return i;
896         return -1;
897 }
898
899 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
900 {
901     struct {
902         u64 vpid : 16;
903         u64 rsvd : 48;
904         u64 gva;
905     } operand = { vpid, 0, gva };
906
907     asm volatile (__ex(ASM_VMX_INVVPID)
908                   /* CF==1 or ZF==1 --> rc = -1 */
909                   "; ja 1f ; ud2 ; 1:"
910                   : : "a"(&operand), "c"(ext) : "cc", "memory");
911 }
912
913 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
914 {
915         struct {
916                 u64 eptp, gpa;
917         } operand = {eptp, gpa};
918
919         asm volatile (__ex(ASM_VMX_INVEPT)
920                         /* CF==1 or ZF==1 --> rc = -1 */
921                         "; ja 1f ; ud2 ; 1:\n"
922                         : : "a" (&operand), "c" (ext) : "cc", "memory");
923 }
924
925 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
926 {
927         int i;
928
929         i = __find_msr_index(vmx, msr);
930         if (i >= 0)
931                 return &vmx->guest_msrs[i];
932         return NULL;
933 }
934
935 static void vmcs_clear(struct vmcs *vmcs)
936 {
937         u64 phys_addr = __pa(vmcs);
938         u8 error;
939
940         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
941                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
942                       : "cc", "memory");
943         if (error)
944                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
945                        vmcs, phys_addr);
946 }
947
948 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
949 {
950         vmcs_clear(loaded_vmcs->vmcs);
951         loaded_vmcs->cpu = -1;
952         loaded_vmcs->launched = 0;
953 }
954
955 static void vmcs_load(struct vmcs *vmcs)
956 {
957         u64 phys_addr = __pa(vmcs);
958         u8 error;
959
960         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
961                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
962                         : "cc", "memory");
963         if (error)
964                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
965                        vmcs, phys_addr);
966 }
967
968 static void __loaded_vmcs_clear(void *arg)
969 {
970         struct loaded_vmcs *loaded_vmcs = arg;
971         int cpu = raw_smp_processor_id();
972
973         if (loaded_vmcs->cpu != cpu)
974                 return; /* vcpu migration can race with cpu offline */
975         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
976                 per_cpu(current_vmcs, cpu) = NULL;
977         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
978         loaded_vmcs_init(loaded_vmcs);
979 }
980
981 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
982 {
983         if (loaded_vmcs->cpu != -1)
984                 smp_call_function_single(
985                         loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
986 }
987
988 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
989 {
990         if (vmx->vpid == 0)
991                 return;
992
993         if (cpu_has_vmx_invvpid_single())
994                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
995 }
996
997 static inline void vpid_sync_vcpu_global(void)
998 {
999         if (cpu_has_vmx_invvpid_global())
1000                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1001 }
1002
1003 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1004 {
1005         if (cpu_has_vmx_invvpid_single())
1006                 vpid_sync_vcpu_single(vmx);
1007         else
1008                 vpid_sync_vcpu_global();
1009 }
1010
1011 static inline void ept_sync_global(void)
1012 {
1013         if (cpu_has_vmx_invept_global())
1014                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1015 }
1016
1017 static inline void ept_sync_context(u64 eptp)
1018 {
1019         if (enable_ept) {
1020                 if (cpu_has_vmx_invept_context())
1021                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1022                 else
1023                         ept_sync_global();
1024         }
1025 }
1026
1027 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1028 {
1029         if (enable_ept) {
1030                 if (cpu_has_vmx_invept_individual_addr())
1031                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1032                                         eptp, gpa);
1033                 else
1034                         ept_sync_context(eptp);
1035         }
1036 }
1037
1038 static __always_inline unsigned long vmcs_readl(unsigned long field)
1039 {
1040         unsigned long value;
1041
1042         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1043                       : "=a"(value) : "d"(field) : "cc");
1044         return value;
1045 }
1046
1047 static __always_inline u16 vmcs_read16(unsigned long field)
1048 {
1049         return vmcs_readl(field);
1050 }
1051
1052 static __always_inline u32 vmcs_read32(unsigned long field)
1053 {
1054         return vmcs_readl(field);
1055 }
1056
1057 static __always_inline u64 vmcs_read64(unsigned long field)
1058 {
1059 #ifdef CONFIG_X86_64
1060         return vmcs_readl(field);
1061 #else
1062         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1063 #endif
1064 }
1065
1066 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1067 {
1068         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1069                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1070         dump_stack();
1071 }
1072
1073 static void vmcs_writel(unsigned long field, unsigned long value)
1074 {
1075         u8 error;
1076
1077         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1078                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1079         if (unlikely(error))
1080                 vmwrite_error(field, value);
1081 }
1082
1083 static void vmcs_write16(unsigned long field, u16 value)
1084 {
1085         vmcs_writel(field, value);
1086 }
1087
1088 static void vmcs_write32(unsigned long field, u32 value)
1089 {
1090         vmcs_writel(field, value);
1091 }
1092
1093 static void vmcs_write64(unsigned long field, u64 value)
1094 {
1095         vmcs_writel(field, value);
1096 #ifndef CONFIG_X86_64
1097         asm volatile ("");
1098         vmcs_writel(field+1, value >> 32);
1099 #endif
1100 }
1101
1102 static void vmcs_clear_bits(unsigned long field, u32 mask)
1103 {
1104         vmcs_writel(field, vmcs_readl(field) & ~mask);
1105 }
1106
1107 static void vmcs_set_bits(unsigned long field, u32 mask)
1108 {
1109         vmcs_writel(field, vmcs_readl(field) | mask);
1110 }
1111
1112 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1113 {
1114         vmx->segment_cache.bitmask = 0;
1115 }
1116
1117 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1118                                        unsigned field)
1119 {
1120         bool ret;
1121         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1122
1123         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1124                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1125                 vmx->segment_cache.bitmask = 0;
1126         }
1127         ret = vmx->segment_cache.bitmask & mask;
1128         vmx->segment_cache.bitmask |= mask;
1129         return ret;
1130 }
1131
1132 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1133 {
1134         u16 *p = &vmx->segment_cache.seg[seg].selector;
1135
1136         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1137                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1138         return *p;
1139 }
1140
1141 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1142 {
1143         ulong *p = &vmx->segment_cache.seg[seg].base;
1144
1145         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1146                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1147         return *p;
1148 }
1149
1150 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1151 {
1152         u32 *p = &vmx->segment_cache.seg[seg].limit;
1153
1154         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1155                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1156         return *p;
1157 }
1158
1159 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1160 {
1161         u32 *p = &vmx->segment_cache.seg[seg].ar;
1162
1163         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1164                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1165         return *p;
1166 }
1167
1168 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1169 {
1170         u32 eb;
1171
1172         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1173              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1174         if ((vcpu->guest_debug &
1175              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1176             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1177                 eb |= 1u << BP_VECTOR;
1178         if (to_vmx(vcpu)->rmode.vm86_active)
1179                 eb = ~0;
1180         if (enable_ept)
1181                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1182         if (vcpu->fpu_active)
1183                 eb &= ~(1u << NM_VECTOR);
1184
1185         /* When we are running a nested L2 guest and L1 specified for it a
1186          * certain exception bitmap, we must trap the same exceptions and pass
1187          * them to L1. When running L2, we will only handle the exceptions
1188          * specified above if L1 did not want them.
1189          */
1190         if (is_guest_mode(vcpu))
1191                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1192
1193         vmcs_write32(EXCEPTION_BITMAP, eb);
1194 }
1195
1196 static void clear_atomic_switch_msr_special(unsigned long entry,
1197                 unsigned long exit)
1198 {
1199         vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1200         vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1201 }
1202
1203 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1204 {
1205         unsigned i;
1206         struct msr_autoload *m = &vmx->msr_autoload;
1207
1208         switch (msr) {
1209         case MSR_EFER:
1210                 if (cpu_has_load_ia32_efer) {
1211                         clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1212                                         VM_EXIT_LOAD_IA32_EFER);
1213                         return;
1214                 }
1215                 break;
1216         case MSR_CORE_PERF_GLOBAL_CTRL:
1217                 if (cpu_has_load_perf_global_ctrl) {
1218                         clear_atomic_switch_msr_special(
1219                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1220                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1221                         return;
1222                 }
1223                 break;
1224         }
1225
1226         for (i = 0; i < m->nr; ++i)
1227                 if (m->guest[i].index == msr)
1228                         break;
1229
1230         if (i == m->nr)
1231                 return;
1232         --m->nr;
1233         m->guest[i] = m->guest[m->nr];
1234         m->host[i] = m->host[m->nr];
1235         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1236         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1237 }
1238
1239 static void add_atomic_switch_msr_special(unsigned long entry,
1240                 unsigned long exit, unsigned long guest_val_vmcs,
1241                 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1242 {
1243         vmcs_write64(guest_val_vmcs, guest_val);
1244         vmcs_write64(host_val_vmcs, host_val);
1245         vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1246         vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1247 }
1248
1249 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1250                                   u64 guest_val, u64 host_val)
1251 {
1252         unsigned i;
1253         struct msr_autoload *m = &vmx->msr_autoload;
1254
1255         switch (msr) {
1256         case MSR_EFER:
1257                 if (cpu_has_load_ia32_efer) {
1258                         add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1259                                         VM_EXIT_LOAD_IA32_EFER,
1260                                         GUEST_IA32_EFER,
1261                                         HOST_IA32_EFER,
1262                                         guest_val, host_val);
1263                         return;
1264                 }
1265                 break;
1266         case MSR_CORE_PERF_GLOBAL_CTRL:
1267                 if (cpu_has_load_perf_global_ctrl) {
1268                         add_atomic_switch_msr_special(
1269                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1270                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1271                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1272                                         HOST_IA32_PERF_GLOBAL_CTRL,
1273                                         guest_val, host_val);
1274                         return;
1275                 }
1276                 break;
1277         }
1278
1279         for (i = 0; i < m->nr; ++i)
1280                 if (m->guest[i].index == msr)
1281                         break;
1282
1283         if (i == m->nr) {
1284                 ++m->nr;
1285                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1286                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1287         }
1288
1289         m->guest[i].index = msr;
1290         m->guest[i].value = guest_val;
1291         m->host[i].index = msr;
1292         m->host[i].value = host_val;
1293 }
1294
1295 static void reload_tss(void)
1296 {
1297         /*
1298          * VT restores TR but not its size.  Useless.
1299          */
1300         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1301         struct desc_struct *descs;
1302
1303         descs = (void *)gdt->address;
1304         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1305         load_TR_desc();
1306 }
1307
1308 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1309 {
1310         u64 guest_efer;
1311         u64 ignore_bits;
1312
1313         guest_efer = vmx->vcpu.arch.efer;
1314
1315         /*
1316          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1317          * outside long mode
1318          */
1319         ignore_bits = EFER_NX | EFER_SCE;
1320 #ifdef CONFIG_X86_64
1321         ignore_bits |= EFER_LMA | EFER_LME;
1322         /* SCE is meaningful only in long mode on Intel */
1323         if (guest_efer & EFER_LMA)
1324                 ignore_bits &= ~(u64)EFER_SCE;
1325 #endif
1326         guest_efer &= ~ignore_bits;
1327         guest_efer |= host_efer & ignore_bits;
1328         vmx->guest_msrs[efer_offset].data = guest_efer;
1329         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1330
1331         clear_atomic_switch_msr(vmx, MSR_EFER);
1332         /* On ept, can't emulate nx, and must switch nx atomically */
1333         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1334                 guest_efer = vmx->vcpu.arch.efer;
1335                 if (!(guest_efer & EFER_LMA))
1336                         guest_efer &= ~EFER_LME;
1337                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1338                 return false;
1339         }
1340
1341         return true;
1342 }
1343
1344 static unsigned long segment_base(u16 selector)
1345 {
1346         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1347         struct desc_struct *d;
1348         unsigned long table_base;
1349         unsigned long v;
1350
1351         if (!(selector & ~3))
1352                 return 0;
1353
1354         table_base = gdt->address;
1355
1356         if (selector & 4) {           /* from ldt */
1357                 u16 ldt_selector = kvm_read_ldt();
1358
1359                 if (!(ldt_selector & ~3))
1360                         return 0;
1361
1362                 table_base = segment_base(ldt_selector);
1363         }
1364         d = (struct desc_struct *)(table_base + (selector & ~7));
1365         v = get_desc_base(d);
1366 #ifdef CONFIG_X86_64
1367        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1368                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1369 #endif
1370         return v;
1371 }
1372
1373 static inline unsigned long kvm_read_tr_base(void)
1374 {
1375         u16 tr;
1376         asm("str %0" : "=g"(tr));
1377         return segment_base(tr);
1378 }
1379
1380 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1381 {
1382         struct vcpu_vmx *vmx = to_vmx(vcpu);
1383         int i;
1384
1385         if (vmx->host_state.loaded)
1386                 return;
1387
1388         vmx->host_state.loaded = 1;
1389         /*
1390          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1391          * allow segment selectors with cpl > 0 or ti == 1.
1392          */
1393         vmx->host_state.ldt_sel = kvm_read_ldt();
1394         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1395         savesegment(fs, vmx->host_state.fs_sel);
1396         if (!(vmx->host_state.fs_sel & 7)) {
1397                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1398                 vmx->host_state.fs_reload_needed = 0;
1399         } else {
1400                 vmcs_write16(HOST_FS_SELECTOR, 0);
1401                 vmx->host_state.fs_reload_needed = 1;
1402         }
1403         savesegment(gs, vmx->host_state.gs_sel);
1404         if (!(vmx->host_state.gs_sel & 7))
1405                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1406         else {
1407                 vmcs_write16(HOST_GS_SELECTOR, 0);
1408                 vmx->host_state.gs_ldt_reload_needed = 1;
1409         }
1410
1411 #ifdef CONFIG_X86_64
1412         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1413         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1414 #else
1415         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1416         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1417 #endif
1418
1419 #ifdef CONFIG_X86_64
1420         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1421         if (is_long_mode(&vmx->vcpu))
1422                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1423 #endif
1424         for (i = 0; i < vmx->save_nmsrs; ++i)
1425                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1426                                    vmx->guest_msrs[i].data,
1427                                    vmx->guest_msrs[i].mask);
1428 }
1429
1430 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1431 {
1432         if (!vmx->host_state.loaded)
1433                 return;
1434
1435         ++vmx->vcpu.stat.host_state_reload;
1436         vmx->host_state.loaded = 0;
1437 #ifdef CONFIG_X86_64
1438         if (is_long_mode(&vmx->vcpu))
1439                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1440 #endif
1441         if (vmx->host_state.gs_ldt_reload_needed) {
1442                 kvm_load_ldt(vmx->host_state.ldt_sel);
1443 #ifdef CONFIG_X86_64
1444                 load_gs_index(vmx->host_state.gs_sel);
1445 #else
1446                 loadsegment(gs, vmx->host_state.gs_sel);
1447 #endif
1448         }
1449         if (vmx->host_state.fs_reload_needed)
1450                 loadsegment(fs, vmx->host_state.fs_sel);
1451         reload_tss();
1452 #ifdef CONFIG_X86_64
1453         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1454 #endif
1455         if (current_thread_info()->status & TS_USEDFPU)
1456                 clts();
1457         load_gdt(&__get_cpu_var(host_gdt));
1458 }
1459
1460 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1461 {
1462         preempt_disable();
1463         __vmx_load_host_state(vmx);
1464         preempt_enable();
1465 }
1466
1467 /*
1468  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1469  * vcpu mutex is already taken.
1470  */
1471 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1472 {
1473         struct vcpu_vmx *vmx = to_vmx(vcpu);
1474         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1475
1476         if (!vmm_exclusive)
1477                 kvm_cpu_vmxon(phys_addr);
1478         else if (vmx->loaded_vmcs->cpu != cpu)
1479                 loaded_vmcs_clear(vmx->loaded_vmcs);
1480
1481         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1482                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1483                 vmcs_load(vmx->loaded_vmcs->vmcs);
1484         }
1485
1486         if (vmx->loaded_vmcs->cpu != cpu) {
1487                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1488                 unsigned long sysenter_esp;
1489
1490                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1491                 local_irq_disable();
1492                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1493                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1494                 local_irq_enable();
1495
1496                 /*
1497                  * Linux uses per-cpu TSS and GDT, so set these when switching
1498                  * processors.
1499                  */
1500                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1501                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1502
1503                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1504                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1505                 vmx->loaded_vmcs->cpu = cpu;
1506         }
1507 }
1508
1509 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1510 {
1511         __vmx_load_host_state(to_vmx(vcpu));
1512         if (!vmm_exclusive) {
1513                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1514                 vcpu->cpu = -1;
1515                 kvm_cpu_vmxoff();
1516         }
1517 }
1518
1519 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1520 {
1521         ulong cr0;
1522
1523         if (vcpu->fpu_active)
1524                 return;
1525         vcpu->fpu_active = 1;
1526         cr0 = vmcs_readl(GUEST_CR0);
1527         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1528         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1529         vmcs_writel(GUEST_CR0, cr0);
1530         update_exception_bitmap(vcpu);
1531         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1532         if (is_guest_mode(vcpu))
1533                 vcpu->arch.cr0_guest_owned_bits &=
1534                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1535         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1536 }
1537
1538 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1539
1540 /*
1541  * Return the cr0 value that a nested guest would read. This is a combination
1542  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1543  * its hypervisor (cr0_read_shadow).
1544  */
1545 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1546 {
1547         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1548                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1549 }
1550 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1551 {
1552         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1553                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1554 }
1555
1556 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1557 {
1558         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1559          * set this *before* calling this function.
1560          */
1561         vmx_decache_cr0_guest_bits(vcpu);
1562         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1563         update_exception_bitmap(vcpu);
1564         vcpu->arch.cr0_guest_owned_bits = 0;
1565         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1566         if (is_guest_mode(vcpu)) {
1567                 /*
1568                  * L1's specified read shadow might not contain the TS bit,
1569                  * so now that we turned on shadowing of this bit, we need to
1570                  * set this bit of the shadow. Like in nested_vmx_run we need
1571                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1572                  * up-to-date here because we just decached cr0.TS (and we'll
1573                  * only update vmcs12->guest_cr0 on nested exit).
1574                  */
1575                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1576                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1577                         (vcpu->arch.cr0 & X86_CR0_TS);
1578                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1579         } else
1580                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1581 }
1582
1583 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1584 {
1585         unsigned long rflags, save_rflags;
1586
1587         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1588                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1589                 rflags = vmcs_readl(GUEST_RFLAGS);
1590                 if (to_vmx(vcpu)->rmode.vm86_active) {
1591                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1592                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1593                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1594                 }
1595                 to_vmx(vcpu)->rflags = rflags;
1596         }
1597         return to_vmx(vcpu)->rflags;
1598 }
1599
1600 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1601 {
1602         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1603         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1604         to_vmx(vcpu)->rflags = rflags;
1605         if (to_vmx(vcpu)->rmode.vm86_active) {
1606                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1607                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1608         }
1609         vmcs_writel(GUEST_RFLAGS, rflags);
1610 }
1611
1612 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1613 {
1614         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1615         int ret = 0;
1616
1617         if (interruptibility & GUEST_INTR_STATE_STI)
1618                 ret |= KVM_X86_SHADOW_INT_STI;
1619         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1620                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1621
1622         return ret & mask;
1623 }
1624
1625 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1626 {
1627         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1628         u32 interruptibility = interruptibility_old;
1629
1630         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1631
1632         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1633                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1634         else if (mask & KVM_X86_SHADOW_INT_STI)
1635                 interruptibility |= GUEST_INTR_STATE_STI;
1636
1637         if ((interruptibility != interruptibility_old))
1638                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1639 }
1640
1641 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1642 {
1643         unsigned long rip;
1644
1645         rip = kvm_rip_read(vcpu);
1646         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1647         kvm_rip_write(vcpu, rip);
1648
1649         /* skipping an emulated instruction also counts */
1650         vmx_set_interrupt_shadow(vcpu, 0);
1651 }
1652
1653 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1654 {
1655         /* Ensure that we clear the HLT state in the VMCS.  We don't need to
1656          * explicitly skip the instruction because if the HLT state is set, then
1657          * the instruction is already executing and RIP has already been
1658          * advanced. */
1659         if (!yield_on_hlt &&
1660             vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1661                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1662 }
1663
1664 /*
1665  * KVM wants to inject page-faults which it got to the guest. This function
1666  * checks whether in a nested guest, we need to inject them to L1 or L2.
1667  * This function assumes it is called with the exit reason in vmcs02 being
1668  * a #PF exception (this is the only case in which KVM injects a #PF when L2
1669  * is running).
1670  */
1671 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1672 {
1673         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1674
1675         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1676         if (!(vmcs12->exception_bitmap & PF_VECTOR))
1677                 return 0;
1678
1679         nested_vmx_vmexit(vcpu);
1680         return 1;
1681 }
1682
1683 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1684                                 bool has_error_code, u32 error_code,
1685                                 bool reinject)
1686 {
1687         struct vcpu_vmx *vmx = to_vmx(vcpu);
1688         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1689
1690         if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1691                 nested_pf_handled(vcpu))
1692                 return;
1693
1694         if (has_error_code) {
1695                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1696                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1697         }
1698
1699         if (vmx->rmode.vm86_active) {
1700                 int inc_eip = 0;
1701                 if (kvm_exception_is_soft(nr))
1702                         inc_eip = vcpu->arch.event_exit_inst_len;
1703                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1704                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1705                 return;
1706         }
1707
1708         if (kvm_exception_is_soft(nr)) {
1709                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1710                              vmx->vcpu.arch.event_exit_inst_len);
1711                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1712         } else
1713                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1714
1715         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1716         vmx_clear_hlt(vcpu);
1717 }
1718
1719 static bool vmx_rdtscp_supported(void)
1720 {
1721         return cpu_has_vmx_rdtscp();
1722 }
1723
1724 /*
1725  * Swap MSR entry in host/guest MSR entry array.
1726  */
1727 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1728 {
1729         struct shared_msr_entry tmp;
1730
1731         tmp = vmx->guest_msrs[to];
1732         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1733         vmx->guest_msrs[from] = tmp;
1734 }
1735
1736 /*
1737  * Set up the vmcs to automatically save and restore system
1738  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1739  * mode, as fiddling with msrs is very expensive.
1740  */
1741 static void setup_msrs(struct vcpu_vmx *vmx)
1742 {
1743         int save_nmsrs, index;
1744         unsigned long *msr_bitmap;
1745
1746         vmx_load_host_state(vmx);
1747         save_nmsrs = 0;
1748 #ifdef CONFIG_X86_64
1749         if (is_long_mode(&vmx->vcpu)) {
1750                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1751                 if (index >= 0)
1752                         move_msr_up(vmx, index, save_nmsrs++);
1753                 index = __find_msr_index(vmx, MSR_LSTAR);
1754                 if (index >= 0)
1755                         move_msr_up(vmx, index, save_nmsrs++);
1756                 index = __find_msr_index(vmx, MSR_CSTAR);
1757                 if (index >= 0)
1758                         move_msr_up(vmx, index, save_nmsrs++);
1759                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1760                 if (index >= 0 && vmx->rdtscp_enabled)
1761                         move_msr_up(vmx, index, save_nmsrs++);
1762                 /*
1763                  * MSR_STAR is only needed on long mode guests, and only
1764                  * if efer.sce is enabled.
1765                  */
1766                 index = __find_msr_index(vmx, MSR_STAR);
1767                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1768                         move_msr_up(vmx, index, save_nmsrs++);
1769         }
1770 #endif
1771         index = __find_msr_index(vmx, MSR_EFER);
1772         if (index >= 0 && update_transition_efer(vmx, index))
1773                 move_msr_up(vmx, index, save_nmsrs++);
1774
1775         vmx->save_nmsrs = save_nmsrs;
1776
1777         if (cpu_has_vmx_msr_bitmap()) {
1778                 if (is_long_mode(&vmx->vcpu))
1779                         msr_bitmap = vmx_msr_bitmap_longmode;
1780                 else
1781                         msr_bitmap = vmx_msr_bitmap_legacy;
1782
1783                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1784         }
1785 }
1786
1787 /*
1788  * reads and returns guest's timestamp counter "register"
1789  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1790  */
1791 static u64 guest_read_tsc(void)
1792 {
1793         u64 host_tsc, tsc_offset;
1794
1795         rdtscll(host_tsc);
1796         tsc_offset = vmcs_read64(TSC_OFFSET);
1797         return host_tsc + tsc_offset;
1798 }
1799
1800 /*
1801  * Like guest_read_tsc, but always returns L1's notion of the timestamp
1802  * counter, even if a nested guest (L2) is currently running.
1803  */
1804 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1805 {
1806         u64 host_tsc, tsc_offset;
1807
1808         rdtscll(host_tsc);
1809         tsc_offset = is_guest_mode(vcpu) ?
1810                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1811                 vmcs_read64(TSC_OFFSET);
1812         return host_tsc + tsc_offset;
1813 }
1814
1815 /*
1816  * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
1817  * ioctl. In this case the call-back should update internal vmx state to make
1818  * the changes effective.
1819  */
1820 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1821 {
1822         /* Nothing to do here */
1823 }
1824
1825 /*
1826  * writes 'offset' into guest's timestamp counter offset register
1827  */
1828 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1829 {
1830         if (is_guest_mode(vcpu)) {
1831                 /*
1832                  * We're here if L1 chose not to trap WRMSR to TSC. According
1833                  * to the spec, this should set L1's TSC; The offset that L1
1834                  * set for L2 remains unchanged, and still needs to be added
1835                  * to the newly set TSC to get L2's TSC.
1836                  */
1837                 struct vmcs12 *vmcs12;
1838                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1839                 /* recalculate vmcs02.TSC_OFFSET: */
1840                 vmcs12 = get_vmcs12(vcpu);
1841                 vmcs_write64(TSC_OFFSET, offset +
1842                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1843                          vmcs12->tsc_offset : 0));
1844         } else {
1845                 vmcs_write64(TSC_OFFSET, offset);
1846         }
1847 }
1848
1849 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1850 {
1851         u64 offset = vmcs_read64(TSC_OFFSET);
1852         vmcs_write64(TSC_OFFSET, offset + adjustment);
1853         if (is_guest_mode(vcpu)) {
1854                 /* Even when running L2, the adjustment needs to apply to L1 */
1855                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1856         }
1857 }
1858
1859 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1860 {
1861         return target_tsc - native_read_tsc();
1862 }
1863
1864 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1865 {
1866         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1867         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1868 }
1869
1870 /*
1871  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1872  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1873  * all guests if the "nested" module option is off, and can also be disabled
1874  * for a single guest by disabling its VMX cpuid bit.
1875  */
1876 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1877 {
1878         return nested && guest_cpuid_has_vmx(vcpu);
1879 }
1880
1881 /*
1882  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1883  * returned for the various VMX controls MSRs when nested VMX is enabled.
1884  * The same values should also be used to verify that vmcs12 control fields are
1885  * valid during nested entry from L1 to L2.
1886  * Each of these control msrs has a low and high 32-bit half: A low bit is on
1887  * if the corresponding bit in the (32-bit) control field *must* be on, and a
1888  * bit in the high half is on if the corresponding bit in the control field
1889  * may be on. See also vmx_control_verify().
1890  * TODO: allow these variables to be modified (downgraded) by module options
1891  * or other means.
1892  */
1893 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1894 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1895 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1896 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1897 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1898 static __init void nested_vmx_setup_ctls_msrs(void)
1899 {
1900         /*
1901          * Note that as a general rule, the high half of the MSRs (bits in
1902          * the control fields which may be 1) should be initialized by the
1903          * intersection of the underlying hardware's MSR (i.e., features which
1904          * can be supported) and the list of features we want to expose -
1905          * because they are known to be properly supported in our code.
1906          * Also, usually, the low half of the MSRs (bits which must be 1) can
1907          * be set to 0, meaning that L1 may turn off any of these bits. The
1908          * reason is that if one of these bits is necessary, it will appear
1909          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1910          * fields of vmcs01 and vmcs02, will turn these bits off - and
1911          * nested_vmx_exit_handled() will not pass related exits to L1.
1912          * These rules have exceptions below.
1913          */
1914
1915         /* pin-based controls */
1916         /*
1917          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1918          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1919          */
1920         nested_vmx_pinbased_ctls_low = 0x16 ;
1921         nested_vmx_pinbased_ctls_high = 0x16 |
1922                 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1923                 PIN_BASED_VIRTUAL_NMIS;
1924
1925         /* exit controls */
1926         nested_vmx_exit_ctls_low = 0;
1927         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1928 #ifdef CONFIG_X86_64
1929         nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1930 #else
1931         nested_vmx_exit_ctls_high = 0;
1932 #endif
1933
1934         /* entry controls */
1935         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1936                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1937         nested_vmx_entry_ctls_low = 0;
1938         nested_vmx_entry_ctls_high &=
1939                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1940
1941         /* cpu-based controls */
1942         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1943                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1944         nested_vmx_procbased_ctls_low = 0;
1945         nested_vmx_procbased_ctls_high &=
1946                 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1947                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1948                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1949                 CPU_BASED_CR3_STORE_EXITING |
1950 #ifdef CONFIG_X86_64
1951                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1952 #endif
1953                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1954                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1955                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1956         /*
1957          * We can allow some features even when not supported by the
1958          * hardware. For example, L1 can specify an MSR bitmap - and we
1959          * can use it to avoid exits to L1 - even when L0 runs L2
1960          * without MSR bitmaps.
1961          */
1962         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1963
1964         /* secondary cpu-based controls */
1965         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1966                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1967         nested_vmx_secondary_ctls_low = 0;
1968         nested_vmx_secondary_ctls_high &=
1969                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1970 }
1971
1972 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1973 {
1974         /*
1975          * Bits 0 in high must be 0, and bits 1 in low must be 1.
1976          */
1977         return ((control & high) | low) == control;
1978 }
1979
1980 static inline u64 vmx_control_msr(u32 low, u32 high)
1981 {
1982         return low | ((u64)high << 32);
1983 }
1984
1985 /*
1986  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1987  * also let it use VMX-specific MSRs.
1988  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1989  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1990  * like all other MSRs).
1991  */
1992 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1993 {
1994         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1995                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1996                 /*
1997                  * According to the spec, processors which do not support VMX
1998                  * should throw a #GP(0) when VMX capability MSRs are read.
1999                  */
2000                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2001                 return 1;
2002         }
2003
2004         switch (msr_index) {
2005         case MSR_IA32_FEATURE_CONTROL:
2006                 *pdata = 0;
2007                 break;
2008         case MSR_IA32_VMX_BASIC:
2009                 /*
2010                  * This MSR reports some information about VMX support. We
2011                  * should return information about the VMX we emulate for the
2012                  * guest, and the VMCS structure we give it - not about the
2013                  * VMX support of the underlying hardware.
2014                  */
2015                 *pdata = VMCS12_REVISION |
2016                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2017                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2018                 break;
2019         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2020         case MSR_IA32_VMX_PINBASED_CTLS:
2021                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2022                                         nested_vmx_pinbased_ctls_high);
2023                 break;
2024         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2025         case MSR_IA32_VMX_PROCBASED_CTLS:
2026                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2027                                         nested_vmx_procbased_ctls_high);
2028                 break;
2029         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2030         case MSR_IA32_VMX_EXIT_CTLS:
2031                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2032                                         nested_vmx_exit_ctls_high);
2033                 break;
2034         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2035         case MSR_IA32_VMX_ENTRY_CTLS:
2036                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2037                                         nested_vmx_entry_ctls_high);
2038                 break;
2039         case MSR_IA32_VMX_MISC:
2040                 *pdata = 0;
2041                 break;
2042         /*
2043          * These MSRs specify bits which the guest must keep fixed (on or off)
2044          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2045          * We picked the standard core2 setting.
2046          */
2047 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2048 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2049         case MSR_IA32_VMX_CR0_FIXED0:
2050                 *pdata = VMXON_CR0_ALWAYSON;
2051                 break;
2052         case MSR_IA32_VMX_CR0_FIXED1:
2053                 *pdata = -1ULL;
2054                 break;
2055         case MSR_IA32_VMX_CR4_FIXED0:
2056                 *pdata = VMXON_CR4_ALWAYSON;
2057                 break;
2058         case MSR_IA32_VMX_CR4_FIXED1:
2059                 *pdata = -1ULL;
2060                 break;
2061         case MSR_IA32_VMX_VMCS_ENUM:
2062                 *pdata = 0x1f;
2063                 break;
2064         case MSR_IA32_VMX_PROCBASED_CTLS2:
2065                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2066                                         nested_vmx_secondary_ctls_high);
2067                 break;
2068         case MSR_IA32_VMX_EPT_VPID_CAP:
2069                 /* Currently, no nested ept or nested vpid */
2070                 *pdata = 0;
2071                 break;
2072         default:
2073                 return 0;
2074         }
2075
2076         return 1;
2077 }
2078
2079 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2080 {
2081         if (!nested_vmx_allowed(vcpu))
2082                 return 0;
2083
2084         if (msr_index == MSR_IA32_FEATURE_CONTROL)
2085                 /* TODO: the right thing. */
2086                 return 1;
2087         /*
2088          * No need to treat VMX capability MSRs specially: If we don't handle
2089          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2090          */
2091         return 0;
2092 }
2093
2094 /*
2095  * Reads an msr value (of 'msr_index') into 'pdata'.
2096  * Returns 0 on success, non-0 otherwise.
2097  * Assumes vcpu_load() was already called.
2098  */
2099 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2100 {
2101         u64 data;
2102         struct shared_msr_entry *msr;
2103
2104         if (!pdata) {
2105                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2106                 return -EINVAL;
2107         }
2108
2109         switch (msr_index) {
2110 #ifdef CONFIG_X86_64
2111         case MSR_FS_BASE:
2112                 data = vmcs_readl(GUEST_FS_BASE);
2113                 break;
2114         case MSR_GS_BASE:
2115                 data = vmcs_readl(GUEST_GS_BASE);
2116                 break;
2117         case MSR_KERNEL_GS_BASE:
2118                 vmx_load_host_state(to_vmx(vcpu));
2119                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2120                 break;
2121 #endif
2122         case MSR_EFER:
2123                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2124         case MSR_IA32_TSC:
2125                 data = guest_read_tsc();
2126                 break;
2127         case MSR_IA32_SYSENTER_CS:
2128                 data = vmcs_read32(GUEST_SYSENTER_CS);
2129                 break;
2130         case MSR_IA32_SYSENTER_EIP:
2131                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2132                 break;
2133         case MSR_IA32_SYSENTER_ESP:
2134                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2135                 break;
2136         case MSR_TSC_AUX:
2137                 if (!to_vmx(vcpu)->rdtscp_enabled)
2138                         return 1;
2139                 /* Otherwise falls through */
2140         default:
2141                 vmx_load_host_state(to_vmx(vcpu));
2142                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2143                         return 0;
2144                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2145                 if (msr) {
2146                         vmx_load_host_state(to_vmx(vcpu));
2147                         data = msr->data;
2148                         break;
2149                 }
2150                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2151         }
2152
2153         *pdata = data;
2154         return 0;
2155 }
2156
2157 /*
2158  * Writes msr value into into the appropriate "register".
2159  * Returns 0 on success, non-0 otherwise.
2160  * Assumes vcpu_load() was already called.
2161  */
2162 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2163 {
2164         struct vcpu_vmx *vmx = to_vmx(vcpu);
2165         struct shared_msr_entry *msr;
2166         int ret = 0;
2167
2168         switch (msr_index) {
2169         case MSR_EFER:
2170                 vmx_load_host_state(vmx);
2171                 ret = kvm_set_msr_common(vcpu, msr_index, data);
2172                 break;
2173 #ifdef CONFIG_X86_64
2174         case MSR_FS_BASE:
2175                 vmx_segment_cache_clear(vmx);
2176                 vmcs_writel(GUEST_FS_BASE, data);
2177                 break;
2178         case MSR_GS_BASE:
2179                 vmx_segment_cache_clear(vmx);
2180                 vmcs_writel(GUEST_GS_BASE, data);
2181                 break;
2182         case MSR_KERNEL_GS_BASE:
2183                 vmx_load_host_state(vmx);
2184                 vmx->msr_guest_kernel_gs_base = data;
2185                 break;
2186 #endif
2187         case MSR_IA32_SYSENTER_CS:
2188                 vmcs_write32(GUEST_SYSENTER_CS, data);
2189                 break;
2190         case MSR_IA32_SYSENTER_EIP:
2191                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2192                 break;
2193         case MSR_IA32_SYSENTER_ESP:
2194                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2195                 break;
2196         case MSR_IA32_TSC:
2197                 kvm_write_tsc(vcpu, data);
2198                 break;
2199         case MSR_IA32_CR_PAT:
2200                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2201                         vmcs_write64(GUEST_IA32_PAT, data);
2202                         vcpu->arch.pat = data;
2203                         break;
2204                 }
2205                 ret = kvm_set_msr_common(vcpu, msr_index, data);
2206                 break;
2207         case MSR_TSC_AUX:
2208                 if (!vmx->rdtscp_enabled)
2209                         return 1;
2210                 /* Check reserved bit, higher 32 bits should be zero */
2211                 if ((data >> 32) != 0)
2212                         return 1;
2213                 /* Otherwise falls through */
2214         default:
2215                 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2216                         break;
2217                 msr = find_msr_entry(vmx, msr_index);
2218                 if (msr) {
2219                         vmx_load_host_state(vmx);
2220                         msr->data = data;
2221                         break;
2222                 }
2223                 ret = kvm_set_msr_common(vcpu, msr_index, data);
2224         }
2225
2226         return ret;
2227 }
2228
2229 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2230 {
2231         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2232         switch (reg) {
2233         case VCPU_REGS_RSP:
2234                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2235                 break;
2236         case VCPU_REGS_RIP:
2237                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2238                 break;
2239         case VCPU_EXREG_PDPTR:
2240                 if (enable_ept)
2241                         ept_save_pdptrs(vcpu);
2242                 break;
2243         default:
2244                 break;
2245         }
2246 }
2247
2248 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2249 {
2250         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2251                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2252         else
2253                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2254
2255         update_exception_bitmap(vcpu);
2256 }
2257
2258 static __init int cpu_has_kvm_support(void)
2259 {
2260         return cpu_has_vmx();
2261 }
2262
2263 static __init int vmx_disabled_by_bios(void)
2264 {
2265         u64 msr;
2266
2267         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2268         if (msr & FEATURE_CONTROL_LOCKED) {
2269                 /* launched w/ TXT and VMX disabled */
2270                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2271                         && tboot_enabled())
2272                         return 1;
2273                 /* launched w/o TXT and VMX only enabled w/ TXT */
2274                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2275                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2276                         && !tboot_enabled()) {
2277                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2278                                 "activate TXT before enabling KVM\n");
2279                         return 1;
2280                 }
2281                 /* launched w/o TXT and VMX disabled */
2282                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2283                         && !tboot_enabled())
2284                         return 1;
2285         }
2286
2287         return 0;
2288 }
2289
2290 static void kvm_cpu_vmxon(u64 addr)
2291 {
2292         asm volatile (ASM_VMX_VMXON_RAX
2293                         : : "a"(&addr), "m"(addr)
2294                         : "memory", "cc");
2295 }
2296
2297 static int hardware_enable(void *garbage)
2298 {
2299         int cpu = raw_smp_processor_id();
2300         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2301         u64 old, test_bits;
2302
2303         if (read_cr4() & X86_CR4_VMXE)
2304                 return -EBUSY;
2305
2306         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2307         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2308
2309         test_bits = FEATURE_CONTROL_LOCKED;
2310         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2311         if (tboot_enabled())
2312                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2313
2314         if ((old & test_bits) != test_bits) {
2315                 /* enable and lock */
2316                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2317         }
2318         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2319
2320         if (vmm_exclusive) {
2321                 kvm_cpu_vmxon(phys_addr);
2322                 ept_sync_global();
2323         }
2324
2325         store_gdt(&__get_cpu_var(host_gdt));
2326
2327         return 0;
2328 }
2329
2330 static void vmclear_local_loaded_vmcss(void)
2331 {
2332         int cpu = raw_smp_processor_id();
2333         struct loaded_vmcs *v, *n;
2334
2335         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2336                                  loaded_vmcss_on_cpu_link)
2337                 __loaded_vmcs_clear(v);
2338 }
2339
2340
2341 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2342  * tricks.
2343  */
2344 static void kvm_cpu_vmxoff(void)
2345 {
2346         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2347 }
2348
2349 static void hardware_disable(void *garbage)
2350 {
2351         if (vmm_exclusive) {
2352                 vmclear_local_loaded_vmcss();
2353                 kvm_cpu_vmxoff();
2354         }
2355         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2356 }
2357
2358 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2359                                       u32 msr, u32 *result)
2360 {
2361         u32 vmx_msr_low, vmx_msr_high;
2362         u32 ctl = ctl_min | ctl_opt;
2363
2364         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2365
2366         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2367         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2368
2369         /* Ensure minimum (required) set of control bits are supported. */
2370         if (ctl_min & ~ctl)
2371                 return -EIO;
2372
2373         *result = ctl;
2374         return 0;
2375 }
2376
2377 static __init bool allow_1_setting(u32 msr, u32 ctl)
2378 {
2379         u32 vmx_msr_low, vmx_msr_high;
2380
2381         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2382         return vmx_msr_high & ctl;
2383 }
2384
2385 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2386 {
2387         u32 vmx_msr_low, vmx_msr_high;
2388         u32 min, opt, min2, opt2;
2389         u32 _pin_based_exec_control = 0;
2390         u32 _cpu_based_exec_control = 0;
2391         u32 _cpu_based_2nd_exec_control = 0;
2392         u32 _vmexit_control = 0;
2393         u32 _vmentry_control = 0;
2394
2395         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2396         opt = PIN_BASED_VIRTUAL_NMIS;
2397         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2398                                 &_pin_based_exec_control) < 0)
2399                 return -EIO;
2400
2401         min =
2402 #ifdef CONFIG_X86_64
2403               CPU_BASED_CR8_LOAD_EXITING |
2404               CPU_BASED_CR8_STORE_EXITING |
2405 #endif
2406               CPU_BASED_CR3_LOAD_EXITING |
2407               CPU_BASED_CR3_STORE_EXITING |
2408               CPU_BASED_USE_IO_BITMAPS |
2409               CPU_BASED_MOV_DR_EXITING |
2410               CPU_BASED_USE_TSC_OFFSETING |
2411               CPU_BASED_MWAIT_EXITING |
2412               CPU_BASED_MONITOR_EXITING |
2413               CPU_BASED_INVLPG_EXITING;
2414
2415         if (yield_on_hlt)
2416                 min |= CPU_BASED_HLT_EXITING;
2417
2418         opt = CPU_BASED_TPR_SHADOW |
2419               CPU_BASED_USE_MSR_BITMAPS |
2420               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2421         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2422                                 &_cpu_based_exec_control) < 0)
2423                 return -EIO;
2424 #ifdef CONFIG_X86_64
2425         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2426                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2427                                            ~CPU_BASED_CR8_STORE_EXITING;
2428 #endif
2429         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2430                 min2 = 0;
2431                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2432                         SECONDARY_EXEC_WBINVD_EXITING |
2433                         SECONDARY_EXEC_ENABLE_VPID |
2434                         SECONDARY_EXEC_ENABLE_EPT |
2435                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2436                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2437                         SECONDARY_EXEC_RDTSCP;
2438                 if (adjust_vmx_controls(min2, opt2,
2439                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2440                                         &_cpu_based_2nd_exec_control) < 0)
2441                         return -EIO;
2442         }
2443 #ifndef CONFIG_X86_64
2444         if (!(_cpu_based_2nd_exec_control &
2445                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2446                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2447 #endif
2448         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2449                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2450                    enabled */
2451                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2452                                              CPU_BASED_CR3_STORE_EXITING |
2453                                              CPU_BASED_INVLPG_EXITING);
2454                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2455                       vmx_capability.ept, vmx_capability.vpid);
2456         }
2457
2458         min = 0;
2459 #ifdef CONFIG_X86_64
2460         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2461 #endif
2462         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2463         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2464                                 &_vmexit_control) < 0)
2465                 return -EIO;
2466
2467         min = 0;
2468         opt = VM_ENTRY_LOAD_IA32_PAT;
2469         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2470                                 &_vmentry_control) < 0)
2471                 return -EIO;
2472
2473         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2474
2475         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2476         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2477                 return -EIO;
2478
2479 #ifdef CONFIG_X86_64
2480         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2481         if (vmx_msr_high & (1u<<16))
2482                 return -EIO;
2483 #endif
2484
2485         /* Require Write-Back (WB) memory type for VMCS accesses. */
2486         if (((vmx_msr_high >> 18) & 15) != 6)
2487                 return -EIO;
2488
2489         vmcs_conf->size = vmx_msr_high & 0x1fff;
2490         vmcs_conf->order = get_order(vmcs_config.size);
2491         vmcs_conf->revision_id = vmx_msr_low;
2492
2493         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2494         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2495         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2496         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2497         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2498
2499         cpu_has_load_ia32_efer =
2500                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2501                                 VM_ENTRY_LOAD_IA32_EFER)
2502                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2503                                    VM_EXIT_LOAD_IA32_EFER);
2504
2505         cpu_has_load_perf_global_ctrl =
2506                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2507                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2508                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2509                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2510
2511         /*
2512          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2513          * but due to arrata below it can't be used. Workaround is to use
2514          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2515          *
2516          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2517          *
2518          * AAK155             (model 26)
2519          * AAP115             (model 30)
2520          * AAT100             (model 37)
2521          * BC86,AAY89,BD102   (model 44)
2522          * BA97               (model 46)
2523          *
2524          */
2525         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2526                 switch (boot_cpu_data.x86_model) {
2527                 case 26:
2528                 case 30:
2529                 case 37:
2530                 case 44:
2531                 case 46:
2532                         cpu_has_load_perf_global_ctrl = false;
2533                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2534                                         "does not work properly. Using workaround\n");
2535                         break;
2536                 default:
2537                         break;
2538                 }
2539         }
2540
2541         return 0;
2542 }
2543
2544 static struct vmcs *alloc_vmcs_cpu(int cpu)
2545 {
2546         int node = cpu_to_node(cpu);
2547         struct page *pages;
2548         struct vmcs *vmcs;
2549
2550         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2551         if (!pages)
2552                 return NULL;
2553         vmcs = page_address(pages);
2554         memset(vmcs, 0, vmcs_config.size);
2555         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2556         return vmcs;
2557 }
2558
2559 static struct vmcs *alloc_vmcs(void)
2560 {
2561         return alloc_vmcs_cpu(raw_smp_processor_id());
2562 }
2563
2564 static void free_vmcs(struct vmcs *vmcs)
2565 {
2566         free_pages((unsigned long)vmcs, vmcs_config.order);
2567 }
2568
2569 /*
2570  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2571  */
2572 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2573 {
2574         if (!loaded_vmcs->vmcs)
2575                 return;
2576         loaded_vmcs_clear(loaded_vmcs);
2577         free_vmcs(loaded_vmcs->vmcs);
2578         loaded_vmcs->vmcs = NULL;
2579 }
2580
2581 static void free_kvm_area(void)
2582 {
2583         int cpu;
2584
2585         for_each_possible_cpu(cpu) {
2586                 free_vmcs(per_cpu(vmxarea, cpu));
2587                 per_cpu(vmxarea, cpu) = NULL;
2588         }
2589 }
2590
2591 static __init int alloc_kvm_area(void)
2592 {
2593         int cpu;
2594
2595         for_each_possible_cpu(cpu) {
2596                 struct vmcs *vmcs;
2597
2598                 vmcs = alloc_vmcs_cpu(cpu);
2599                 if (!vmcs) {
2600                         free_kvm_area();
2601                         return -ENOMEM;
2602                 }
2603
2604                 per_cpu(vmxarea, cpu) = vmcs;
2605         }
2606         return 0;
2607 }
2608
2609 static __init int hardware_setup(void)
2610 {
2611         if (setup_vmcs_config(&vmcs_config) < 0)
2612                 return -EIO;
2613
2614         if (boot_cpu_has(X86_FEATURE_NX))
2615                 kvm_enable_efer_bits(EFER_NX);
2616
2617         if (!cpu_has_vmx_vpid())
2618                 enable_vpid = 0;
2619
2620         if (!cpu_has_vmx_ept() ||
2621             !cpu_has_vmx_ept_4levels()) {
2622                 enable_ept = 0;
2623                 enable_unrestricted_guest = 0;
2624         }
2625
2626         if (!cpu_has_vmx_unrestricted_guest())
2627                 enable_unrestricted_guest = 0;
2628
2629         if (!cpu_has_vmx_flexpriority())
2630                 flexpriority_enabled = 0;
2631
2632         if (!cpu_has_vmx_tpr_shadow())
2633                 kvm_x86_ops->update_cr8_intercept = NULL;
2634
2635         if (enable_ept && !cpu_has_vmx_ept_2m_page())
2636                 kvm_disable_largepages();
2637
2638         if (!cpu_has_vmx_ple())
2639                 ple_gap = 0;
2640
2641         if (nested)
2642                 nested_vmx_setup_ctls_msrs();
2643
2644         return alloc_kvm_area();
2645 }
2646
2647 static __exit void hardware_unsetup(void)
2648 {
2649         free_kvm_area();
2650 }
2651
2652 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2653 {
2654         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2655
2656         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2657                 vmcs_write16(sf->selector, save->selector);
2658                 vmcs_writel(sf->base, save->base);
2659                 vmcs_write32(sf->limit, save->limit);
2660                 vmcs_write32(sf->ar_bytes, save->ar);
2661         } else {
2662                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2663                         << AR_DPL_SHIFT;
2664                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2665         }
2666 }
2667
2668 static void enter_pmode(struct kvm_vcpu *vcpu)
2669 {
2670         unsigned long flags;
2671         struct vcpu_vmx *vmx = to_vmx(vcpu);
2672
2673         vmx->emulation_required = 1;
2674         vmx->rmode.vm86_active = 0;
2675
2676         vmx_segment_cache_clear(vmx);
2677
2678         vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2679         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2680         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2681         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2682
2683         flags = vmcs_readl(GUEST_RFLAGS);
2684         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2685         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2686         vmcs_writel(GUEST_RFLAGS, flags);
2687
2688         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2689                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2690
2691         update_exception_bitmap(vcpu);
2692
2693         if (emulate_invalid_guest_state)
2694                 return;
2695
2696         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2697         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2698         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2699         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2700
2701         vmx_segment_cache_clear(vmx);
2702
2703         vmcs_write16(GUEST_SS_SELECTOR, 0);
2704         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2705
2706         vmcs_write16(GUEST_CS_SELECTOR,
2707                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2708         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2709 }
2710
2711 static gva_t rmode_tss_base(struct kvm *kvm)
2712 {
2713         if (!kvm->arch.tss_addr) {
2714                 struct kvm_memslots *slots;
2715                 gfn_t base_gfn;
2716
2717                 slots = kvm_memslots(kvm);
2718                 base_gfn = slots->memslots[0].base_gfn +
2719                                  kvm->memslots->memslots[0].npages - 3;
2720                 return base_gfn << PAGE_SHIFT;
2721         }
2722         return kvm->arch.tss_addr;
2723 }
2724
2725 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2726 {
2727         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2728
2729         save->selector = vmcs_read16(sf->selector);
2730         save->base = vmcs_readl(sf->base);
2731         save->limit = vmcs_read32(sf->limit);
2732         save->ar = vmcs_read32(sf->ar_bytes);
2733         vmcs_write16(sf->selector, save->base >> 4);
2734         vmcs_write32(sf->base, save->base & 0xffff0);
2735         vmcs_write32(sf->limit, 0xffff);
2736         vmcs_write32(sf->ar_bytes, 0xf3);
2737         if (save->base & 0xf)
2738                 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2739                             " aligned when entering protected mode (seg=%d)",
2740                             seg);
2741 }
2742
2743 static void enter_rmode(struct kvm_vcpu *vcpu)
2744 {
2745         unsigned long flags;
2746         struct vcpu_vmx *vmx = to_vmx(vcpu);
2747
2748         if (enable_unrestricted_guest)
2749                 return;
2750
2751         vmx->emulation_required = 1;
2752         vmx->rmode.vm86_active = 1;
2753
2754         /*
2755          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2756          * vcpu. Call it here with phys address pointing 16M below 4G.
2757          */
2758         if (!vcpu->kvm->arch.tss_addr) {
2759                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2760                              "called before entering vcpu\n");
2761                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2762                 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2763                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2764         }
2765
2766         vmx_segment_cache_clear(vmx);
2767
2768         vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2769         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2770         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2771
2772         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2773         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2774
2775         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2776         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2777
2778         flags = vmcs_readl(GUEST_RFLAGS);
2779         vmx->rmode.save_rflags = flags;
2780
2781         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2782
2783         vmcs_writel(GUEST_RFLAGS, flags);
2784         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2785         update_exception_bitmap(vcpu);
2786
2787         if (emulate_invalid_guest_state)
2788                 goto continue_rmode;
2789
2790         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2791         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2792         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2793
2794         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2795         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2796         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2797                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
2798         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2799
2800         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2801         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2802         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2803         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2804
2805 continue_rmode:
2806         kvm_mmu_reset_context(vcpu);
2807 }
2808
2809 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2810 {
2811         struct vcpu_vmx *vmx = to_vmx(vcpu);
2812         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2813
2814         if (!msr)
2815                 return;
2816
2817         /*
2818          * Force kernel_gs_base reloading before EFER changes, as control
2819          * of this msr depends on is_long_mode().
2820          */
2821         vmx_load_host_state(to_vmx(vcpu));
2822         vcpu->arch.efer = efer;
2823         if (efer & EFER_LMA) {
2824                 vmcs_write32(VM_ENTRY_CONTROLS,
2825                              vmcs_read32(VM_ENTRY_CONTROLS) |
2826                              VM_ENTRY_IA32E_MODE);
2827                 msr->data = efer;
2828         } else {
2829                 vmcs_write32(VM_ENTRY_CONTROLS,
2830                              vmcs_read32(VM_ENTRY_CONTROLS) &
2831                              ~VM_ENTRY_IA32E_MODE);
2832
2833                 msr->data = efer & ~EFER_LME;
2834         }
2835         setup_msrs(vmx);
2836 }
2837
2838 #ifdef CONFIG_X86_64
2839
2840 static void enter_lmode(struct kvm_vcpu *vcpu)
2841 {
2842         u32 guest_tr_ar;
2843
2844         vmx_segment_cache_clear(to_vmx(vcpu));
2845
2846         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2847         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2848                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2849                                      __func__);
2850                 vmcs_write32(GUEST_TR_AR_BYTES,
2851                              (guest_tr_ar & ~AR_TYPE_MASK)
2852                              | AR_TYPE_BUSY_64_TSS);
2853         }
2854         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2855 }
2856
2857 static void exit_lmode(struct kvm_vcpu *vcpu)
2858 {
2859         vmcs_write32(VM_ENTRY_CONTROLS,
2860                      vmcs_read32(VM_ENTRY_CONTROLS)
2861                      & ~VM_ENTRY_IA32E_MODE);
2862         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2863 }
2864
2865 #endif
2866
2867 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2868 {
2869         vpid_sync_context(to_vmx(vcpu));
2870         if (enable_ept) {
2871                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2872                         return;
2873                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2874         }
2875 }
2876
2877 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2878 {
2879         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2880
2881         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2882         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2883 }
2884
2885 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2886 {
2887         if (enable_ept && is_paging(vcpu))
2888                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2889         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2890 }
2891
2892 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2893 {
2894         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2895
2896         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2897         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2898 }
2899
2900 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2901 {
2902         if (!test_bit(VCPU_EXREG_PDPTR,
2903                       (unsigned long *)&vcpu->arch.regs_dirty))
2904                 return;
2905
2906         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2907                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2908                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2909                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2910                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2911         }
2912 }
2913
2914 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2915 {
2916         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2917                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2918                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2919                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2920                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2921         }
2922
2923         __set_bit(VCPU_EXREG_PDPTR,
2924                   (unsigned long *)&vcpu->arch.regs_avail);
2925         __set_bit(VCPU_EXREG_PDPTR,
2926                   (unsigned long *)&vcpu->arch.regs_dirty);
2927 }
2928
2929 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2930
2931 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2932                                         unsigned long cr0,
2933                                         struct kvm_vcpu *vcpu)
2934 {
2935         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2936                 vmx_decache_cr3(vcpu);
2937         if (!(cr0 & X86_CR0_PG)) {
2938                 /* From paging/starting to nonpaging */
2939                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2940                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2941                              (CPU_BASED_CR3_LOAD_EXITING |
2942                               CPU_BASED_CR3_STORE_EXITING));
2943                 vcpu->arch.cr0 = cr0;
2944                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2945         } else if (!is_paging(vcpu)) {
2946                 /* From nonpaging to paging */
2947                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2948                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2949                              ~(CPU_BASED_CR3_LOAD_EXITING |
2950                                CPU_BASED_CR3_STORE_EXITING));
2951                 vcpu->arch.cr0 = cr0;
2952                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2953         }
2954
2955         if (!(cr0 & X86_CR0_WP))
2956                 *hw_cr0 &= ~X86_CR0_WP;
2957 }
2958
2959 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2960 {
2961         struct vcpu_vmx *vmx = to_vmx(vcpu);
2962         unsigned long hw_cr0;
2963
2964         if (enable_unrestricted_guest)
2965                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2966                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2967         else
2968                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2969
2970         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2971                 enter_pmode(vcpu);
2972
2973         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2974                 enter_rmode(vcpu);
2975
2976 #ifdef CONFIG_X86_64
2977         if (vcpu->arch.efer & EFER_LME) {
2978                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2979                         enter_lmode(vcpu);
2980                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2981                         exit_lmode(vcpu);
2982         }
2983 #endif
2984
2985         if (enable_ept)
2986                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2987
2988         if (!vcpu->fpu_active)
2989                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2990
2991         vmcs_writel(CR0_READ_SHADOW, cr0);
2992         vmcs_writel(GUEST_CR0, hw_cr0);
2993         vcpu->arch.cr0 = cr0;
2994         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2995 }
2996
2997 static u64 construct_eptp(unsigned long root_hpa)
2998 {
2999         u64 eptp;
3000
3001         /* TODO write the value reading from MSR */
3002         eptp = VMX_EPT_DEFAULT_MT |
3003                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3004         eptp |= (root_hpa & PAGE_MASK);
3005
3006         return eptp;
3007 }
3008
3009 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3010 {
3011         unsigned long guest_cr3;
3012         u64 eptp;
3013
3014         guest_cr3 = cr3;
3015         if (enable_ept) {
3016                 eptp = construct_eptp(cr3);
3017                 vmcs_write64(EPT_POINTER, eptp);
3018                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3019                         vcpu->kvm->arch.ept_identity_map_addr;
3020                 ept_load_pdptrs(vcpu);
3021         }
3022
3023         vmx_flush_tlb(vcpu);
3024         vmcs_writel(GUEST_CR3, guest_cr3);
3025 }
3026
3027 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3028 {
3029         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3030                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3031
3032         if (cr4 & X86_CR4_VMXE) {
3033                 /*
3034                  * To use VMXON (and later other VMX instructions), a guest
3035                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3036                  * So basically the check on whether to allow nested VMX
3037                  * is here.
3038                  */
3039                 if (!nested_vmx_allowed(vcpu))
3040                         return 1;
3041         } else if (to_vmx(vcpu)->nested.vmxon)
3042                 return 1;
3043
3044         vcpu->arch.cr4 = cr4;
3045         if (enable_ept) {
3046                 if (!is_paging(vcpu)) {
3047                         hw_cr4 &= ~X86_CR4_PAE;
3048                         hw_cr4 |= X86_CR4_PSE;
3049                 } else if (!(cr4 & X86_CR4_PAE)) {
3050                         hw_cr4 &= ~X86_CR4_PAE;
3051                 }
3052         }
3053
3054         vmcs_writel(CR4_READ_SHADOW, cr4);
3055         vmcs_writel(GUEST_CR4, hw_cr4);
3056         return 0;
3057 }
3058
3059 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3060                             struct kvm_segment *var, int seg)
3061 {
3062         struct vcpu_vmx *vmx = to_vmx(vcpu);
3063         struct kvm_save_segment *save;
3064         u32 ar;
3065
3066         if (vmx->rmode.vm86_active
3067             && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3068                 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3069                 || seg == VCPU_SREG_GS)
3070             && !emulate_invalid_guest_state) {
3071                 switch (seg) {
3072                 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3073                 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3074                 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3075                 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3076                 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3077                 default: BUG();
3078                 }
3079                 var->selector = save->selector;
3080                 var->base = save->base;
3081                 var->limit = save->limit;
3082                 ar = save->ar;
3083                 if (seg == VCPU_SREG_TR
3084                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3085                         goto use_saved_rmode_seg;
3086         }
3087         var->base = vmx_read_guest_seg_base(vmx, seg);
3088         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3089         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3090         ar = vmx_read_guest_seg_ar(vmx, seg);
3091 use_saved_rmode_seg:
3092         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3093                 ar = 0;
3094         var->type = ar & 15;
3095         var->s = (ar >> 4) & 1;
3096         var->dpl = (ar >> 5) & 3;
3097         var->present = (ar >> 7) & 1;
3098         var->avl = (ar >> 12) & 1;
3099         var->l = (ar >> 13) & 1;
3100         var->db = (ar >> 14) & 1;
3101         var->g = (ar >> 15) & 1;
3102         var->unusable = (ar >> 16) & 1;
3103 }
3104
3105 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3106 {
3107         struct kvm_segment s;
3108
3109         if (to_vmx(vcpu)->rmode.vm86_active) {
3110                 vmx_get_segment(vcpu, &s, seg);
3111                 return s.base;
3112         }
3113         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3114 }
3115
3116 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3117 {
3118         if (!is_protmode(vcpu))
3119                 return 0;
3120
3121         if (!is_long_mode(vcpu)
3122             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3123                 return 3;
3124
3125         return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3126 }
3127
3128 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3129 {
3130         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3131                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3132                 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3133         }
3134         return to_vmx(vcpu)->cpl;
3135 }
3136
3137
3138 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3139 {
3140         u32 ar;
3141
3142         if (var->unusable)
3143                 ar = 1 << 16;
3144         else {
3145                 ar = var->type & 15;
3146                 ar |= (var->s & 1) << 4;
3147                 ar |= (var->dpl & 3) << 5;
3148                 ar |= (var->present & 1) << 7;
3149                 ar |= (var->avl & 1) << 12;
3150                 ar |= (var->l & 1) << 13;
3151                 ar |= (var->db & 1) << 14;
3152                 ar |= (var->g & 1) << 15;
3153         }
3154         if (ar == 0) /* a 0 value means unusable */
3155                 ar = AR_UNUSABLE_MASK;
3156
3157         return ar;
3158 }
3159
3160 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3161                             struct kvm_segment *var, int seg)
3162 {
3163         struct vcpu_vmx *vmx = to_vmx(vcpu);
3164         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3165         u32 ar;
3166
3167         vmx_segment_cache_clear(vmx);
3168
3169         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3170                 vmcs_write16(sf->selector, var->selector);
3171                 vmx->rmode.tr.selector = var->selector;
3172                 vmx->rmode.tr.base = var->base;
3173                 vmx->rmode.tr.limit = var->limit;
3174                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3175                 return;
3176         }
3177         vmcs_writel(sf->base, var->base);
3178         vmcs_write32(sf->limit, var->limit);
3179         vmcs_write16(sf->selector, var->selector);
3180         if (vmx->rmode.vm86_active && var->s) {
3181                 /*
3182                  * Hack real-mode segments into vm86 compatibility.
3183                  */
3184                 if (var->base == 0xffff0000 && var->selector == 0xf000)
3185                         vmcs_writel(sf->base, 0xf0000);
3186                 ar = 0xf3;
3187         } else
3188                 ar = vmx_segment_access_rights(var);
3189
3190         /*
3191          *   Fix the "Accessed" bit in AR field of segment registers for older
3192          * qemu binaries.
3193          *   IA32 arch specifies that at the time of processor reset the
3194          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3195          * is setting it to 0 in the usedland code. This causes invalid guest
3196          * state vmexit when "unrestricted guest" mode is turned on.
3197          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3198          * tree. Newer qemu binaries with that qemu fix would not need this
3199          * kvm hack.
3200          */
3201         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3202                 ar |= 0x1; /* Accessed */
3203
3204         vmcs_write32(sf->ar_bytes, ar);
3205         __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3206 }
3207
3208 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3209 {
3210         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3211
3212         *db = (ar >> 14) & 1;
3213         *l = (ar >> 13) & 1;
3214 }
3215
3216 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3217 {
3218         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3219         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3220 }
3221
3222 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3223 {
3224         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3225         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3226 }
3227
3228 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3229 {
3230         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3231         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3232 }
3233
3234 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3235 {
3236         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3237         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3238 }
3239
3240 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3241 {
3242         struct kvm_segment var;
3243         u32 ar;
3244
3245         vmx_get_segment(vcpu, &var, seg);
3246         ar = vmx_segment_access_rights(&var);
3247
3248         if (var.base != (var.selector << 4))
3249                 return false;
3250         if (var.limit != 0xffff)
3251                 return false;
3252         if (ar != 0xf3)
3253                 return false;
3254
3255         return true;
3256 }
3257
3258 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3259 {
3260         struct kvm_segment cs;
3261         unsigned int cs_rpl;
3262
3263         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3264         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3265
3266         if (cs.unusable)
3267                 return false;
3268         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3269                 return false;
3270         if (!cs.s)
3271                 return false;
3272         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3273                 if (cs.dpl > cs_rpl)
3274                         return false;
3275         } else {
3276                 if (cs.dpl != cs_rpl)
3277                         return false;
3278         }
3279         if (!cs.present)
3280                 return false;
3281
3282         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3283         return true;
3284 }
3285
3286 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3287 {
3288         struct kvm_segment ss;
3289         unsigned int ss_rpl;
3290
3291         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3292         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3293
3294         if (ss.unusable)
3295                 return true;
3296         if (ss.type != 3 && ss.type != 7)
3297                 return false;
3298         if (!ss.s)
3299                 return false;
3300         if (ss.dpl != ss_rpl) /* DPL != RPL */
3301                 return false;
3302         if (!ss.present)
3303                 return false;
3304
3305         return true;
3306 }
3307
3308 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3309 {
3310         struct kvm_segment var;
3311         unsigned int rpl;
3312
3313         vmx_get_segment(vcpu, &var, seg);
3314         rpl = var.selector & SELECTOR_RPL_MASK;
3315
3316         if (var.unusable)
3317                 return true;
3318         if (!var.s)
3319                 return false;
3320         if (!var.present)
3321                 return false;
3322         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3323                 if (var.dpl < rpl) /* DPL < RPL */
3324                         return false;
3325         }
3326
3327         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3328          * rights flags
3329          */
3330         return true;
3331 }
3332
3333 static bool tr_valid(struct kvm_vcpu *vcpu)
3334 {
3335         struct kvm_segment tr;
3336
3337         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3338
3339         if (tr.unusable)
3340                 return false;
3341         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3342                 return false;
3343         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3344                 return false;
3345         if (!tr.present)
3346                 return false;
3347
3348         return true;
3349 }
3350
3351 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3352 {
3353         struct kvm_segment ldtr;
3354
3355         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3356
3357         if (ldtr.unusable)
3358                 return true;
3359         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3360                 return false;
3361         if (ldtr.type != 2)
3362                 return false;
3363         if (!ldtr.present)
3364                 return false;
3365
3366         return true;
3367 }
3368
3369 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3370 {
3371         struct kvm_segment cs, ss;
3372
3373         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3374         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3375
3376         return ((cs.selector & SELECTOR_RPL_MASK) ==
3377                  (ss.selector & SELECTOR_RPL_MASK));
3378 }
3379
3380 /*
3381  * Check if guest state is valid. Returns true if valid, false if
3382  * not.
3383  * We assume that registers are always usable
3384  */
3385 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3386 {
3387         /* real mode guest state checks */
3388         if (!is_protmode(vcpu)) {
3389                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3390                         return false;
3391                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3392                         return false;
3393                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3394                         return false;
3395                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3396                         return false;
3397                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3398                         return false;
3399                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3400                         return false;
3401         } else {
3402         /* protected mode guest state checks */
3403                 if (!cs_ss_rpl_check(vcpu))
3404                         return false;
3405                 if (!code_segment_valid(vcpu))
3406                         return false;
3407                 if (!stack_segment_valid(vcpu))
3408                         return false;
3409                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3410                         return false;
3411                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3412                         return false;
3413                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3414                         return false;
3415                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3416                         return false;
3417                 if (!tr_valid(vcpu))
3418                         return false;
3419                 if (!ldtr_valid(vcpu))
3420                         return false;
3421         }
3422         /* TODO:
3423          * - Add checks on RIP
3424          * - Add checks on RFLAGS
3425          */
3426
3427         return true;
3428 }
3429
3430 static int init_rmode_tss(struct kvm *kvm)
3431 {
3432         gfn_t fn;
3433         u16 data = 0;
3434         int r, idx, ret = 0;
3435
3436         idx = srcu_read_lock(&kvm->srcu);
3437         fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3438         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3439         if (r < 0)
3440                 goto out;
3441         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3442         r = kvm_write_guest_page(kvm, fn++, &data,
3443                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3444         if (r < 0)
3445                 goto out;
3446         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3447         if (r < 0)
3448                 goto out;
3449         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3450         if (r < 0)
3451                 goto out;
3452         data = ~0;
3453         r = kvm_write_guest_page(kvm, fn, &data,
3454                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3455                                  sizeof(u8));
3456         if (r < 0)
3457                 goto out;
3458
3459         ret = 1;
3460 out:
3461         srcu_read_unlock(&kvm->srcu, idx);
3462         return ret;
3463 }
3464
3465 static int init_rmode_identity_map(struct kvm *kvm)
3466 {
3467         int i, idx, r, ret;
3468         pfn_t identity_map_pfn;
3469         u32 tmp;
3470
3471         if (!enable_ept)
3472                 return 1;
3473         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3474                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3475                         "haven't been allocated!\n");
3476                 return 0;
3477         }
3478         if (likely(kvm->arch.ept_identity_pagetable_done))
3479                 return 1;
3480         ret = 0;
3481         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3482         idx = srcu_read_lock(&kvm->srcu);
3483         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3484         if (r < 0)
3485                 goto out;
3486         /* Set up identity-mapping pagetable for EPT in real mode */
3487         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3488                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3489                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3490                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3491                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3492                 if (r < 0)
3493                         goto out;
3494         }
3495         kvm->arch.ept_identity_pagetable_done = true;
3496         ret = 1;
3497 out:
3498         srcu_read_unlock(&kvm->srcu, idx);
3499         return ret;
3500 }
3501
3502 static void seg_setup(int seg)
3503 {
3504         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3505         unsigned int ar;
3506
3507         vmcs_write16(sf->selector, 0);
3508         vmcs_writel(sf->base, 0);
3509         vmcs_write32(sf->limit, 0xffff);
3510         if (enable_unrestricted_guest) {
3511                 ar = 0x93;
3512                 if (seg == VCPU_SREG_CS)
3513                         ar |= 0x08; /* code segment */
3514         } else
3515                 ar = 0xf3;
3516
3517         vmcs_write32(sf->ar_bytes, ar);
3518 }
3519
3520 static int alloc_apic_access_page(struct kvm *kvm)
3521 {
3522         struct kvm_userspace_memory_region kvm_userspace_mem;
3523         int r = 0;
3524
3525         mutex_lock(&kvm->slots_lock);
3526         if (kvm->arch.apic_access_page)
3527                 goto out;
3528         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3529         kvm_userspace_mem.flags = 0;
3530         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3531         kvm_userspace_mem.memory_size = PAGE_SIZE;
3532         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3533         if (r)
3534                 goto out;
3535
3536         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3537 out:
3538         mutex_unlock(&kvm->slots_lock);
3539         return r;
3540 }
3541
3542 static int alloc_identity_pagetable(struct kvm *kvm)
3543 {
3544         struct kvm_userspace_memory_region kvm_userspace_mem;
3545         int r = 0;
3546
3547         mutex_lock(&kvm->slots_lock);
3548         if (kvm->arch.ept_identity_pagetable)
3549                 goto out;
3550         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3551         kvm_userspace_mem.flags = 0;
3552         kvm_userspace_mem.guest_phys_addr =
3553                 kvm->arch.ept_identity_map_addr;
3554         kvm_userspace_mem.memory_size = PAGE_SIZE;
3555         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3556         if (r)
3557                 goto out;
3558
3559         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3560                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3561 out:
3562         mutex_unlock(&kvm->slots_lock);
3563         return r;
3564 }
3565
3566 static void allocate_vpid(struct vcpu_vmx *vmx)
3567 {
3568         int vpid;
3569
3570         vmx->vpid = 0;
3571         if (!enable_vpid)
3572                 return;
3573         spin_lock(&vmx_vpid_lock);
3574         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3575         if (vpid < VMX_NR_VPIDS) {
3576                 vmx->vpid = vpid;
3577                 __set_bit(vpid, vmx_vpid_bitmap);
3578         }
3579         spin_unlock(&vmx_vpid_lock);
3580 }
3581
3582 static void free_vpid(struct vcpu_vmx *vmx)
3583 {
3584         if (!enable_vpid)
3585                 return;
3586         spin_lock(&vmx_vpid_lock);
3587         if (vmx->vpid != 0)
3588                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3589         spin_unlock(&vmx_vpid_lock);
3590 }
3591
3592 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3593 {
3594         int f = sizeof(unsigned long);
3595
3596         if (!cpu_has_vmx_msr_bitmap())
3597                 return;
3598
3599         /*
3600          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3601          * have the write-low and read-high bitmap offsets the wrong way round.
3602          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3603          */
3604         if (msr <= 0x1fff) {
3605                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3606                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3607         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3608                 msr &= 0x1fff;
3609                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3610                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3611         }
3612 }
3613
3614 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3615 {
3616         if (!longmode_only)
3617                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3618         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3619 }
3620
3621 /*
3622  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3623  * will not change in the lifetime of the guest.
3624  * Note that host-state that does change is set elsewhere. E.g., host-state
3625  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3626  */
3627 static void vmx_set_constant_host_state(void)
3628 {
3629         u32 low32, high32;
3630         unsigned long tmpl;
3631         struct desc_ptr dt;
3632
3633         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
3634         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
3635         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
3636
3637         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3638         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3639         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3640         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3641         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3642
3643         native_store_idt(&dt);
3644         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3645
3646         asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3647         vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3648
3649         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3650         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3651         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3652         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3653
3654         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3655                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3656                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3657         }
3658 }
3659
3660 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3661 {
3662         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3663         if (enable_ept)
3664                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3665         if (is_guest_mode(&vmx->vcpu))
3666                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3667                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3668         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3669 }
3670
3671 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3672 {
3673         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3674         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3675                 exec_control &= ~CPU_BASED_TPR_SHADOW;
3676 #ifdef CONFIG_X86_64
3677                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3678                                 CPU_BASED_CR8_LOAD_EXITING;
3679 #endif
3680         }
3681         if (!enable_ept)
3682                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3683                                 CPU_BASED_CR3_LOAD_EXITING  |
3684                                 CPU_BASED_INVLPG_EXITING;
3685         return exec_control;
3686 }
3687
3688 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3689 {
3690         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3691         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3692                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3693         if (vmx->vpid == 0)
3694                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3695         if (!enable_ept) {
3696                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3697                 enable_unrestricted_guest = 0;
3698         }
3699         if (!enable_unrestricted_guest)
3700                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3701         if (!ple_gap)
3702                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3703         return exec_control;
3704 }
3705
3706 static void ept_set_mmio_spte_mask(void)
3707 {
3708         /*
3709          * EPT Misconfigurations can be generated if the value of bits 2:0
3710          * of an EPT paging-structure entry is 110b (write/execute).
3711          * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3712          * spte.
3713          */
3714         kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3715 }
3716
3717 /*
3718  * Sets up the vmcs for emulated real mode.
3719  */
3720 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3721 {
3722 #ifdef CONFIG_X86_64
3723         unsigned long a;
3724 #endif
3725         int i;
3726
3727         /* I/O */
3728         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3729         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3730
3731         if (cpu_has_vmx_msr_bitmap())
3732                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3733
3734         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3735
3736         /* Control */
3737         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3738                 vmcs_config.pin_based_exec_ctrl);
3739
3740         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3741
3742         if (cpu_has_secondary_exec_ctrls()) {
3743                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3744                                 vmx_secondary_exec_control(vmx));
3745         }
3746
3747         if (ple_gap) {
3748                 vmcs_write32(PLE_GAP, ple_gap);
3749                 vmcs_write32(PLE_WINDOW, ple_window);
3750         }
3751
3752         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3753         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3754         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
3755
3756         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
3757         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
3758         vmx_set_constant_host_state();
3759 #ifdef CONFIG_X86_64
3760         rdmsrl(MSR_FS_BASE, a);
3761         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3762         rdmsrl(MSR_GS_BASE, a);
3763         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3764 #else
3765         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3766         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3767 #endif
3768
3769         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3770         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3771         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3772         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3773         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3774
3775         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3776                 u32 msr_low, msr_high;
3777                 u64 host_pat;
3778                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3779                 host_pat = msr_low | ((u64) msr_high << 32);
3780                 /* Write the default value follow host pat */
3781                 vmcs_write64(GUEST_IA32_PAT, host_pat);
3782                 /* Keep arch.pat sync with GUEST_IA32_PAT */
3783                 vmx->vcpu.arch.pat = host_pat;
3784         }
3785
3786         for (i = 0; i < NR_VMX_MSR; ++i) {
3787                 u32 index = vmx_msr_index[i];
3788                 u32 data_low, data_high;
3789                 int j = vmx->nmsrs;
3790
3791                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3792                         continue;
3793                 if (wrmsr_safe(index, data_low, data_high) < 0)
3794                         continue;
3795                 vmx->guest_msrs[j].index = i;
3796                 vmx->guest_msrs[j].data = 0;
3797                 vmx->guest_msrs[j].mask = -1ull;
3798                 ++vmx->nmsrs;
3799         }
3800
3801         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3802
3803         /* 22.2.1, 20.8.1 */
3804         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3805
3806         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3807         set_cr4_guest_host_mask(vmx);
3808
3809         kvm_write_tsc(&vmx->vcpu, 0);
3810
3811         return 0;
3812 }
3813
3814 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3815 {
3816         struct vcpu_vmx *vmx = to_vmx(vcpu);
3817         u64 msr;
3818         int ret;
3819
3820         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3821
3822         vmx->rmode.vm86_active = 0;
3823
3824         vmx->soft_vnmi_blocked = 0;
3825
3826         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3827         kvm_set_cr8(&vmx->vcpu, 0);
3828         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3829         if (kvm_vcpu_is_bsp(&vmx->vcpu))
3830                 msr |= MSR_IA32_APICBASE_BSP;
3831         kvm_set_apic_base(&vmx->vcpu, msr);
3832
3833         ret = fx_init(&vmx->vcpu);
3834         if (ret != 0)
3835                 goto out;
3836
3837         vmx_segment_cache_clear(vmx);
3838
3839         seg_setup(VCPU_SREG_CS);
3840         /*
3841          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3842          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
3843          */
3844         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3845                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3846                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3847         } else {
3848                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3849                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3850         }
3851
3852         seg_setup(VCPU_SREG_DS);
3853         seg_setup(VCPU_SREG_ES);
3854         seg_setup(VCPU_SREG_FS);
3855         seg_setup(VCPU_SREG_GS);
3856         seg_setup(VCPU_SREG_SS);
3857
3858         vmcs_write16(GUEST_TR_SELECTOR, 0);
3859         vmcs_writel(GUEST_TR_BASE, 0);
3860         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3861         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3862
3863         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3864         vmcs_writel(GUEST_LDTR_BASE, 0);
3865         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3866         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3867
3868         vmcs_write32(GUEST_SYSENTER_CS, 0);
3869         vmcs_writel(GUEST_SYSENTER_ESP, 0);
3870         vmcs_writel(GUEST_SYSENTER_EIP, 0);
3871
3872         vmcs_writel(GUEST_RFLAGS, 0x02);
3873         if (kvm_vcpu_is_bsp(&vmx->vcpu))
3874                 kvm_rip_write(vcpu, 0xfff0);
3875         else
3876                 kvm_rip_write(vcpu, 0);
3877         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3878
3879         vmcs_writel(GUEST_DR7, 0x400);
3880
3881         vmcs_writel(GUEST_GDTR_BASE, 0);
3882         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3883
3884         vmcs_writel(GUEST_IDTR_BASE, 0);
3885         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3886
3887         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3888         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3889         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3890
3891         /* Special registers */
3892         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3893
3894         setup_msrs(vmx);
3895
3896         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
3897
3898         if (cpu_has_vmx_tpr_shadow()) {
3899                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3900                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3901                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3902                                      __pa(vmx->vcpu.arch.apic->regs));
3903                 vmcs_write32(TPR_THRESHOLD, 0);
3904         }
3905
3906         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3907                 vmcs_write64(APIC_ACCESS_ADDR,
3908                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3909
3910         if (vmx->vpid != 0)
3911                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3912
3913         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3914         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3915         vmx_set_cr4(&vmx->vcpu, 0);
3916         vmx_set_efer(&vmx->vcpu, 0);
3917         vmx_fpu_activate(&vmx->vcpu);
3918         update_exception_bitmap(&vmx->vcpu);
3919
3920         vpid_sync_context(vmx);
3921
3922         ret = 0;
3923
3924         /* HACK: Don't enable emulation on guest boot/reset */
3925         vmx->emulation_required = 0;
3926
3927 out:
3928         return ret;
3929 }
3930
3931 /*
3932  * In nested virtualization, check if L1 asked to exit on external interrupts.
3933  * For most existing hypervisors, this will always return true.
3934  */
3935 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3936 {
3937         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3938                 PIN_BASED_EXT_INTR_MASK;
3939 }
3940
3941 static void enable_irq_window(struct kvm_vcpu *vcpu)
3942 {
3943         u32 cpu_based_vm_exec_control;
3944         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
3945                 /* We can get here when nested_run_pending caused
3946                  * vmx_interrupt_allowed() to return false. In this case, do
3947                  * nothing - the interrupt will be injected later.
3948                  */
3949                 return;
3950
3951         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3952         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3953         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3954 }
3955
3956 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3957 {
3958         u32 cpu_based_vm_exec_control;
3959
3960         if (!cpu_has_virtual_nmis()) {
3961                 enable_irq_window(vcpu);
3962                 return;
3963         }
3964
3965         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3966                 enable_irq_window(vcpu);
3967                 return;
3968         }
3969         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3970         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3971         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3972 }
3973
3974 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3975 {
3976         struct vcpu_vmx *vmx = to_vmx(vcpu);
3977         uint32_t intr;
3978         int irq = vcpu->arch.interrupt.nr;
3979
3980         trace_kvm_inj_virq(irq);
3981
3982         ++vcpu->stat.irq_injections;
3983         if (vmx->rmode.vm86_active) {
3984                 int inc_eip = 0;
3985                 if (vcpu->arch.interrupt.soft)
3986                         inc_eip = vcpu->arch.event_exit_inst_len;
3987                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3988                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3989                 return;
3990         }
3991         intr = irq | INTR_INFO_VALID_MASK;
3992         if (vcpu->arch.interrupt.soft) {
3993                 intr |= INTR_TYPE_SOFT_INTR;
3994                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3995                              vmx->vcpu.arch.event_exit_inst_len);
3996         } else
3997                 intr |= INTR_TYPE_EXT_INTR;
3998         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
3999         vmx_clear_hlt(vcpu);
4000 }
4001
4002 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4003 {
4004         struct vcpu_vmx *vmx = to_vmx(vcpu);
4005
4006         if (is_guest_mode(vcpu))
4007                 return;
4008
4009         if (!cpu_has_virtual_nmis()) {
4010                 /*
4011                  * Tracking the NMI-blocked state in software is built upon
4012                  * finding the next open IRQ window. This, in turn, depends on
4013                  * well-behaving guests: They have to keep IRQs disabled at
4014                  * least as long as the NMI handler runs. Otherwise we may
4015                  * cause NMI nesting, maybe breaking the guest. But as this is
4016                  * highly unlikely, we can live with the residual risk.
4017                  */
4018                 vmx->soft_vnmi_blocked = 1;
4019                 vmx->vnmi_blocked_time = 0;
4020         }
4021
4022         ++vcpu->stat.nmi_injections;
4023         vmx->nmi_known_unmasked = false;
4024         if (vmx->rmode.vm86_active) {
4025                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4026                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4027                 return;
4028         }
4029         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4030                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4031         vmx_clear_hlt(vcpu);
4032 }
4033
4034 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4035 {
4036         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4037                 return 0;
4038
4039         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4040                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4041                    | GUEST_INTR_STATE_NMI));
4042 }
4043
4044 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4045 {
4046         if (!cpu_has_virtual_nmis())
4047                 return to_vmx(vcpu)->soft_vnmi_blocked;
4048         if (to_vmx(vcpu)->nmi_known_unmasked)
4049                 return false;
4050         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4051 }
4052
4053 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4054 {
4055         struct vcpu_vmx *vmx = to_vmx(vcpu);
4056
4057         if (!cpu_has_virtual_nmis()) {
4058                 if (vmx->soft_vnmi_blocked != masked) {
4059                         vmx->soft_vnmi_blocked = masked;
4060                         vmx->vnmi_blocked_time = 0;
4061                 }
4062         } else {
4063                 vmx->nmi_known_unmasked = !masked;
4064                 if (masked)
4065                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4066                                       GUEST_INTR_STATE_NMI);
4067                 else
4068                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4069                                         GUEST_INTR_STATE_NMI);
4070         }
4071 }
4072
4073 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4074 {
4075         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4076                 struct vmcs12 *vmcs12;
4077                 if (to_vmx(vcpu)->nested.nested_run_pending)
4078                         return 0;
4079                 nested_vmx_vmexit(vcpu);
4080                 vmcs12 = get_vmcs12(vcpu);
4081                 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4082                 vmcs12->vm_exit_intr_info = 0;
4083                 /* fall through to normal code, but now in L1, not L2 */
4084         }
4085
4086         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4087                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4088                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4089 }
4090
4091 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4092 {
4093         int ret;
4094         struct kvm_userspace_memory_region tss_mem = {
4095                 .slot = TSS_PRIVATE_MEMSLOT,
4096                 .guest_phys_addr = addr,
4097                 .memory_size = PAGE_SIZE * 3,
4098                 .flags = 0,
4099         };
4100
4101         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4102         if (ret)
4103                 return ret;
4104         kvm->arch.tss_addr = addr;
4105         if (!init_rmode_tss(kvm))
4106                 return  -ENOMEM;
4107
4108         return 0;
4109 }
4110
4111 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4112                                   int vec, u32 err_code)
4113 {
4114         /*
4115          * Instruction with address size override prefix opcode 0x67
4116          * Cause the #SS fault with 0 error code in VM86 mode.
4117          */
4118         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4119                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4120                         return 1;
4121         /*
4122          * Forward all other exceptions that are valid in real mode.
4123          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4124          *        the required debugging infrastructure rework.
4125          */
4126         switch (vec) {
4127         case DB_VECTOR:
4128                 if (vcpu->guest_debug &
4129                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4130                         return 0;
4131                 kvm_queue_exception(vcpu, vec);
4132                 return 1;
4133         case BP_VECTOR:
4134                 /*
4135                  * Update instruction length as we may reinject the exception
4136                  * from user space while in guest debugging mode.
4137                  */
4138                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4139                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4140                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4141                         return 0;
4142                 /* fall through */
4143         case DE_VECTOR:
4144         case OF_VECTOR:
4145         case BR_VECTOR:
4146         case UD_VECTOR:
4147         case DF_VECTOR:
4148         case SS_VECTOR:
4149         case GP_VECTOR:
4150         case MF_VECTOR:
4151                 kvm_queue_exception(vcpu, vec);
4152                 return 1;
4153         }
4154         return 0;
4155 }
4156
4157 /*
4158  * Trigger machine check on the host. We assume all the MSRs are already set up
4159  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4160  * We pass a fake environment to the machine check handler because we want
4161  * the guest to be always treated like user space, no matter what context
4162  * it used internally.
4163  */
4164 static void kvm_machine_check(void)
4165 {
4166 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4167         struct pt_regs regs = {
4168                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4169                 .flags = X86_EFLAGS_IF,
4170         };
4171
4172         do_machine_check(&regs, 0);
4173 #endif
4174 }
4175
4176 static int handle_machine_check(struct kvm_vcpu *vcpu)
4177 {
4178         /* already handled by vcpu_run */
4179         return 1;
4180 }
4181
4182 static int handle_exception(struct kvm_vcpu *vcpu)
4183 {
4184         struct vcpu_vmx *vmx = to_vmx(vcpu);
4185         struct kvm_run *kvm_run = vcpu->run;
4186         u32 intr_info, ex_no, error_code;
4187         unsigned long cr2, rip, dr6;
4188         u32 vect_info;
4189         enum emulation_result er;
4190
4191         vect_info = vmx->idt_vectoring_info;
4192         intr_info = vmx->exit_intr_info;
4193
4194         if (is_machine_check(intr_info))
4195                 return handle_machine_check(vcpu);
4196
4197         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4198             !is_page_fault(intr_info)) {
4199                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4200                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4201                 vcpu->run->internal.ndata = 2;
4202                 vcpu->run->internal.data[0] = vect_info;
4203                 vcpu->run->internal.data[1] = intr_info;
4204                 return 0;
4205         }
4206
4207         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4208                 return 1;  /* already handled by vmx_vcpu_run() */
4209
4210         if (is_no_device(intr_info)) {
4211                 vmx_fpu_activate(vcpu);
4212                 return 1;
4213         }
4214
4215         if (is_invalid_opcode(intr_info)) {
4216                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4217                 if (er != EMULATE_DONE)
4218                         kvm_queue_exception(vcpu, UD_VECTOR);
4219                 return 1;
4220         }
4221
4222         error_code = 0;
4223         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4224                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4225         if (is_page_fault(intr_info)) {
4226                 /* EPT won't cause page fault directly */
4227                 BUG_ON(enable_ept);
4228                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4229                 trace_kvm_page_fault(cr2, error_code);
4230
4231                 if (kvm_event_needs_reinjection(vcpu))
4232                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4233                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4234         }
4235
4236         if (vmx->rmode.vm86_active &&
4237             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4238                                                                 error_code)) {
4239                 if (vcpu->arch.halt_request) {
4240                         vcpu->arch.halt_request = 0;
4241                         return kvm_emulate_halt(vcpu);
4242                 }
4243                 return 1;
4244         }
4245
4246         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4247         switch (ex_no) {
4248         case DB_VECTOR:
4249                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4250                 if (!(vcpu->guest_debug &
4251                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4252                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4253                         kvm_queue_exception(vcpu, DB_VECTOR);
4254                         return 1;
4255                 }
4256                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4257                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4258                 /* fall through */
4259         case BP_VECTOR:
4260                 /*
4261                  * Update instruction length as we may reinject #BP from
4262                  * user space while in guest debugging mode. Reading it for
4263                  * #DB as well causes no harm, it is not used in that case.
4264                  */
4265                 vmx->vcpu.arch.event_exit_inst_len =
4266                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4267                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4268                 rip = kvm_rip_read(vcpu);
4269                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4270                 kvm_run->debug.arch.exception = ex_no;
4271                 break;
4272         default:
4273                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4274                 kvm_run->ex.exception = ex_no;
4275                 kvm_run->ex.error_code = error_code;
4276                 break;
4277         }
4278         return 0;
4279 }
4280
4281 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4282 {
4283         ++vcpu->stat.irq_exits;
4284         return 1;
4285 }
4286
4287 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4288 {
4289         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4290         return 0;
4291 }
4292
4293 static int handle_io(struct kvm_vcpu *vcpu)
4294 {
4295         unsigned long exit_qualification;
4296         int size, in, string;
4297         unsigned port;
4298
4299         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4300         string = (exit_qualification & 16) != 0;
4301         in = (exit_qualification & 8) != 0;
4302
4303         ++vcpu->stat.io_exits;
4304
4305         if (string || in)
4306                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4307
4308         port = exit_qualification >> 16;
4309         size = (exit_qualification & 7) + 1;
4310         skip_emulated_instruction(vcpu);
4311
4312         return kvm_fast_pio_out(vcpu, size, port);
4313 }
4314
4315 static void
4316 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4317 {
4318         /*
4319          * Patch in the VMCALL instruction:
4320          */
4321         hypercall[0] = 0x0f;
4322         hypercall[1] = 0x01;
4323         hypercall[2] = 0xc1;
4324 }
4325
4326 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
4327 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4328 {
4329         if (to_vmx(vcpu)->nested.vmxon &&
4330             ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4331                 return 1;
4332
4333         if (is_guest_mode(vcpu)) {
4334                 /*
4335                  * We get here when L2 changed cr0 in a way that did not change
4336                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4337                  * but did change L0 shadowed bits. This can currently happen
4338                  * with the TS bit: L0 may want to leave TS on (for lazy fpu
4339                  * loading) while pretending to allow the guest to change it.
4340                  */
4341                 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4342                          (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4343                         return 1;
4344                 vmcs_writel(CR0_READ_SHADOW, val);
4345                 return 0;
4346         } else
4347                 return kvm_set_cr0(vcpu, val);
4348 }
4349
4350 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4351 {
4352         if (is_guest_mode(vcpu)) {
4353                 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4354                          (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4355                         return 1;
4356                 vmcs_writel(CR4_READ_SHADOW, val);
4357                 return 0;
4358         } else
4359                 return kvm_set_cr4(vcpu, val);
4360 }
4361
4362 /* called to set cr0 as approriate for clts instruction exit. */
4363 static void handle_clts(struct kvm_vcpu *vcpu)
4364 {
4365         if (is_guest_mode(vcpu)) {
4366                 /*
4367                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4368                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4369                  * just pretend it's off (also in arch.cr0 for fpu_activate).
4370                  */
4371                 vmcs_writel(CR0_READ_SHADOW,
4372                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4373                 vcpu->arch.cr0 &= ~X86_CR0_TS;
4374         } else
4375                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4376 }
4377
4378 static int handle_cr(struct kvm_vcpu *vcpu)
4379 {
4380         unsigned long exit_qualification, val;
4381         int cr;
4382         int reg;
4383         int err;
4384
4385         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4386         cr = exit_qualification & 15;
4387         reg = (exit_qualification >> 8) & 15;
4388         switch ((exit_qualification >> 4) & 3) {
4389         case 0: /* mov to cr */
4390                 val = kvm_register_read(vcpu, reg);
4391                 trace_kvm_cr_write(cr, val);
4392                 switch (cr) {
4393                 case 0:
4394                         err = handle_set_cr0(vcpu, val);
4395                         kvm_complete_insn_gp(vcpu, err);
4396                         return 1;
4397                 case 3:
4398                         err = kvm_set_cr3(vcpu, val);
4399                         kvm_complete_insn_gp(vcpu, err);
4400                         return 1;
4401                 case 4:
4402                         err = handle_set_cr4(vcpu, val);
4403                         kvm_complete_insn_gp(vcpu, err);
4404                         return 1;
4405                 case 8: {
4406                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4407                                 u8 cr8 = kvm_register_read(vcpu, reg);
4408                                 err = kvm_set_cr8(vcpu, cr8);
4409                                 kvm_complete_insn_gp(vcpu, err);
4410                                 if (irqchip_in_kernel(vcpu->kvm))
4411                                         return 1;
4412                                 if (cr8_prev <= cr8)
4413                                         return 1;
4414                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4415                                 return 0;
4416                         }
4417                 };
4418                 break;
4419         case 2: /* clts */
4420                 handle_clts(vcpu);
4421                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4422                 skip_emulated_instruction(vcpu);
4423                 vmx_fpu_activate(vcpu);
4424                 return 1;
4425         case 1: /*mov from cr*/
4426                 switch (cr) {
4427                 case 3:
4428                         val = kvm_read_cr3(vcpu);
4429                         kvm_register_write(vcpu, reg, val);
4430                         trace_kvm_cr_read(cr, val);
4431                         skip_emulated_instruction(vcpu);
4432                         return 1;
4433                 case 8:
4434                         val = kvm_get_cr8(vcpu);
4435                         kvm_register_write(vcpu, reg, val);
4436                         trace_kvm_cr_read(cr, val);
4437                         skip_emulated_instruction(vcpu);
4438                         return 1;
4439                 }
4440                 break;
4441         case 3: /* lmsw */
4442                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4443                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4444                 kvm_lmsw(vcpu, val);
4445
4446                 skip_emulated_instruction(vcpu);
4447                 return 1;
4448         default:
4449                 break;
4450         }
4451         vcpu->run->exit_reason = 0;
4452         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4453                (int)(exit_qualification >> 4) & 3, cr);
4454         return 0;
4455 }
4456
4457 static int handle_dr(struct kvm_vcpu *vcpu)
4458 {
4459         unsigned long exit_qualification;
4460         int dr, reg;
4461
4462         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4463         if (!kvm_require_cpl(vcpu, 0))
4464                 return 1;
4465         dr = vmcs_readl(GUEST_DR7);
4466         if (dr & DR7_GD) {
4467                 /*
4468                  * As the vm-exit takes precedence over the debug trap, we
4469                  * need to emulate the latter, either for the host or the
4470                  * guest debugging itself.
4471                  */
4472                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4473                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4474                         vcpu->run->debug.arch.dr7 = dr;
4475                         vcpu->run->debug.arch.pc =
4476                                 vmcs_readl(GUEST_CS_BASE) +
4477                                 vmcs_readl(GUEST_RIP);
4478                         vcpu->run->debug.arch.exception = DB_VECTOR;
4479                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4480                         return 0;
4481                 } else {
4482                         vcpu->arch.dr7 &= ~DR7_GD;
4483                         vcpu->arch.dr6 |= DR6_BD;
4484                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4485                         kvm_queue_exception(vcpu, DB_VECTOR);
4486                         return 1;
4487                 }
4488         }
4489
4490         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4491         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4492         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4493         if (exit_qualification & TYPE_MOV_FROM_DR) {
4494                 unsigned long val;
4495                 if (!kvm_get_dr(vcpu, dr, &val))
4496                         kvm_register_write(vcpu, reg, val);
4497         } else
4498                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4499         skip_emulated_instruction(vcpu);
4500         return 1;
4501 }
4502
4503 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4504 {
4505         vmcs_writel(GUEST_DR7, val);
4506 }
4507
4508 static int handle_cpuid(struct kvm_vcpu *vcpu)
4509 {
4510         kvm_emulate_cpuid(vcpu);
4511         return 1;
4512 }
4513
4514 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4515 {
4516         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4517         u64 data;
4518
4519         if (vmx_get_msr(vcpu, ecx, &data)) {
4520                 trace_kvm_msr_read_ex(ecx);
4521                 kvm_inject_gp(vcpu, 0);
4522                 return 1;
4523         }
4524
4525         trace_kvm_msr_read(ecx, data);
4526
4527         /* FIXME: handling of bits 32:63 of rax, rdx */
4528         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4529         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4530         skip_emulated_instruction(vcpu);
4531         return 1;
4532 }
4533
4534 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4535 {
4536         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4537         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4538                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4539
4540         if (vmx_set_msr(vcpu, ecx, data) != 0) {
4541                 trace_kvm_msr_write_ex(ecx, data);
4542                 kvm_inject_gp(vcpu, 0);
4543                 return 1;
4544         }
4545
4546         trace_kvm_msr_write(ecx, data);
4547         skip_emulated_instruction(vcpu);
4548         return 1;
4549 }
4550
4551 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4552 {
4553         kvm_make_request(KVM_REQ_EVENT, vcpu);
4554         return 1;
4555 }
4556
4557 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4558 {
4559         u32 cpu_based_vm_exec_control;
4560
4561         /* clear pending irq */
4562         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4563         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4564         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4565
4566         kvm_make_request(KVM_REQ_EVENT, vcpu);
4567
4568         ++vcpu->stat.irq_window_exits;
4569
4570         /*
4571          * If the user space waits to inject interrupts, exit as soon as
4572          * possible
4573          */
4574         if (!irqchip_in_kernel(vcpu->kvm) &&
4575             vcpu->run->request_interrupt_window &&
4576             !kvm_cpu_has_interrupt(vcpu)) {
4577                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4578                 return 0;
4579         }
4580         return 1;
4581 }
4582
4583 static int handle_halt(struct kvm_vcpu *vcpu)
4584 {
4585         skip_emulated_instruction(vcpu);
4586         return kvm_emulate_halt(vcpu);
4587 }
4588
4589 static int handle_vmcall(struct kvm_vcpu *vcpu)
4590 {
4591         skip_emulated_instruction(vcpu);
4592         kvm_emulate_hypercall(vcpu);
4593         return 1;
4594 }
4595
4596 static int handle_invd(struct kvm_vcpu *vcpu)
4597 {
4598         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4599 }
4600
4601 static int handle_invlpg(struct kvm_vcpu *vcpu)
4602 {
4603         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4604
4605         kvm_mmu_invlpg(vcpu, exit_qualification);
4606         skip_emulated_instruction(vcpu);
4607         return 1;
4608 }
4609
4610 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4611 {
4612         skip_emulated_instruction(vcpu);
4613         kvm_emulate_wbinvd(vcpu);
4614         return 1;
4615 }
4616
4617 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4618 {
4619         u64 new_bv = kvm_read_edx_eax(vcpu);
4620         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4621
4622         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4623                 skip_emulated_instruction(vcpu);
4624         return 1;
4625 }
4626
4627 static int handle_apic_access(struct kvm_vcpu *vcpu)
4628 {
4629         if (likely(fasteoi)) {
4630                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4631                 int access_type, offset;
4632
4633                 access_type = exit_qualification & APIC_ACCESS_TYPE;
4634                 offset = exit_qualification & APIC_ACCESS_OFFSET;
4635                 /*
4636                  * Sane guest uses MOV to write EOI, with written value
4637                  * not cared. So make a short-circuit here by avoiding
4638                  * heavy instruction emulation.
4639                  */
4640                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4641                     (offset == APIC_EOI)) {
4642                         kvm_lapic_set_eoi(vcpu);
4643                         skip_emulated_instruction(vcpu);
4644                         return 1;
4645                 }
4646         }
4647         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4648 }
4649
4650 static int handle_task_switch(struct kvm_vcpu *vcpu)
4651 {
4652         struct vcpu_vmx *vmx = to_vmx(vcpu);
4653         unsigned long exit_qualification;
4654         bool has_error_code = false;
4655         u32 error_code = 0;
4656         u16 tss_selector;
4657         int reason, type, idt_v;
4658
4659         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4660         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4661
4662         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4663
4664         reason = (u32)exit_qualification >> 30;
4665         if (reason == TASK_SWITCH_GATE && idt_v) {
4666                 switch (type) {
4667                 case INTR_TYPE_NMI_INTR:
4668                         vcpu->arch.nmi_injected = false;
4669                         vmx_set_nmi_mask(vcpu, true);
4670                         break;
4671                 case INTR_TYPE_EXT_INTR:
4672                 case INTR_TYPE_SOFT_INTR:
4673                         kvm_clear_interrupt_queue(vcpu);
4674                         break;
4675                 case INTR_TYPE_HARD_EXCEPTION:
4676                         if (vmx->idt_vectoring_info &
4677                             VECTORING_INFO_DELIVER_CODE_MASK) {
4678                                 has_error_code = true;
4679                                 error_code =
4680                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
4681                         }
4682                         /* fall through */
4683                 case INTR_TYPE_SOFT_EXCEPTION:
4684                         kvm_clear_exception_queue(vcpu);
4685                         break;
4686                 default:
4687                         break;
4688                 }
4689         }
4690         tss_selector = exit_qualification;
4691
4692         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4693                        type != INTR_TYPE_EXT_INTR &&
4694                        type != INTR_TYPE_NMI_INTR))
4695                 skip_emulated_instruction(vcpu);
4696
4697         if (kvm_task_switch(vcpu, tss_selector, reason,
4698                                 has_error_code, error_code) == EMULATE_FAIL) {
4699                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4700                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4701                 vcpu->run->internal.ndata = 0;
4702                 return 0;
4703         }
4704
4705         /* clear all local breakpoint enable flags */
4706         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4707
4708         /*
4709          * TODO: What about debug traps on tss switch?
4710          *       Are we supposed to inject them and update dr6?
4711          */
4712
4713         return 1;
4714 }
4715
4716 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4717 {
4718         unsigned long exit_qualification;
4719         gpa_t gpa;
4720         int gla_validity;
4721
4722         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4723
4724         if (exit_qualification & (1 << 6)) {
4725                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4726                 return -EINVAL;
4727         }
4728
4729         gla_validity = (exit_qualification >> 7) & 0x3;
4730         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4731                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4732                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4733                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4734                         vmcs_readl(GUEST_LINEAR_ADDRESS));
4735                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4736                         (long unsigned int)exit_qualification);
4737                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4738                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4739                 return 0;
4740         }
4741
4742         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4743         trace_kvm_page_fault(gpa, exit_qualification);
4744         return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4745 }
4746
4747 static u64 ept_rsvd_mask(u64 spte, int level)
4748 {
4749         int i;
4750         u64 mask = 0;
4751
4752         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4753                 mask |= (1ULL << i);
4754
4755         if (level > 2)
4756                 /* bits 7:3 reserved */
4757                 mask |= 0xf8;
4758         else if (level == 2) {
4759                 if (spte & (1ULL << 7))
4760                         /* 2MB ref, bits 20:12 reserved */
4761                         mask |= 0x1ff000;
4762                 else
4763                         /* bits 6:3 reserved */
4764                         mask |= 0x78;
4765         }
4766
4767         return mask;
4768 }
4769
4770 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4771                                        int level)
4772 {
4773         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4774
4775         /* 010b (write-only) */
4776         WARN_ON((spte & 0x7) == 0x2);
4777
4778         /* 110b (write/execute) */
4779         WARN_ON((spte & 0x7) == 0x6);
4780
4781         /* 100b (execute-only) and value not supported by logical processor */
4782         if (!cpu_has_vmx_ept_execute_only())
4783                 WARN_ON((spte & 0x7) == 0x4);
4784
4785         /* not 000b */
4786         if ((spte & 0x7)) {
4787                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4788
4789                 if (rsvd_bits != 0) {
4790                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4791                                          __func__, rsvd_bits);
4792                         WARN_ON(1);
4793                 }
4794
4795                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4796                         u64 ept_mem_type = (spte & 0x38) >> 3;
4797
4798                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
4799                             ept_mem_type == 7) {
4800                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4801                                                 __func__, ept_mem_type);
4802                                 WARN_ON(1);
4803                         }
4804                 }
4805         }
4806 }
4807
4808 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4809 {
4810         u64 sptes[4];
4811         int nr_sptes, i, ret;
4812         gpa_t gpa;
4813
4814         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4815
4816         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4817         if (likely(ret == 1))
4818                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4819                                               EMULATE_DONE;
4820         if (unlikely(!ret))
4821                 return 1;
4822
4823         /* It is the real ept misconfig */
4824         printk(KERN_ERR "EPT: Misconfiguration.\n");
4825         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4826
4827         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4828
4829         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4830                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4831
4832         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4833         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4834
4835         return 0;
4836 }
4837
4838 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4839 {
4840         u32 cpu_based_vm_exec_control;
4841
4842         /* clear pending NMI */
4843         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4844         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4845         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4846         ++vcpu->stat.nmi_window_exits;
4847         kvm_make_request(KVM_REQ_EVENT, vcpu);
4848
4849         return 1;
4850 }
4851
4852 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4853 {
4854         struct vcpu_vmx *vmx = to_vmx(vcpu);
4855         enum emulation_result err = EMULATE_DONE;
4856         int ret = 1;
4857         u32 cpu_exec_ctrl;
4858         bool intr_window_requested;
4859
4860         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4861         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4862
4863         while (!guest_state_valid(vcpu)) {
4864                 if (intr_window_requested
4865                     && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4866                         return handle_interrupt_window(&vmx->vcpu);
4867
4868                 err = emulate_instruction(vcpu, 0);
4869
4870                 if (err == EMULATE_DO_MMIO) {
4871                         ret = 0;
4872                         goto out;
4873                 }
4874
4875                 if (err != EMULATE_DONE)
4876                         return 0;
4877
4878                 if (signal_pending(current))
4879                         goto out;
4880                 if (need_resched())
4881                         schedule();
4882         }
4883
4884         vmx->emulation_required = 0;
4885 out:
4886         return ret;
4887 }
4888
4889 /*
4890  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4891  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4892  */
4893 static int handle_pause(struct kvm_vcpu *vcpu)
4894 {
4895         skip_emulated_instruction(vcpu);
4896         kvm_vcpu_on_spin(vcpu);
4897
4898         return 1;
4899 }
4900
4901 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4902 {
4903         kvm_queue_exception(vcpu, UD_VECTOR);
4904         return 1;
4905 }
4906
4907 /*
4908  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4909  * We could reuse a single VMCS for all the L2 guests, but we also want the
4910  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4911  * allows keeping them loaded on the processor, and in the future will allow
4912  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4913  * every entry if they never change.
4914  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4915  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4916  *
4917  * The following functions allocate and free a vmcs02 in this pool.
4918  */
4919
4920 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4921 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4922 {
4923         struct vmcs02_list *item;
4924         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4925                 if (item->vmptr == vmx->nested.current_vmptr) {
4926                         list_move(&item->list, &vmx->nested.vmcs02_pool);
4927                         return &item->vmcs02;
4928                 }
4929
4930         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4931                 /* Recycle the least recently used VMCS. */
4932                 item = list_entry(vmx->nested.vmcs02_pool.prev,
4933                         struct vmcs02_list, list);
4934                 item->vmptr = vmx->nested.current_vmptr;
4935                 list_move(&item->list, &vmx->nested.vmcs02_pool);
4936                 return &item->vmcs02;
4937         }
4938
4939         /* Create a new VMCS */
4940         item = (struct vmcs02_list *)
4941                 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4942         if (!item)
4943                 return NULL;
4944         item->vmcs02.vmcs = alloc_vmcs();
4945         if (!item->vmcs02.vmcs) {
4946                 kfree(item);
4947                 return NULL;
4948         }
4949         loaded_vmcs_init(&item->vmcs02);
4950         item->vmptr = vmx->nested.current_vmptr;
4951         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4952         vmx->nested.vmcs02_num++;
4953         return &item->vmcs02;
4954 }
4955
4956 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4957 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4958 {
4959         struct vmcs02_list *item;
4960         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4961                 if (item->vmptr == vmptr) {
4962                         free_loaded_vmcs(&item->vmcs02);
4963                         list_del(&item->list);
4964                         kfree(item);
4965                         vmx->nested.vmcs02_num--;
4966                         return;
4967                 }
4968 }
4969
4970 /*
4971  * Free all VMCSs saved for this vcpu, except the one pointed by
4972  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4973  * currently used, if running L2), and vmcs01 when running L2.
4974  */
4975 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4976 {
4977         struct vmcs02_list *item, *n;
4978         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4979                 if (vmx->loaded_vmcs != &item->vmcs02)
4980                         free_loaded_vmcs(&item->vmcs02);
4981                 list_del(&item->list);
4982                 kfree(item);
4983         }
4984         vmx->nested.vmcs02_num = 0;
4985
4986         if (vmx->loaded_vmcs != &vmx->vmcs01)
4987                 free_loaded_vmcs(&vmx->vmcs01);
4988 }
4989
4990 /*
4991  * Emulate the VMXON instruction.
4992  * Currently, we just remember that VMX is active, and do not save or even
4993  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4994  * do not currently need to store anything in that guest-allocated memory
4995  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4996  * argument is different from the VMXON pointer (which the spec says they do).
4997  */
4998 static int handle_vmon(struct kvm_vcpu *vcpu)
4999 {
5000         struct kvm_segment cs;
5001         struct vcpu_vmx *vmx = to_vmx(vcpu);
5002
5003         /* The Intel VMX Instruction Reference lists a bunch of bits that
5004          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5005          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5006          * Otherwise, we should fail with #UD. We test these now:
5007          */
5008         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5009             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5010             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5011                 kvm_queue_exception(vcpu, UD_VECTOR);
5012                 return 1;
5013         }
5014
5015         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5016         if (is_long_mode(vcpu) && !cs.l) {
5017                 kvm_queue_exception(vcpu, UD_VECTOR);
5018                 return 1;
5019         }
5020
5021         if (vmx_get_cpl(vcpu)) {
5022                 kvm_inject_gp(vcpu, 0);
5023                 return 1;
5024         }
5025
5026         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5027         vmx->nested.vmcs02_num = 0;
5028
5029         vmx->nested.vmxon = true;
5030
5031         skip_emulated_instruction(vcpu);
5032         return 1;
5033 }
5034
5035 /*
5036  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5037  * for running VMX instructions (except VMXON, whose prerequisites are
5038  * slightly different). It also specifies what exception to inject otherwise.
5039  */
5040 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5041 {
5042         struct kvm_segment cs;
5043         struct vcpu_vmx *vmx = to_vmx(vcpu);
5044
5045         if (!vmx->nested.vmxon) {
5046                 kvm_queue_exception(vcpu, UD_VECTOR);
5047                 return 0;
5048         }
5049
5050         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5051         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5052             (is_long_mode(vcpu) && !cs.l)) {
5053                 kvm_queue_exception(vcpu, UD_VECTOR);
5054                 return 0;
5055         }
5056
5057         if (vmx_get_cpl(vcpu)) {
5058                 kvm_inject_gp(vcpu, 0);
5059                 return 0;
5060         }
5061
5062         return 1;
5063 }
5064
5065 /*
5066  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5067  * just stops using VMX.
5068  */
5069 static void free_nested(struct vcpu_vmx *vmx)
5070 {
5071         if (!vmx->nested.vmxon)
5072                 return;
5073         vmx->nested.vmxon = false;
5074         if (vmx->nested.current_vmptr != -1ull) {
5075                 kunmap(vmx->nested.current_vmcs12_page);
5076                 nested_release_page(vmx->nested.current_vmcs12_page);
5077                 vmx->nested.current_vmptr = -1ull;
5078                 vmx->nested.current_vmcs12 = NULL;
5079         }
5080         /* Unpin physical memory we referred to in current vmcs02 */
5081         if (vmx->nested.apic_access_page) {
5082                 nested_release_page(vmx->nested.apic_access_page);
5083                 vmx->nested.apic_access_page = 0;
5084         }
5085
5086         nested_free_all_saved_vmcss(vmx);
5087 }
5088
5089 /* Emulate the VMXOFF instruction */
5090 static int handle_vmoff(struct kvm_vcpu *vcpu)
5091 {
5092         if (!nested_vmx_check_permission(vcpu))
5093                 return 1;
5094         free_nested(to_vmx(vcpu));
5095         skip_emulated_instruction(vcpu);
5096         return 1;
5097 }
5098
5099 /*
5100  * Decode the memory-address operand of a vmx instruction, as recorded on an
5101  * exit caused by such an instruction (run by a guest hypervisor).
5102  * On success, returns 0. When the operand is invalid, returns 1 and throws
5103  * #UD or #GP.
5104  */
5105 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5106                                  unsigned long exit_qualification,
5107                                  u32 vmx_instruction_info, gva_t *ret)
5108 {
5109         /*
5110          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5111          * Execution", on an exit, vmx_instruction_info holds most of the
5112          * addressing components of the operand. Only the displacement part
5113          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5114          * For how an actual address is calculated from all these components,
5115          * refer to Vol. 1, "Operand Addressing".
5116          */
5117         int  scaling = vmx_instruction_info & 3;
5118         int  addr_size = (vmx_instruction_info >> 7) & 7;
5119         bool is_reg = vmx_instruction_info & (1u << 10);
5120         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5121         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5122         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5123         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5124         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5125
5126         if (is_reg) {
5127                 kvm_queue_exception(vcpu, UD_VECTOR);
5128                 return 1;
5129         }
5130
5131         /* Addr = segment_base + offset */
5132         /* offset = base + [index * scale] + displacement */
5133         *ret = vmx_get_segment_base(vcpu, seg_reg);
5134         if (base_is_valid)
5135                 *ret += kvm_register_read(vcpu, base_reg);
5136         if (index_is_valid)
5137                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5138         *ret += exit_qualification; /* holds the displacement */
5139
5140         if (addr_size == 1) /* 32 bit */
5141                 *ret &= 0xffffffff;
5142
5143         /*
5144          * TODO: throw #GP (and return 1) in various cases that the VM*
5145          * instructions require it - e.g., offset beyond segment limit,
5146          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5147          * address, and so on. Currently these are not checked.
5148          */
5149         return 0;
5150 }
5151
5152 /*
5153  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5154  * set the success or error code of an emulated VMX instruction, as specified
5155  * by Vol 2B, VMX Instruction Reference, "Conventions".
5156  */
5157 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5158 {
5159         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5160                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5161                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5162 }
5163
5164 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5165 {
5166         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5167                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5168                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5169                         | X86_EFLAGS_CF);
5170 }
5171
5172 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5173                                         u32 vm_instruction_error)
5174 {
5175         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5176                 /*
5177                  * failValid writes the error number to the current VMCS, which
5178                  * can't be done there isn't a current VMCS.
5179                  */
5180                 nested_vmx_failInvalid(vcpu);
5181                 return;
5182         }
5183         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5184                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5185                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5186                         | X86_EFLAGS_ZF);
5187         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5188 }
5189
5190 /* Emulate the VMCLEAR instruction */
5191 static int handle_vmclear(struct kvm_vcpu *vcpu)
5192 {
5193         struct vcpu_vmx *vmx = to_vmx(vcpu);
5194         gva_t gva;
5195         gpa_t vmptr;
5196         struct vmcs12 *vmcs12;
5197         struct page *page;
5198         struct x86_exception e;
5199
5200         if (!nested_vmx_check_permission(vcpu))
5201                 return 1;
5202
5203         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5204                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5205                 return 1;
5206
5207         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5208                                 sizeof(vmptr), &e)) {
5209                 kvm_inject_page_fault(vcpu, &e);
5210                 return 1;
5211         }
5212
5213         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5214                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5215                 skip_emulated_instruction(vcpu);
5216                 return 1;
5217         }
5218
5219         if (vmptr == vmx->nested.current_vmptr) {
5220                 kunmap(vmx->nested.current_vmcs12_page);
5221                 nested_release_page(vmx->nested.current_vmcs12_page);
5222                 vmx->nested.current_vmptr = -1ull;
5223                 vmx->nested.current_vmcs12 = NULL;
5224         }
5225
5226         page = nested_get_page(vcpu, vmptr);
5227         if (page == NULL) {
5228                 /*
5229                  * For accurate processor emulation, VMCLEAR beyond available
5230                  * physical memory should do nothing at all. However, it is
5231                  * possible that a nested vmx bug, not a guest hypervisor bug,
5232                  * resulted in this case, so let's shut down before doing any
5233                  * more damage:
5234                  */
5235                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5236                 return 1;
5237         }
5238         vmcs12 = kmap(page);
5239         vmcs12->launch_state = 0;
5240         kunmap(page);
5241         nested_release_page(page);
5242
5243         nested_free_vmcs02(vmx, vmptr);
5244
5245         skip_emulated_instruction(vcpu);
5246         nested_vmx_succeed(vcpu);
5247         return 1;
5248 }
5249
5250 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5251
5252 /* Emulate the VMLAUNCH instruction */
5253 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5254 {
5255         return nested_vmx_run(vcpu, true);
5256 }
5257
5258 /* Emulate the VMRESUME instruction */
5259 static int handle_vmresume(struct kvm_vcpu *vcpu)
5260 {
5261
5262         return nested_vmx_run(vcpu, false);
5263 }
5264
5265 enum vmcs_field_type {
5266         VMCS_FIELD_TYPE_U16 = 0,
5267         VMCS_FIELD_TYPE_U64 = 1,
5268         VMCS_FIELD_TYPE_U32 = 2,
5269         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5270 };
5271
5272 static inline int vmcs_field_type(unsigned long field)
5273 {
5274         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5275                 return VMCS_FIELD_TYPE_U32;
5276         return (field >> 13) & 0x3 ;
5277 }
5278
5279 static inline int vmcs_field_readonly(unsigned long field)
5280 {
5281         return (((field >> 10) & 0x3) == 1);
5282 }
5283
5284 /*
5285  * Read a vmcs12 field. Since these can have varying lengths and we return
5286  * one type, we chose the biggest type (u64) and zero-extend the return value
5287  * to that size. Note that the caller, handle_vmread, might need to use only
5288  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5289  * 64-bit fields are to be returned).
5290  */
5291 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5292                                         unsigned long field, u64 *ret)
5293 {
5294         short offset = vmcs_field_to_offset(field);
5295         char *p;
5296
5297         if (offset < 0)
5298                 return 0;
5299
5300         p = ((char *)(get_vmcs12(vcpu))) + offset;
5301
5302         switch (vmcs_field_type(field)) {
5303         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5304                 *ret = *((natural_width *)p);
5305                 return 1;
5306         case VMCS_FIELD_TYPE_U16:
5307                 *ret = *((u16 *)p);
5308                 return 1;
5309         case VMCS_FIELD_TYPE_U32:
5310                 *ret = *((u32 *)p);
5311                 return 1;
5312         case VMCS_FIELD_TYPE_U64:
5313                 *ret = *((u64 *)p);
5314                 return 1;
5315         default:
5316                 return 0; /* can never happen. */
5317         }
5318 }
5319
5320 /*
5321  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5322  * used before) all generate the same failure when it is missing.
5323  */
5324 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5325 {
5326         struct vcpu_vmx *vmx = to_vmx(vcpu);
5327         if (vmx->nested.current_vmptr == -1ull) {
5328                 nested_vmx_failInvalid(vcpu);
5329                 skip_emulated_instruction(vcpu);
5330                 return 0;
5331         }
5332         return 1;
5333 }
5334
5335 static int handle_vmread(struct kvm_vcpu *vcpu)
5336 {
5337         unsigned long field;
5338         u64 field_value;
5339         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5340         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5341         gva_t gva = 0;
5342
5343         if (!nested_vmx_check_permission(vcpu) ||
5344             !nested_vmx_check_vmcs12(vcpu))
5345                 return 1;
5346
5347         /* Decode instruction info and find the field to read */
5348         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5349         /* Read the field, zero-extended to a u64 field_value */
5350         if (!vmcs12_read_any(vcpu, field, &field_value)) {
5351                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5352                 skip_emulated_instruction(vcpu);
5353                 return 1;
5354         }
5355         /*
5356          * Now copy part of this value to register or memory, as requested.
5357          * Note that the number of bits actually copied is 32 or 64 depending
5358          * on the guest's mode (32 or 64 bit), not on the given field's length.
5359          */
5360         if (vmx_instruction_info & (1u << 10)) {
5361                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5362                         field_value);
5363         } else {
5364                 if (get_vmx_mem_address(vcpu, exit_qualification,
5365                                 vmx_instruction_info, &gva))
5366                         return 1;
5367                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5368                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5369                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5370         }
5371
5372         nested_vmx_succeed(vcpu);
5373         skip_emulated_instruction(vcpu);
5374         return 1;
5375 }
5376
5377
5378 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5379 {
5380         unsigned long field;
5381         gva_t gva;
5382         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5383         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5384         char *p;
5385         short offset;
5386         /* The value to write might be 32 or 64 bits, depending on L1's long
5387          * mode, and eventually we need to write that into a field of several
5388          * possible lengths. The code below first zero-extends the value to 64
5389          * bit (field_value), and then copies only the approriate number of
5390          * bits into the vmcs12 field.
5391          */
5392         u64 field_value = 0;
5393         struct x86_exception e;
5394
5395         if (!nested_vmx_check_permission(vcpu) ||
5396             !nested_vmx_check_vmcs12(vcpu))
5397                 return 1;
5398
5399         if (vmx_instruction_info & (1u << 10))
5400                 field_value = kvm_register_read(vcpu,
5401                         (((vmx_instruction_info) >> 3) & 0xf));
5402         else {
5403                 if (get_vmx_mem_address(vcpu, exit_qualification,
5404                                 vmx_instruction_info, &gva))
5405                         return 1;
5406                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5407                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5408                         kvm_inject_page_fault(vcpu, &e);
5409                         return 1;
5410                 }
5411         }
5412
5413
5414         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5415         if (vmcs_field_readonly(field)) {
5416                 nested_vmx_failValid(vcpu,
5417                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5418                 skip_emulated_instruction(vcpu);
5419                 return 1;
5420         }
5421
5422         offset = vmcs_field_to_offset(field);
5423         if (offset < 0) {
5424                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5425                 skip_emulated_instruction(vcpu);
5426                 return 1;
5427         }
5428         p = ((char *) get_vmcs12(vcpu)) + offset;
5429
5430         switch (vmcs_field_type(field)) {
5431         case VMCS_FIELD_TYPE_U16:
5432                 *(u16 *)p = field_value;
5433                 break;
5434         case VMCS_FIELD_TYPE_U32:
5435                 *(u32 *)p = field_value;
5436                 break;
5437         case VMCS_FIELD_TYPE_U64:
5438                 *(u64 *)p = field_value;
5439                 break;
5440         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5441                 *(natural_width *)p = field_value;
5442                 break;
5443         default:
5444                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5445                 skip_emulated_instruction(vcpu);
5446                 return 1;
5447         }
5448
5449         nested_vmx_succeed(vcpu);
5450         skip_emulated_instruction(vcpu);
5451         return 1;
5452 }
5453
5454 /* Emulate the VMPTRLD instruction */
5455 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5456 {
5457         struct vcpu_vmx *vmx = to_vmx(vcpu);
5458         gva_t gva;
5459         gpa_t vmptr;
5460         struct x86_exception e;
5461
5462         if (!nested_vmx_check_permission(vcpu))
5463                 return 1;
5464
5465         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5466                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5467                 return 1;
5468
5469         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5470                                 sizeof(vmptr), &e)) {
5471                 kvm_inject_page_fault(vcpu, &e);
5472                 return 1;
5473         }
5474
5475         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5476                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5477                 skip_emulated_instruction(vcpu);
5478                 return 1;
5479         }
5480
5481         if (vmx->nested.current_vmptr != vmptr) {
5482                 struct vmcs12 *new_vmcs12;
5483                 struct page *page;
5484                 page = nested_get_page(vcpu, vmptr);
5485                 if (page == NULL) {
5486                         nested_vmx_failInvalid(vcpu);
5487                         skip_emulated_instruction(vcpu);
5488                         return 1;
5489                 }
5490                 new_vmcs12 = kmap(page);
5491                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5492                         kunmap(page);
5493                         nested_release_page_clean(page);
5494                         nested_vmx_failValid(vcpu,
5495                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5496                         skip_emulated_instruction(vcpu);
5497                         return 1;
5498                 }
5499                 if (vmx->nested.current_vmptr != -1ull) {
5500                         kunmap(vmx->nested.current_vmcs12_page);
5501                         nested_release_page(vmx->nested.current_vmcs12_page);
5502                 }
5503
5504                 vmx->nested.current_vmptr = vmptr;
5505                 vmx->nested.current_vmcs12 = new_vmcs12;
5506                 vmx->nested.current_vmcs12_page = page;
5507         }
5508
5509         nested_vmx_succeed(vcpu);
5510         skip_emulated_instruction(vcpu);
5511         return 1;
5512 }
5513
5514 /* Emulate the VMPTRST instruction */
5515 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5516 {
5517         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5518         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5519         gva_t vmcs_gva;
5520         struct x86_exception e;
5521
5522         if (!nested_vmx_check_permission(vcpu))
5523                 return 1;
5524
5525         if (get_vmx_mem_address(vcpu, exit_qualification,
5526                         vmx_instruction_info, &vmcs_gva))
5527                 return 1;
5528         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5529         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5530                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
5531                                  sizeof(u64), &e)) {
5532                 kvm_inject_page_fault(vcpu, &e);
5533                 return 1;
5534         }
5535         nested_vmx_succeed(vcpu);
5536         skip_emulated_instruction(vcpu);
5537         return 1;
5538 }
5539
5540 /*
5541  * The exit handlers return 1 if the exit was handled fully and guest execution
5542  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5543  * to be done to userspace and return 0.
5544  */
5545 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5546         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5547         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5548         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5549         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5550         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5551         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5552         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5553         [EXIT_REASON_CPUID]                   = handle_cpuid,
5554         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
5555         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5556         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5557         [EXIT_REASON_HLT]                     = handle_halt,
5558         [EXIT_REASON_INVD]                    = handle_invd,
5559         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5560         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5561         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
5562         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
5563         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
5564         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
5565         [EXIT_REASON_VMREAD]                  = handle_vmread,
5566         [EXIT_REASON_VMRESUME]                = handle_vmresume,
5567         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
5568         [EXIT_REASON_VMOFF]                   = handle_vmoff,
5569         [EXIT_REASON_VMON]                    = handle_vmon,
5570         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5571         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5572         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5573         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5574         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5575         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5576         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5577         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5578         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5579         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
5580         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
5581 };
5582
5583 static const int kvm_vmx_max_exit_handlers =
5584         ARRAY_SIZE(kvm_vmx_exit_handlers);
5585
5586 /*
5587  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5588  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5589  * disinterest in the current event (read or write a specific MSR) by using an
5590  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5591  */
5592 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5593         struct vmcs12 *vmcs12, u32 exit_reason)
5594 {
5595         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5596         gpa_t bitmap;
5597
5598         if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5599                 return 1;
5600
5601         /*
5602          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5603          * for the four combinations of read/write and low/high MSR numbers.
5604          * First we need to figure out which of the four to use:
5605          */
5606         bitmap = vmcs12->msr_bitmap;
5607         if (exit_reason == EXIT_REASON_MSR_WRITE)
5608                 bitmap += 2048;
5609         if (msr_index >= 0xc0000000) {
5610                 msr_index -= 0xc0000000;
5611                 bitmap += 1024;
5612         }
5613
5614         /* Then read the msr_index'th bit from this bitmap: */
5615         if (msr_index < 1024*8) {
5616                 unsigned char b;
5617                 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5618                 return 1 & (b >> (msr_index & 7));
5619         } else
5620                 return 1; /* let L1 handle the wrong parameter */
5621 }
5622
5623 /*
5624  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5625  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5626  * intercept (via guest_host_mask etc.) the current event.
5627  */
5628 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5629         struct vmcs12 *vmcs12)
5630 {
5631         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5632         int cr = exit_qualification & 15;
5633         int reg = (exit_qualification >> 8) & 15;
5634         unsigned long val = kvm_register_read(vcpu, reg);
5635
5636         switch ((exit_qualification >> 4) & 3) {
5637         case 0: /* mov to cr */
5638                 switch (cr) {
5639                 case 0:
5640                         if (vmcs12->cr0_guest_host_mask &
5641                             (val ^ vmcs12->cr0_read_shadow))
5642                                 return 1;
5643                         break;
5644                 case 3:
5645                         if ((vmcs12->cr3_target_count >= 1 &&
5646                                         vmcs12->cr3_target_value0 == val) ||
5647                                 (vmcs12->cr3_target_count >= 2 &&
5648                                         vmcs12->cr3_target_value1 == val) ||
5649                                 (vmcs12->cr3_target_count >= 3 &&
5650                                         vmcs12->cr3_target_value2 == val) ||
5651                                 (vmcs12->cr3_target_count >= 4 &&
5652                                         vmcs12->cr3_target_value3 == val))
5653                                 return 0;
5654                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5655                                 return 1;
5656                         break;
5657                 case 4:
5658                         if (vmcs12->cr4_guest_host_mask &
5659                             (vmcs12->cr4_read_shadow ^ val))
5660                                 return 1;
5661                         break;
5662                 case 8:
5663                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5664                                 return 1;
5665                         break;
5666                 }
5667                 break;
5668         case 2: /* clts */
5669                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5670                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5671                         return 1;
5672                 break;
5673         case 1: /* mov from cr */
5674                 switch (cr) {
5675                 case 3:
5676                         if (vmcs12->cpu_based_vm_exec_control &
5677                             CPU_BASED_CR3_STORE_EXITING)
5678                                 return 1;
5679                         break;
5680                 case 8:
5681                         if (vmcs12->cpu_based_vm_exec_control &
5682                             CPU_BASED_CR8_STORE_EXITING)
5683                                 return 1;
5684                         break;
5685                 }
5686                 break;
5687         case 3: /* lmsw */
5688                 /*
5689                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5690                  * cr0. Other attempted changes are ignored, with no exit.
5691                  */
5692                 if (vmcs12->cr0_guest_host_mask & 0xe &
5693                     (val ^ vmcs12->cr0_read_shadow))
5694                         return 1;
5695                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5696                     !(vmcs12->cr0_read_shadow & 0x1) &&
5697                     (val & 0x1))
5698                         return 1;
5699                 break;
5700         }
5701         return 0;
5702 }
5703
5704 /*
5705  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5706  * should handle it ourselves in L0 (and then continue L2). Only call this
5707  * when in is_guest_mode (L2).
5708  */
5709 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5710 {
5711         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5712         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5713         struct vcpu_vmx *vmx = to_vmx(vcpu);
5714         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5715
5716         if (vmx->nested.nested_run_pending)
5717                 return 0;
5718
5719         if (unlikely(vmx->fail)) {
5720                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5721                                     vmcs_read32(VM_INSTRUCTION_ERROR));
5722                 return 1;
5723         }
5724
5725         switch (exit_reason) {
5726         case EXIT_REASON_EXCEPTION_NMI:
5727                 if (!is_exception(intr_info))
5728                         return 0;
5729                 else if (is_page_fault(intr_info))
5730                         return enable_ept;
5731                 return vmcs12->exception_bitmap &
5732                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5733         case EXIT_REASON_EXTERNAL_INTERRUPT:
5734                 return 0;
5735         case EXIT_REASON_TRIPLE_FAULT:
5736                 return 1;
5737         case EXIT_REASON_PENDING_INTERRUPT:
5738         case EXIT_REASON_NMI_WINDOW:
5739                 /*
5740                  * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5741                  * (aka Interrupt Window Exiting) only when L1 turned it on,
5742                  * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5743                  * Same for NMI Window Exiting.
5744                  */
5745                 return 1;
5746         case EXIT_REASON_TASK_SWITCH:
5747                 return 1;
5748         case EXIT_REASON_CPUID:
5749                 return 1;
5750         case EXIT_REASON_HLT:
5751                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5752         case EXIT_REASON_INVD:
5753                 return 1;
5754         case EXIT_REASON_INVLPG:
5755                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5756         case EXIT_REASON_RDPMC:
5757                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5758         case EXIT_REASON_RDTSC:
5759                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5760         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5761         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5762         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5763         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5764         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5765                 /*
5766                  * VMX instructions trap unconditionally. This allows L1 to
5767                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5768                  */
5769                 return 1;
5770         case EXIT_REASON_CR_ACCESS:
5771                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5772         case EXIT_REASON_DR_ACCESS:
5773                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5774         case EXIT_REASON_IO_INSTRUCTION:
5775                 /* TODO: support IO bitmaps */
5776                 return 1;
5777         case EXIT_REASON_MSR_READ:
5778         case EXIT_REASON_MSR_WRITE:
5779                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5780         case EXIT_REASON_INVALID_STATE:
5781                 return 1;
5782         case EXIT_REASON_MWAIT_INSTRUCTION:
5783                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5784         case EXIT_REASON_MONITOR_INSTRUCTION:
5785                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5786         case EXIT_REASON_PAUSE_INSTRUCTION:
5787                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5788                         nested_cpu_has2(vmcs12,
5789                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5790         case EXIT_REASON_MCE_DURING_VMENTRY:
5791                 return 0;
5792         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5793                 return 1;
5794         case EXIT_REASON_APIC_ACCESS:
5795                 return nested_cpu_has2(vmcs12,
5796                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5797         case EXIT_REASON_EPT_VIOLATION:
5798         case EXIT_REASON_EPT_MISCONFIG:
5799                 return 0;
5800         case EXIT_REASON_WBINVD:
5801                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5802         case EXIT_REASON_XSETBV:
5803                 return 1;
5804         default:
5805                 return 1;
5806         }
5807 }
5808
5809 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5810 {
5811         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5812         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5813 }
5814
5815 /*
5816  * The guest has exited.  See if we can fix it or if we need userspace
5817  * assistance.
5818  */
5819 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5820 {
5821         struct vcpu_vmx *vmx = to_vmx(vcpu);
5822         u32 exit_reason = vmx->exit_reason;
5823         u32 vectoring_info = vmx->idt_vectoring_info;
5824
5825         /* If guest state is invalid, start emulating */
5826         if (vmx->emulation_required && emulate_invalid_guest_state)
5827                 return handle_invalid_guest_state(vcpu);
5828
5829         /*
5830          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5831          * we did not inject a still-pending event to L1 now because of
5832          * nested_run_pending, we need to re-enable this bit.
5833          */
5834         if (vmx->nested.nested_run_pending)
5835                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5836
5837         if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5838             exit_reason == EXIT_REASON_VMRESUME))
5839                 vmx->nested.nested_run_pending = 1;
5840         else
5841                 vmx->nested.nested_run_pending = 0;
5842
5843         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5844                 nested_vmx_vmexit(vcpu);
5845                 return 1;
5846         }
5847
5848         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5849                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5850                 vcpu->run->fail_entry.hardware_entry_failure_reason
5851                         = exit_reason;
5852                 return 0;
5853         }
5854
5855         if (unlikely(vmx->fail)) {
5856                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5857                 vcpu->run->fail_entry.hardware_entry_failure_reason
5858                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5859                 return 0;
5860         }
5861
5862         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5863                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5864                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5865                         exit_reason != EXIT_REASON_TASK_SWITCH))
5866                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5867                        "(0x%x) and exit reason is 0x%x\n",
5868                        __func__, vectoring_info, exit_reason);
5869
5870         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5871             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5872                                         get_vmcs12(vcpu), vcpu)))) {
5873                 if (vmx_interrupt_allowed(vcpu)) {
5874                         vmx->soft_vnmi_blocked = 0;
5875                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
5876                            vcpu->arch.nmi_pending) {
5877                         /*
5878                          * This CPU don't support us in finding the end of an
5879                          * NMI-blocked window if the guest runs with IRQs
5880                          * disabled. So we pull the trigger after 1 s of
5881                          * futile waiting, but inform the user about this.
5882                          */
5883                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5884                                "state on VCPU %d after 1 s timeout\n",
5885                                __func__, vcpu->vcpu_id);
5886                         vmx->soft_vnmi_blocked = 0;
5887                 }
5888         }
5889
5890         if (exit_reason < kvm_vmx_max_exit_handlers
5891             && kvm_vmx_exit_handlers[exit_reason])
5892                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5893         else {
5894                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5895                 vcpu->run->hw.hardware_exit_reason = exit_reason;
5896         }
5897         return 0;
5898 }
5899
5900 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5901 {
5902         if (irr == -1 || tpr < irr) {
5903                 vmcs_write32(TPR_THRESHOLD, 0);
5904                 return;
5905         }
5906
5907         vmcs_write32(TPR_THRESHOLD, irr);
5908 }
5909
5910 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5911 {
5912         u32 exit_intr_info;
5913
5914         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5915               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5916                 return;
5917
5918         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5919         exit_intr_info = vmx->exit_intr_info;
5920
5921         /* Handle machine checks before interrupts are enabled */
5922         if (is_machine_check(exit_intr_info))
5923                 kvm_machine_check();
5924
5925         /* We need to handle NMIs before interrupts are enabled */
5926         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5927             (exit_intr_info & INTR_INFO_VALID_MASK)) {
5928                 kvm_before_handle_nmi(&vmx->vcpu);
5929                 asm("int $2");
5930                 kvm_after_handle_nmi(&vmx->vcpu);
5931         }
5932 }
5933
5934 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5935 {
5936         u32 exit_intr_info;
5937         bool unblock_nmi;
5938         u8 vector;
5939         bool idtv_info_valid;
5940
5941         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5942
5943         if (cpu_has_virtual_nmis()) {
5944                 if (vmx->nmi_known_unmasked)
5945                         return;
5946                 /*
5947                  * Can't use vmx->exit_intr_info since we're not sure what
5948                  * the exit reason is.
5949                  */
5950                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5951                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5952                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5953                 /*
5954                  * SDM 3: 27.7.1.2 (September 2008)
5955                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
5956                  * a guest IRET fault.
5957                  * SDM 3: 23.2.2 (September 2008)
5958                  * Bit 12 is undefined in any of the following cases:
5959                  *  If the VM exit sets the valid bit in the IDT-vectoring
5960                  *   information field.
5961                  *  If the VM exit is due to a double fault.
5962                  */
5963                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5964                     vector != DF_VECTOR && !idtv_info_valid)
5965                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5966                                       GUEST_INTR_STATE_NMI);
5967                 else
5968                         vmx->nmi_known_unmasked =
5969                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5970                                   & GUEST_INTR_STATE_NMI);
5971         } else if (unlikely(vmx->soft_vnmi_blocked))
5972                 vmx->vnmi_blocked_time +=
5973                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
5974 }
5975
5976 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5977                                       u32 idt_vectoring_info,
5978                                       int instr_len_field,
5979                                       int error_code_field)
5980 {
5981         u8 vector;
5982         int type;
5983         bool idtv_info_valid;
5984
5985         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5986
5987         vmx->vcpu.arch.nmi_injected = false;
5988         kvm_clear_exception_queue(&vmx->vcpu);
5989         kvm_clear_interrupt_queue(&vmx->vcpu);
5990
5991         if (!idtv_info_valid)
5992                 return;
5993
5994         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5995
5996         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
5997         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
5998
5999         switch (type) {
6000         case INTR_TYPE_NMI_INTR:
6001                 vmx->vcpu.arch.nmi_injected = true;
6002                 /*
6003                  * SDM 3: 27.7.1.2 (September 2008)
6004                  * Clear bit "block by NMI" before VM entry if a NMI
6005                  * delivery faulted.
6006                  */
6007                 vmx_set_nmi_mask(&vmx->vcpu, false);
6008                 break;
6009         case INTR_TYPE_SOFT_EXCEPTION:
6010                 vmx->vcpu.arch.event_exit_inst_len =
6011                         vmcs_read32(instr_len_field);
6012                 /* fall through */
6013         case INTR_TYPE_HARD_EXCEPTION:
6014                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6015                         u32 err = vmcs_read32(error_code_field);
6016                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
6017                 } else
6018                         kvm_queue_exception(&vmx->vcpu, vector);
6019                 break;
6020         case INTR_TYPE_SOFT_INTR:
6021                 vmx->vcpu.arch.event_exit_inst_len =
6022                         vmcs_read32(instr_len_field);
6023                 /* fall through */
6024         case INTR_TYPE_EXT_INTR:
6025                 kvm_queue_interrupt(&vmx->vcpu, vector,
6026                         type == INTR_TYPE_SOFT_INTR);
6027                 break;
6028         default:
6029                 break;
6030         }
6031 }
6032
6033 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6034 {
6035         if (is_guest_mode(&vmx->vcpu))
6036                 return;
6037         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6038                                   VM_EXIT_INSTRUCTION_LEN,
6039                                   IDT_VECTORING_ERROR_CODE);
6040 }
6041
6042 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6043 {
6044         if (is_guest_mode(vcpu))
6045                 return;
6046         __vmx_complete_interrupts(to_vmx(vcpu),
6047                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6048                                   VM_ENTRY_INSTRUCTION_LEN,
6049                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6050
6051         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6052 }
6053
6054 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6055 {
6056         int i, nr_msrs;
6057         struct perf_guest_switch_msr *msrs;
6058
6059         msrs = perf_guest_get_msrs(&nr_msrs);
6060
6061         if (!msrs)
6062                 return;
6063
6064         for (i = 0; i < nr_msrs; i++)
6065                 if (msrs[i].host == msrs[i].guest)
6066                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6067                 else
6068                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6069                                         msrs[i].host);
6070 }
6071
6072 #ifdef CONFIG_X86_64
6073 #define R "r"
6074 #define Q "q"
6075 #else
6076 #define R "e"
6077 #define Q "l"
6078 #endif
6079
6080 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6081 {
6082         struct vcpu_vmx *vmx = to_vmx(vcpu);
6083
6084         if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6085                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6086                 if (vmcs12->idt_vectoring_info_field &
6087                                 VECTORING_INFO_VALID_MASK) {
6088                         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6089                                 vmcs12->idt_vectoring_info_field);
6090                         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6091                                 vmcs12->vm_exit_instruction_len);
6092                         if (vmcs12->idt_vectoring_info_field &
6093                                         VECTORING_INFO_DELIVER_CODE_MASK)
6094                                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6095                                         vmcs12->idt_vectoring_error_code);
6096                 }
6097         }
6098
6099         /* Record the guest's net vcpu time for enforced NMI injections. */
6100         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6101                 vmx->entry_time = ktime_get();
6102
6103         /* Don't enter VMX if guest state is invalid, let the exit handler
6104            start emulation until we arrive back to a valid state */
6105         if (vmx->emulation_required && emulate_invalid_guest_state)
6106                 return;
6107
6108         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6109                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6110         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6111                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6112
6113         /* When single-stepping over STI and MOV SS, we must clear the
6114          * corresponding interruptibility bits in the guest state. Otherwise
6115          * vmentry fails as it then expects bit 14 (BS) in pending debug
6116          * exceptions being set, but that's not correct for the guest debugging
6117          * case. */
6118         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6119                 vmx_set_interrupt_shadow(vcpu, 0);
6120
6121         atomic_switch_perf_msrs(vmx);
6122
6123         vmx->__launched = vmx->loaded_vmcs->launched;
6124         asm(
6125                 /* Store host registers */
6126                 "push %%"R"dx; push %%"R"bp;"
6127                 "push %%"R"cx \n\t" /* placeholder for guest rcx */
6128                 "push %%"R"cx \n\t"
6129                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6130                 "je 1f \n\t"
6131                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
6132                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6133                 "1: \n\t"
6134                 /* Reload cr2 if changed */
6135                 "mov %c[cr2](%0), %%"R"ax \n\t"
6136                 "mov %%cr2, %%"R"dx \n\t"
6137                 "cmp %%"R"ax, %%"R"dx \n\t"
6138                 "je 2f \n\t"
6139                 "mov %%"R"ax, %%cr2 \n\t"
6140                 "2: \n\t"
6141                 /* Check if vmlaunch of vmresume is needed */
6142                 "cmpl $0, %c[launched](%0) \n\t"
6143                 /* Load guest registers.  Don't clobber flags. */
6144                 "mov %c[rax](%0), %%"R"ax \n\t"
6145                 "mov %c[rbx](%0), %%"R"bx \n\t"
6146                 "mov %c[rdx](%0), %%"R"dx \n\t"
6147                 "mov %c[rsi](%0), %%"R"si \n\t"
6148                 "mov %c[rdi](%0), %%"R"di \n\t"
6149                 "mov %c[rbp](%0), %%"R"bp \n\t"
6150 #ifdef CONFIG_X86_64
6151                 "mov %c[r8](%0),  %%r8  \n\t"
6152                 "mov %c[r9](%0),  %%r9  \n\t"
6153                 "mov %c[r10](%0), %%r10 \n\t"
6154                 "mov %c[r11](%0), %%r11 \n\t"
6155                 "mov %c[r12](%0), %%r12 \n\t"
6156                 "mov %c[r13](%0), %%r13 \n\t"
6157                 "mov %c[r14](%0), %%r14 \n\t"
6158                 "mov %c[r15](%0), %%r15 \n\t"
6159 #endif
6160                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6161
6162                 /* Enter guest mode */
6163                 "jne .Llaunched \n\t"
6164                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
6165                 "jmp .Lkvm_vmx_return \n\t"
6166                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6167                 ".Lkvm_vmx_return: "
6168                 /* Save guest registers, load host registers, keep flags */
6169                 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6170                 "pop %0 \n\t"
6171                 "mov %%"R"ax, %c[rax](%0) \n\t"
6172                 "mov %%"R"bx, %c[rbx](%0) \n\t"
6173                 "pop"Q" %c[rcx](%0) \n\t"
6174                 "mov %%"R"dx, %c[rdx](%0) \n\t"
6175                 "mov %%"R"si, %c[rsi](%0) \n\t"
6176                 "mov %%"R"di, %c[rdi](%0) \n\t"
6177                 "mov %%"R"bp, %c[rbp](%0) \n\t"
6178 #ifdef CONFIG_X86_64
6179                 "mov %%r8,  %c[r8](%0) \n\t"
6180                 "mov %%r9,  %c[r9](%0) \n\t"
6181                 "mov %%r10, %c[r10](%0) \n\t"
6182                 "mov %%r11, %c[r11](%0) \n\t"
6183                 "mov %%r12, %c[r12](%0) \n\t"
6184                 "mov %%r13, %c[r13](%0) \n\t"
6185                 "mov %%r14, %c[r14](%0) \n\t"
6186                 "mov %%r15, %c[r15](%0) \n\t"
6187 #endif
6188                 "mov %%cr2, %%"R"ax   \n\t"
6189                 "mov %%"R"ax, %c[cr2](%0) \n\t"
6190
6191                 "pop  %%"R"bp; pop  %%"R"dx \n\t"
6192                 "setbe %c[fail](%0) \n\t"
6193               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6194                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6195                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
6196                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6197                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6198                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6199                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6200                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6201                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6202                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6203                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6204 #ifdef CONFIG_X86_64
6205                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6206                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6207                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6208                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6209                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6210                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6211                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6212                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6213 #endif
6214                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6215                 [wordsize]"i"(sizeof(ulong))
6216               : "cc", "memory"
6217                 , R"ax", R"bx", R"di", R"si"
6218 #ifdef CONFIG_X86_64
6219                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6220 #endif
6221               );
6222
6223         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6224                                   | (1 << VCPU_EXREG_RFLAGS)
6225                                   | (1 << VCPU_EXREG_CPL)
6226                                   | (1 << VCPU_EXREG_PDPTR)
6227                                   | (1 << VCPU_EXREG_SEGMENTS)
6228                                   | (1 << VCPU_EXREG_CR3));
6229         vcpu->arch.regs_dirty = 0;
6230
6231         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6232
6233         if (is_guest_mode(vcpu)) {
6234                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6235                 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6236                 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6237                         vmcs12->idt_vectoring_error_code =
6238                                 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6239                         vmcs12->vm_exit_instruction_len =
6240                                 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6241                 }
6242         }
6243
6244         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6245         vmx->loaded_vmcs->launched = 1;
6246
6247         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6248         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6249
6250         vmx_complete_atomic_exit(vmx);
6251         vmx_recover_nmi_blocking(vmx);
6252         vmx_complete_interrupts(vmx);
6253 }
6254
6255 #undef R
6256 #undef Q
6257
6258 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6259 {
6260         struct vcpu_vmx *vmx = to_vmx(vcpu);
6261
6262         free_vpid(vmx);
6263         free_nested(vmx);
6264         free_loaded_vmcs(vmx->loaded_vmcs);
6265         kfree(vmx->guest_msrs);
6266         kvm_vcpu_uninit(vcpu);
6267         kmem_cache_free(kvm_vcpu_cache, vmx);
6268 }
6269
6270 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6271 {
6272         int err;
6273         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6274         int cpu;
6275
6276         if (!vmx)
6277                 return ERR_PTR(-ENOMEM);
6278
6279         allocate_vpid(vmx);
6280
6281         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6282         if (err)
6283                 goto free_vcpu;
6284
6285         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6286         err = -ENOMEM;
6287         if (!vmx->guest_msrs) {
6288                 goto uninit_vcpu;
6289         }
6290
6291         vmx->loaded_vmcs = &vmx->vmcs01;
6292         vmx->loaded_vmcs->vmcs = alloc_vmcs();
6293         if (!vmx->loaded_vmcs->vmcs)
6294                 goto free_msrs;
6295         if (!vmm_exclusive)
6296                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6297         loaded_vmcs_init(vmx->loaded_vmcs);
6298         if (!vmm_exclusive)
6299                 kvm_cpu_vmxoff();
6300
6301         cpu = get_cpu();
6302         vmx_vcpu_load(&vmx->vcpu, cpu);
6303         vmx->vcpu.cpu = cpu;
6304         err = vmx_vcpu_setup(vmx);
6305         vmx_vcpu_put(&vmx->vcpu);
6306         put_cpu();
6307         if (err)
6308                 goto free_vmcs;
6309         if (vm_need_virtualize_apic_accesses(kvm))
6310                 err = alloc_apic_access_page(kvm);
6311                 if (err)
6312                         goto free_vmcs;
6313
6314         if (enable_ept) {
6315                 if (!kvm->arch.ept_identity_map_addr)
6316                         kvm->arch.ept_identity_map_addr =
6317                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6318                 err = -ENOMEM;
6319                 if (alloc_identity_pagetable(kvm) != 0)
6320                         goto free_vmcs;
6321                 if (!init_rmode_identity_map(kvm))
6322                         goto free_vmcs;
6323         }
6324
6325         vmx->nested.current_vmptr = -1ull;
6326         vmx->nested.current_vmcs12 = NULL;
6327
6328         return &vmx->vcpu;
6329
6330 free_vmcs:
6331         free_vmcs(vmx->loaded_vmcs->vmcs);
6332 free_msrs:
6333         kfree(vmx->guest_msrs);
6334 uninit_vcpu:
6335         kvm_vcpu_uninit(&vmx->vcpu);
6336 free_vcpu:
6337         free_vpid(vmx);
6338         kmem_cache_free(kvm_vcpu_cache, vmx);
6339         return ERR_PTR(err);
6340 }
6341
6342 static void __init vmx_check_processor_compat(void *rtn)
6343 {
6344         struct vmcs_config vmcs_conf;
6345
6346         *(int *)rtn = 0;
6347         if (setup_vmcs_config(&vmcs_conf) < 0)
6348                 *(int *)rtn = -EIO;
6349         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6350                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6351                                 smp_processor_id());
6352                 *(int *)rtn = -EIO;
6353         }
6354 }
6355
6356 static int get_ept_level(void)
6357 {
6358         return VMX_EPT_DEFAULT_GAW + 1;
6359 }
6360
6361 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6362 {
6363         u64 ret;
6364
6365         /* For VT-d and EPT combination
6366          * 1. MMIO: always map as UC
6367          * 2. EPT with VT-d:
6368          *   a. VT-d without snooping control feature: can't guarantee the
6369          *      result, try to trust guest.
6370          *   b. VT-d with snooping control feature: snooping control feature of
6371          *      VT-d engine can guarantee the cache correctness. Just set it
6372          *      to WB to keep consistent with host. So the same as item 3.
6373          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6374          *    consistent with host MTRR
6375          */
6376         if (is_mmio)
6377                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6378         else if (vcpu->kvm->arch.iommu_domain &&
6379                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6380                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6381                       VMX_EPT_MT_EPTE_SHIFT;
6382         else
6383                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6384                         | VMX_EPT_IPAT_BIT;
6385
6386         return ret;
6387 }
6388
6389 static int vmx_get_lpage_level(void)
6390 {
6391         if (enable_ept && !cpu_has_vmx_ept_1g_page())
6392                 return PT_DIRECTORY_LEVEL;
6393         else
6394                 /* For shadow and EPT supported 1GB page */
6395                 return PT_PDPE_LEVEL;
6396 }
6397
6398 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6399 {
6400         struct kvm_cpuid_entry2 *best;
6401         struct vcpu_vmx *vmx = to_vmx(vcpu);
6402         u32 exec_control;
6403
6404         vmx->rdtscp_enabled = false;
6405         if (vmx_rdtscp_supported()) {
6406                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6407                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6408                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6409                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6410                                 vmx->rdtscp_enabled = true;
6411                         else {
6412                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6413                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6414                                                 exec_control);
6415                         }
6416                 }
6417         }
6418 }
6419
6420 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6421 {
6422         if (func == 1 && nested)
6423                 entry->ecx |= bit(X86_FEATURE_VMX);
6424 }
6425
6426 /*
6427  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6428  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6429  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6430  * guest in a way that will both be appropriate to L1's requests, and our
6431  * needs. In addition to modifying the active vmcs (which is vmcs02), this
6432  * function also has additional necessary side-effects, like setting various
6433  * vcpu->arch fields.
6434  */
6435 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6436 {
6437         struct vcpu_vmx *vmx = to_vmx(vcpu);
6438         u32 exec_control;
6439
6440         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6441         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6442         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6443         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6444         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6445         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6446         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6447         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6448         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6449         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6450         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6451         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6452         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6453         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6454         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6455         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6456         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6457         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6458         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6459         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6460         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6461         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6462         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6463         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6464         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6465         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6466         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6467         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6468         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6469         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6470         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6471         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6472         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6473         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6474         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6475         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6476
6477         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6478         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6479                 vmcs12->vm_entry_intr_info_field);
6480         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6481                 vmcs12->vm_entry_exception_error_code);
6482         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6483                 vmcs12->vm_entry_instruction_len);
6484         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6485                 vmcs12->guest_interruptibility_info);
6486         vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6487         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6488         vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6489         vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6490         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6491                 vmcs12->guest_pending_dbg_exceptions);
6492         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6493         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6494
6495         vmcs_write64(VMCS_LINK_POINTER, -1ull);
6496
6497         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6498                 (vmcs_config.pin_based_exec_ctrl |
6499                  vmcs12->pin_based_vm_exec_control));
6500
6501         /*
6502          * Whether page-faults are trapped is determined by a combination of
6503          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6504          * If enable_ept, L0 doesn't care about page faults and we should
6505          * set all of these to L1's desires. However, if !enable_ept, L0 does
6506          * care about (at least some) page faults, and because it is not easy
6507          * (if at all possible?) to merge L0 and L1's desires, we simply ask
6508          * to exit on each and every L2 page fault. This is done by setting
6509          * MASK=MATCH=0 and (see below) EB.PF=1.
6510          * Note that below we don't need special code to set EB.PF beyond the
6511          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6512          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6513          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6514          *
6515          * A problem with this approach (when !enable_ept) is that L1 may be
6516          * injected with more page faults than it asked for. This could have
6517          * caused problems, but in practice existing hypervisors don't care.
6518          * To fix this, we will need to emulate the PFEC checking (on the L1
6519          * page tables), using walk_addr(), when injecting PFs to L1.
6520          */
6521         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6522                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6523         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6524                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6525
6526         if (cpu_has_secondary_exec_ctrls()) {
6527                 u32 exec_control = vmx_secondary_exec_control(vmx);
6528                 if (!vmx->rdtscp_enabled)
6529                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
6530                 /* Take the following fields only from vmcs12 */
6531                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6532                 if (nested_cpu_has(vmcs12,
6533                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6534                         exec_control |= vmcs12->secondary_vm_exec_control;
6535
6536                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6537                         /*
6538                          * Translate L1 physical address to host physical
6539                          * address for vmcs02. Keep the page pinned, so this
6540                          * physical address remains valid. We keep a reference
6541                          * to it so we can release it later.
6542                          */
6543                         if (vmx->nested.apic_access_page) /* shouldn't happen */
6544                                 nested_release_page(vmx->nested.apic_access_page);
6545                         vmx->nested.apic_access_page =
6546                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
6547                         /*
6548                          * If translation failed, no matter: This feature asks
6549                          * to exit when accessing the given address, and if it
6550                          * can never be accessed, this feature won't do
6551                          * anything anyway.
6552                          */
6553                         if (!vmx->nested.apic_access_page)
6554                                 exec_control &=
6555                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6556                         else
6557                                 vmcs_write64(APIC_ACCESS_ADDR,
6558                                   page_to_phys(vmx->nested.apic_access_page));
6559                 }
6560
6561                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6562         }
6563
6564
6565         /*
6566          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6567          * Some constant fields are set here by vmx_set_constant_host_state().
6568          * Other fields are different per CPU, and will be set later when
6569          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6570          */
6571         vmx_set_constant_host_state();
6572
6573         /*
6574          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6575          * entry, but only if the current (host) sp changed from the value
6576          * we wrote last (vmx->host_rsp). This cache is no longer relevant
6577          * if we switch vmcs, and rather than hold a separate cache per vmcs,
6578          * here we just force the write to happen on entry.
6579          */
6580         vmx->host_rsp = 0;
6581
6582         exec_control = vmx_exec_control(vmx); /* L0's desires */
6583         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6584         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6585         exec_control &= ~CPU_BASED_TPR_SHADOW;
6586         exec_control |= vmcs12->cpu_based_vm_exec_control;
6587         /*
6588          * Merging of IO and MSR bitmaps not currently supported.
6589          * Rather, exit every time.
6590          */
6591         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6592         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6593         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6594
6595         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6596
6597         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6598          * bitwise-or of what L1 wants to trap for L2, and what we want to
6599          * trap. Note that CR0.TS also needs updating - we do this later.
6600          */
6601         update_exception_bitmap(vcpu);
6602         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6603         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6604
6605         /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6606         vmcs_write32(VM_EXIT_CONTROLS,
6607                 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6608         vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6609                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6610
6611         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6612                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6613         else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6614                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6615
6616
6617         set_cr4_guest_host_mask(vmx);
6618
6619         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6620                 vmcs_write64(TSC_OFFSET,
6621                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6622         else
6623                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6624
6625         if (enable_vpid) {
6626                 /*
6627                  * Trivially support vpid by letting L2s share their parent
6628                  * L1's vpid. TODO: move to a more elaborate solution, giving
6629                  * each L2 its own vpid and exposing the vpid feature to L1.
6630                  */
6631                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6632                 vmx_flush_tlb(vcpu);
6633         }
6634
6635         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6636                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6637         if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6638                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6639         else
6640                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6641         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6642         vmx_set_efer(vcpu, vcpu->arch.efer);
6643
6644         /*
6645          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6646          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6647          * The CR0_READ_SHADOW is what L2 should have expected to read given
6648          * the specifications by L1; It's not enough to take
6649          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6650          * have more bits than L1 expected.
6651          */
6652         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6653         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6654
6655         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6656         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6657
6658         /* shadow page tables on either EPT or shadow page tables */
6659         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6660         kvm_mmu_reset_context(vcpu);
6661
6662         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6663         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6664 }
6665
6666 /*
6667  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6668  * for running an L2 nested guest.
6669  */
6670 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6671 {
6672         struct vmcs12 *vmcs12;
6673         struct vcpu_vmx *vmx = to_vmx(vcpu);
6674         int cpu;
6675         struct loaded_vmcs *vmcs02;
6676
6677         if (!nested_vmx_check_permission(vcpu) ||
6678             !nested_vmx_check_vmcs12(vcpu))
6679                 return 1;
6680
6681         skip_emulated_instruction(vcpu);
6682         vmcs12 = get_vmcs12(vcpu);
6683
6684         /*
6685          * The nested entry process starts with enforcing various prerequisites
6686          * on vmcs12 as required by the Intel SDM, and act appropriately when
6687          * they fail: As the SDM explains, some conditions should cause the
6688          * instruction to fail, while others will cause the instruction to seem
6689          * to succeed, but return an EXIT_REASON_INVALID_STATE.
6690          * To speed up the normal (success) code path, we should avoid checking
6691          * for misconfigurations which will anyway be caught by the processor
6692          * when using the merged vmcs02.
6693          */
6694         if (vmcs12->launch_state == launch) {
6695                 nested_vmx_failValid(vcpu,
6696                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6697                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6698                 return 1;
6699         }
6700
6701         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6702                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6703                 /*TODO: Also verify bits beyond physical address width are 0*/
6704                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6705                 return 1;
6706         }
6707
6708         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6709                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6710                 /*TODO: Also verify bits beyond physical address width are 0*/
6711                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6712                 return 1;
6713         }
6714
6715         if (vmcs12->vm_entry_msr_load_count > 0 ||
6716             vmcs12->vm_exit_msr_load_count > 0 ||
6717             vmcs12->vm_exit_msr_store_count > 0) {
6718                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6719                                     __func__);
6720                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6721                 return 1;
6722         }
6723
6724         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6725               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6726             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6727               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6728             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6729               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6730             !vmx_control_verify(vmcs12->vm_exit_controls,
6731               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6732             !vmx_control_verify(vmcs12->vm_entry_controls,
6733               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6734         {
6735                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6736                 return 1;
6737         }
6738
6739         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6740             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6741                 nested_vmx_failValid(vcpu,
6742                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6743                 return 1;
6744         }
6745
6746         if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6747             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6748                 nested_vmx_entry_failure(vcpu, vmcs12,
6749                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6750                 return 1;
6751         }
6752         if (vmcs12->vmcs_link_pointer != -1ull) {
6753                 nested_vmx_entry_failure(vcpu, vmcs12,
6754                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6755                 return 1;
6756         }
6757
6758         /*
6759          * We're finally done with prerequisite checking, and can start with
6760          * the nested entry.
6761          */
6762
6763         vmcs02 = nested_get_current_vmcs02(vmx);
6764         if (!vmcs02)
6765                 return -ENOMEM;
6766
6767         enter_guest_mode(vcpu);
6768
6769         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6770
6771         cpu = get_cpu();
6772         vmx->loaded_vmcs = vmcs02;
6773         vmx_vcpu_put(vcpu);
6774         vmx_vcpu_load(vcpu, cpu);
6775         vcpu->cpu = cpu;
6776         put_cpu();
6777
6778         vmcs12->launch_state = 1;
6779
6780         prepare_vmcs02(vcpu, vmcs12);
6781
6782         /*
6783          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6784          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6785          * returned as far as L1 is concerned. It will only return (and set
6786          * the success flag) when L2 exits (see nested_vmx_vmexit()).
6787          */
6788         return 1;
6789 }
6790
6791 /*
6792  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6793  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6794  * This function returns the new value we should put in vmcs12.guest_cr0.
6795  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6796  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6797  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6798  *     didn't trap the bit, because if L1 did, so would L0).
6799  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6800  *     been modified by L2, and L1 knows it. So just leave the old value of
6801  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6802  *     isn't relevant, because if L0 traps this bit it can set it to anything.
6803  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6804  *     changed these bits, and therefore they need to be updated, but L0
6805  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6806  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6807  */
6808 static inline unsigned long
6809 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6810 {
6811         return
6812         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6813         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6814         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6815                         vcpu->arch.cr0_guest_owned_bits));
6816 }
6817
6818 static inline unsigned long
6819 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6820 {
6821         return
6822         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6823         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6824         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6825                         vcpu->arch.cr4_guest_owned_bits));
6826 }
6827
6828 /*
6829  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6830  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6831  * and this function updates it to reflect the changes to the guest state while
6832  * L2 was running (and perhaps made some exits which were handled directly by L0
6833  * without going back to L1), and to reflect the exit reason.
6834  * Note that we do not have to copy here all VMCS fields, just those that
6835  * could have changed by the L2 guest or the exit - i.e., the guest-state and
6836  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6837  * which already writes to vmcs12 directly.
6838  */
6839 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6840 {
6841         /* update guest state fields: */
6842         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6843         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6844
6845         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6846         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6847         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6848         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6849
6850         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6851         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6852         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6853         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6854         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6855         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6856         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6857         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6858         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6859         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6860         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6861         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6862         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6863         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6864         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6865         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6866         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6867         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6868         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6869         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6870         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6871         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6872         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6873         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6874         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6875         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6876         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6877         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6878         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6879         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6880         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6881         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6882         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6883         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6884         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6885         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6886
6887         vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6888         vmcs12->guest_interruptibility_info =
6889                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6890         vmcs12->guest_pending_dbg_exceptions =
6891                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6892
6893         /* TODO: These cannot have changed unless we have MSR bitmaps and
6894          * the relevant bit asks not to trap the change */
6895         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6896         if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6897                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6898         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6899         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6900         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6901
6902         /* update exit information fields: */
6903
6904         vmcs12->vm_exit_reason  = vmcs_read32(VM_EXIT_REASON);
6905         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6906
6907         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6908         vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6909         vmcs12->idt_vectoring_info_field =
6910                 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6911         vmcs12->idt_vectoring_error_code =
6912                 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6913         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6914         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6915
6916         /* clear vm-entry fields which are to be cleared on exit */
6917         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6918                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6919 }
6920
6921 /*
6922  * A part of what we need to when the nested L2 guest exits and we want to
6923  * run its L1 parent, is to reset L1's guest state to the host state specified
6924  * in vmcs12.
6925  * This function is to be called not only on normal nested exit, but also on
6926  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6927  * Failures During or After Loading Guest State").
6928  * This function should be called when the active VMCS is L1's (vmcs01).
6929  */
6930 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6931 {
6932         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6933                 vcpu->arch.efer = vmcs12->host_ia32_efer;
6934         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6935                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6936         else
6937                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6938         vmx_set_efer(vcpu, vcpu->arch.efer);
6939
6940         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6941         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6942         /*
6943          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6944          * actually changed, because it depends on the current state of
6945          * fpu_active (which may have changed).
6946          * Note that vmx_set_cr0 refers to efer set above.
6947          */
6948         kvm_set_cr0(vcpu, vmcs12->host_cr0);
6949         /*
6950          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6951          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6952          * but we also need to update cr0_guest_host_mask and exception_bitmap.
6953          */
6954         update_exception_bitmap(vcpu);
6955         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6956         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6957
6958         /*
6959          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6960          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6961          */
6962         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6963         kvm_set_cr4(vcpu, vmcs12->host_cr4);
6964
6965         /* shadow page tables on either EPT or shadow page tables */
6966         kvm_set_cr3(vcpu, vmcs12->host_cr3);
6967         kvm_mmu_reset_context(vcpu);
6968
6969         if (enable_vpid) {
6970                 /*
6971                  * Trivially support vpid by letting L2s share their parent
6972                  * L1's vpid. TODO: move to a more elaborate solution, giving
6973                  * each L2 its own vpid and exposing the vpid feature to L1.
6974                  */
6975                 vmx_flush_tlb(vcpu);
6976         }
6977
6978
6979         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
6980         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
6981         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
6982         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
6983         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
6984         vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
6985         vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
6986         vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
6987         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
6988         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
6989         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
6990         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
6991         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
6992         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
6993         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
6994
6995         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
6996                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
6997         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6998                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
6999                         vmcs12->host_ia32_perf_global_ctrl);
7000 }
7001
7002 /*
7003  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7004  * and modify vmcs12 to make it see what it would expect to see there if
7005  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7006  */
7007 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7008 {
7009         struct vcpu_vmx *vmx = to_vmx(vcpu);
7010         int cpu;
7011         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7012
7013         leave_guest_mode(vcpu);
7014         prepare_vmcs12(vcpu, vmcs12);
7015
7016         cpu = get_cpu();
7017         vmx->loaded_vmcs = &vmx->vmcs01;
7018         vmx_vcpu_put(vcpu);
7019         vmx_vcpu_load(vcpu, cpu);
7020         vcpu->cpu = cpu;
7021         put_cpu();
7022
7023         /* if no vmcs02 cache requested, remove the one we used */
7024         if (VMCS02_POOL_SIZE == 0)
7025                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7026
7027         load_vmcs12_host_state(vcpu, vmcs12);
7028
7029         /* Update TSC_OFFSET if TSC was changed while L2 ran */
7030         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7031
7032         /* This is needed for same reason as it was needed in prepare_vmcs02 */
7033         vmx->host_rsp = 0;
7034
7035         /* Unpin physical memory we referred to in vmcs02 */
7036         if (vmx->nested.apic_access_page) {
7037                 nested_release_page(vmx->nested.apic_access_page);
7038                 vmx->nested.apic_access_page = 0;
7039         }
7040
7041         /*
7042          * Exiting from L2 to L1, we're now back to L1 which thinks it just
7043          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7044          * success or failure flag accordingly.
7045          */
7046         if (unlikely(vmx->fail)) {
7047                 vmx->fail = 0;
7048                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7049         } else
7050                 nested_vmx_succeed(vcpu);
7051 }
7052
7053 /*
7054  * L1's failure to enter L2 is a subset of a normal exit, as explained in
7055  * 23.7 "VM-entry failures during or after loading guest state" (this also
7056  * lists the acceptable exit-reason and exit-qualification parameters).
7057  * It should only be called before L2 actually succeeded to run, and when
7058  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7059  */
7060 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7061                         struct vmcs12 *vmcs12,
7062                         u32 reason, unsigned long qualification)
7063 {
7064         load_vmcs12_host_state(vcpu, vmcs12);
7065         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7066         vmcs12->exit_qualification = qualification;
7067         nested_vmx_succeed(vcpu);
7068 }
7069
7070 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7071                                struct x86_instruction_info *info,
7072                                enum x86_intercept_stage stage)
7073 {
7074         return X86EMUL_CONTINUE;
7075 }
7076
7077 static struct kvm_x86_ops vmx_x86_ops = {
7078         .cpu_has_kvm_support = cpu_has_kvm_support,
7079         .disabled_by_bios = vmx_disabled_by_bios,
7080         .hardware_setup = hardware_setup,
7081         .hardware_unsetup = hardware_unsetup,
7082         .check_processor_compatibility = vmx_check_processor_compat,
7083         .hardware_enable = hardware_enable,
7084         .hardware_disable = hardware_disable,
7085         .cpu_has_accelerated_tpr = report_flexpriority,
7086
7087         .vcpu_create = vmx_create_vcpu,
7088         .vcpu_free = vmx_free_vcpu,
7089         .vcpu_reset = vmx_vcpu_reset,
7090
7091         .prepare_guest_switch = vmx_save_host_state,
7092         .vcpu_load = vmx_vcpu_load,
7093         .vcpu_put = vmx_vcpu_put,
7094
7095         .set_guest_debug = set_guest_debug,
7096         .get_msr = vmx_get_msr,
7097         .set_msr = vmx_set_msr,
7098         .get_segment_base = vmx_get_segment_base,
7099         .get_segment = vmx_get_segment,
7100         .set_segment = vmx_set_segment,
7101         .get_cpl = vmx_get_cpl,
7102         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7103         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7104         .decache_cr3 = vmx_decache_cr3,
7105         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7106         .set_cr0 = vmx_set_cr0,
7107         .set_cr3 = vmx_set_cr3,
7108         .set_cr4 = vmx_set_cr4,
7109         .set_efer = vmx_set_efer,
7110         .get_idt = vmx_get_idt,
7111         .set_idt = vmx_set_idt,
7112         .get_gdt = vmx_get_gdt,
7113         .set_gdt = vmx_set_gdt,
7114         .set_dr7 = vmx_set_dr7,
7115         .cache_reg = vmx_cache_reg,
7116         .get_rflags = vmx_get_rflags,
7117         .set_rflags = vmx_set_rflags,
7118         .fpu_activate = vmx_fpu_activate,
7119         .fpu_deactivate = vmx_fpu_deactivate,
7120
7121         .tlb_flush = vmx_flush_tlb,
7122
7123         .run = vmx_vcpu_run,
7124         .handle_exit = vmx_handle_exit,
7125         .skip_emulated_instruction = skip_emulated_instruction,
7126         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7127         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7128         .patch_hypercall = vmx_patch_hypercall,
7129         .set_irq = vmx_inject_irq,
7130         .set_nmi = vmx_inject_nmi,
7131         .queue_exception = vmx_queue_exception,
7132         .cancel_injection = vmx_cancel_injection,
7133         .interrupt_allowed = vmx_interrupt_allowed,
7134         .nmi_allowed = vmx_nmi_allowed,
7135         .get_nmi_mask = vmx_get_nmi_mask,
7136         .set_nmi_mask = vmx_set_nmi_mask,
7137         .enable_nmi_window = enable_nmi_window,
7138         .enable_irq_window = enable_irq_window,
7139         .update_cr8_intercept = update_cr8_intercept,
7140
7141         .set_tss_addr = vmx_set_tss_addr,
7142         .get_tdp_level = get_ept_level,
7143         .get_mt_mask = vmx_get_mt_mask,
7144
7145         .get_exit_info = vmx_get_exit_info,
7146
7147         .get_lpage_level = vmx_get_lpage_level,
7148
7149         .cpuid_update = vmx_cpuid_update,
7150
7151         .rdtscp_supported = vmx_rdtscp_supported,
7152
7153         .set_supported_cpuid = vmx_set_supported_cpuid,
7154
7155         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7156
7157         .set_tsc_khz = vmx_set_tsc_khz,
7158         .write_tsc_offset = vmx_write_tsc_offset,
7159         .adjust_tsc_offset = vmx_adjust_tsc_offset,
7160         .compute_tsc_offset = vmx_compute_tsc_offset,
7161         .read_l1_tsc = vmx_read_l1_tsc,
7162
7163         .set_tdp_cr3 = vmx_set_cr3,
7164
7165         .check_intercept = vmx_check_intercept,
7166 };
7167
7168 static int __init vmx_init(void)
7169 {
7170         int r, i;
7171
7172         rdmsrl_safe(MSR_EFER, &host_efer);
7173
7174         for (i = 0; i < NR_VMX_MSR; ++i)
7175                 kvm_define_shared_msr(i, vmx_msr_index[i]);
7176
7177         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7178         if (!vmx_io_bitmap_a)
7179                 return -ENOMEM;
7180
7181         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7182         if (!vmx_io_bitmap_b) {
7183                 r = -ENOMEM;
7184                 goto out;
7185         }
7186
7187         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7188         if (!vmx_msr_bitmap_legacy) {
7189                 r = -ENOMEM;
7190                 goto out1;
7191         }
7192
7193         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7194         if (!vmx_msr_bitmap_longmode) {
7195                 r = -ENOMEM;
7196                 goto out2;
7197         }
7198
7199         /*
7200          * Allow direct access to the PC debug port (it is often used for I/O
7201          * delays, but the vmexits simply slow things down).
7202          */
7203         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7204         clear_bit(0x80, vmx_io_bitmap_a);
7205
7206         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7207
7208         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7209         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7210
7211         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7212
7213         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7214                      __alignof__(struct vcpu_vmx), THIS_MODULE);
7215         if (r)
7216                 goto out3;
7217
7218         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7219         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7220         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7221         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7222         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7223         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7224
7225         if (enable_ept) {
7226                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7227                                 VMX_EPT_EXECUTABLE_MASK);
7228                 ept_set_mmio_spte_mask();
7229                 kvm_enable_tdp();
7230         } else
7231                 kvm_disable_tdp();
7232
7233         return 0;
7234
7235 out3:
7236         free_page((unsigned long)vmx_msr_bitmap_longmode);
7237 out2:
7238         free_page((unsigned long)vmx_msr_bitmap_legacy);
7239 out1:
7240         free_page((unsigned long)vmx_io_bitmap_b);
7241 out:
7242         free_page((unsigned long)vmx_io_bitmap_a);
7243         return r;
7244 }
7245
7246 static void __exit vmx_exit(void)
7247 {
7248         free_page((unsigned long)vmx_msr_bitmap_legacy);
7249         free_page((unsigned long)vmx_msr_bitmap_longmode);
7250         free_page((unsigned long)vmx_io_bitmap_b);
7251         free_page((unsigned long)vmx_io_bitmap_a);
7252
7253         kvm_exit();
7254 }
7255
7256 module_init(vmx_init)
7257 module_exit(vmx_exit)