]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/vmx.c
KVM: nEPT: Advertise WB type EPTP
[~andy/linux] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_VMX),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73                         enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93  * If nested=1, nested virtualization is supported, i.e., guests may use
94  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95  * use VMX instructions.
96  */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON                                            \
103         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS                                      \
105         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
106          | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115  * ple_gap:    upper bound on the amount of time between two successive
116  *             executions of PAUSE in a loop. Also indicate if ple enabled.
117  *             According to test, this time is usually smaller than 128 cycles.
118  * ple_window: upper bound on the amount of time a guest is allowed to execute
119  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
120  *             less than 2^12 cycles
121  * Time is measured based on a counter that runs at the same rate as the TSC,
122  * refer SDM volume 3b section 21.6.13 & 22.1.3.
123  */
124 #define KVM_VMX_DEFAULT_PLE_GAP    128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138         u32 revision_id;
139         u32 abort;
140         char data[0];
141 };
142
143 /*
144  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146  * loaded on this CPU (so we can clear them if the CPU goes down).
147  */
148 struct loaded_vmcs {
149         struct vmcs *vmcs;
150         int cpu;
151         int launched;
152         struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156         unsigned index;
157         u64 data;
158         u64 mask;
159 };
160
161 /*
162  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167  * More than one of these structures may exist, if L1 runs multiple L2 guests.
168  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169  * underlying hardware which will be used to run L2.
170  * This structure is packed to ensure that its layout is identical across
171  * machines (necessary for live migration).
172  * If there are changes in this struct, VMCS12_REVISION must be changed.
173  */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176         /* According to the Intel spec, a VMCS region must start with the
177          * following two fields. Then follow implementation-specific data.
178          */
179         u32 revision_id;
180         u32 abort;
181
182         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183         u32 padding[7]; /* room for future expansion */
184
185         u64 io_bitmap_a;
186         u64 io_bitmap_b;
187         u64 msr_bitmap;
188         u64 vm_exit_msr_store_addr;
189         u64 vm_exit_msr_load_addr;
190         u64 vm_entry_msr_load_addr;
191         u64 tsc_offset;
192         u64 virtual_apic_page_addr;
193         u64 apic_access_addr;
194         u64 ept_pointer;
195         u64 guest_physical_address;
196         u64 vmcs_link_pointer;
197         u64 guest_ia32_debugctl;
198         u64 guest_ia32_pat;
199         u64 guest_ia32_efer;
200         u64 guest_ia32_perf_global_ctrl;
201         u64 guest_pdptr0;
202         u64 guest_pdptr1;
203         u64 guest_pdptr2;
204         u64 guest_pdptr3;
205         u64 host_ia32_pat;
206         u64 host_ia32_efer;
207         u64 host_ia32_perf_global_ctrl;
208         u64 padding64[8]; /* room for future expansion */
209         /*
210          * To allow migration of L1 (complete with its L2 guests) between
211          * machines of different natural widths (32 or 64 bit), we cannot have
212          * unsigned long fields with no explict size. We use u64 (aliased
213          * natural_width) instead. Luckily, x86 is little-endian.
214          */
215         natural_width cr0_guest_host_mask;
216         natural_width cr4_guest_host_mask;
217         natural_width cr0_read_shadow;
218         natural_width cr4_read_shadow;
219         natural_width cr3_target_value0;
220         natural_width cr3_target_value1;
221         natural_width cr3_target_value2;
222         natural_width cr3_target_value3;
223         natural_width exit_qualification;
224         natural_width guest_linear_address;
225         natural_width guest_cr0;
226         natural_width guest_cr3;
227         natural_width guest_cr4;
228         natural_width guest_es_base;
229         natural_width guest_cs_base;
230         natural_width guest_ss_base;
231         natural_width guest_ds_base;
232         natural_width guest_fs_base;
233         natural_width guest_gs_base;
234         natural_width guest_ldtr_base;
235         natural_width guest_tr_base;
236         natural_width guest_gdtr_base;
237         natural_width guest_idtr_base;
238         natural_width guest_dr7;
239         natural_width guest_rsp;
240         natural_width guest_rip;
241         natural_width guest_rflags;
242         natural_width guest_pending_dbg_exceptions;
243         natural_width guest_sysenter_esp;
244         natural_width guest_sysenter_eip;
245         natural_width host_cr0;
246         natural_width host_cr3;
247         natural_width host_cr4;
248         natural_width host_fs_base;
249         natural_width host_gs_base;
250         natural_width host_tr_base;
251         natural_width host_gdtr_base;
252         natural_width host_idtr_base;
253         natural_width host_ia32_sysenter_esp;
254         natural_width host_ia32_sysenter_eip;
255         natural_width host_rsp;
256         natural_width host_rip;
257         natural_width paddingl[8]; /* room for future expansion */
258         u32 pin_based_vm_exec_control;
259         u32 cpu_based_vm_exec_control;
260         u32 exception_bitmap;
261         u32 page_fault_error_code_mask;
262         u32 page_fault_error_code_match;
263         u32 cr3_target_count;
264         u32 vm_exit_controls;
265         u32 vm_exit_msr_store_count;
266         u32 vm_exit_msr_load_count;
267         u32 vm_entry_controls;
268         u32 vm_entry_msr_load_count;
269         u32 vm_entry_intr_info_field;
270         u32 vm_entry_exception_error_code;
271         u32 vm_entry_instruction_len;
272         u32 tpr_threshold;
273         u32 secondary_vm_exec_control;
274         u32 vm_instruction_error;
275         u32 vm_exit_reason;
276         u32 vm_exit_intr_info;
277         u32 vm_exit_intr_error_code;
278         u32 idt_vectoring_info_field;
279         u32 idt_vectoring_error_code;
280         u32 vm_exit_instruction_len;
281         u32 vmx_instruction_info;
282         u32 guest_es_limit;
283         u32 guest_cs_limit;
284         u32 guest_ss_limit;
285         u32 guest_ds_limit;
286         u32 guest_fs_limit;
287         u32 guest_gs_limit;
288         u32 guest_ldtr_limit;
289         u32 guest_tr_limit;
290         u32 guest_gdtr_limit;
291         u32 guest_idtr_limit;
292         u32 guest_es_ar_bytes;
293         u32 guest_cs_ar_bytes;
294         u32 guest_ss_ar_bytes;
295         u32 guest_ds_ar_bytes;
296         u32 guest_fs_ar_bytes;
297         u32 guest_gs_ar_bytes;
298         u32 guest_ldtr_ar_bytes;
299         u32 guest_tr_ar_bytes;
300         u32 guest_interruptibility_info;
301         u32 guest_activity_state;
302         u32 guest_sysenter_cs;
303         u32 host_ia32_sysenter_cs;
304         u32 vmx_preemption_timer_value;
305         u32 padding32[7]; /* room for future expansion */
306         u16 virtual_processor_id;
307         u16 guest_es_selector;
308         u16 guest_cs_selector;
309         u16 guest_ss_selector;
310         u16 guest_ds_selector;
311         u16 guest_fs_selector;
312         u16 guest_gs_selector;
313         u16 guest_ldtr_selector;
314         u16 guest_tr_selector;
315         u16 host_es_selector;
316         u16 host_cs_selector;
317         u16 host_ss_selector;
318         u16 host_ds_selector;
319         u16 host_fs_selector;
320         u16 host_gs_selector;
321         u16 host_tr_selector;
322 };
323
324 /*
325  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328  */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334  * current implementation, 4K are reserved to avoid future complications.
335  */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340         struct list_head list;
341         gpa_t vmptr;
342         struct loaded_vmcs vmcs02;
343 };
344
345 /*
346  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348  */
349 struct nested_vmx {
350         /* Has the level1 guest done vmxon? */
351         bool vmxon;
352
353         /* The guest-physical address of the current VMCS L1 keeps for L2 */
354         gpa_t current_vmptr;
355         /* The host-usable pointer to the above */
356         struct page *current_vmcs12_page;
357         struct vmcs12 *current_vmcs12;
358         struct vmcs *current_shadow_vmcs;
359         /*
360          * Indicates if the shadow vmcs must be updated with the
361          * data hold by vmcs12
362          */
363         bool sync_shadow_vmcs;
364
365         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366         struct list_head vmcs02_pool;
367         int vmcs02_num;
368         u64 vmcs01_tsc_offset;
369         /* L2 must run next, and mustn't decide to exit to L1. */
370         bool nested_run_pending;
371         /*
372          * Guest pages referred to in vmcs02 with host-physical pointers, so
373          * we must keep them pinned while L2 runs.
374          */
375         struct page *apic_access_page;
376         u64 msr_ia32_feature_control;
377 };
378
379 #define POSTED_INTR_ON  0
380 /* Posted-Interrupt Descriptor */
381 struct pi_desc {
382         u32 pir[8];     /* Posted interrupt requested */
383         u32 control;    /* bit 0 of control is outstanding notification bit */
384         u32 rsvd[7];
385 } __aligned(64);
386
387 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
388 {
389         return test_and_set_bit(POSTED_INTR_ON,
390                         (unsigned long *)&pi_desc->control);
391 }
392
393 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
394 {
395         return test_and_clear_bit(POSTED_INTR_ON,
396                         (unsigned long *)&pi_desc->control);
397 }
398
399 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
400 {
401         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
402 }
403
404 struct vcpu_vmx {
405         struct kvm_vcpu       vcpu;
406         unsigned long         host_rsp;
407         u8                    fail;
408         u8                    cpl;
409         bool                  nmi_known_unmasked;
410         u32                   exit_intr_info;
411         u32                   idt_vectoring_info;
412         ulong                 rflags;
413         struct shared_msr_entry *guest_msrs;
414         int                   nmsrs;
415         int                   save_nmsrs;
416         unsigned long         host_idt_base;
417 #ifdef CONFIG_X86_64
418         u64                   msr_host_kernel_gs_base;
419         u64                   msr_guest_kernel_gs_base;
420 #endif
421         /*
422          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
423          * non-nested (L1) guest, it always points to vmcs01. For a nested
424          * guest (L2), it points to a different VMCS.
425          */
426         struct loaded_vmcs    vmcs01;
427         struct loaded_vmcs   *loaded_vmcs;
428         bool                  __launched; /* temporary, used in vmx_vcpu_run */
429         struct msr_autoload {
430                 unsigned nr;
431                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
432                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
433         } msr_autoload;
434         struct {
435                 int           loaded;
436                 u16           fs_sel, gs_sel, ldt_sel;
437 #ifdef CONFIG_X86_64
438                 u16           ds_sel, es_sel;
439 #endif
440                 int           gs_ldt_reload_needed;
441                 int           fs_reload_needed;
442         } host_state;
443         struct {
444                 int vm86_active;
445                 ulong save_rflags;
446                 struct kvm_segment segs[8];
447         } rmode;
448         struct {
449                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
450                 struct kvm_save_segment {
451                         u16 selector;
452                         unsigned long base;
453                         u32 limit;
454                         u32 ar;
455                 } seg[8];
456         } segment_cache;
457         int vpid;
458         bool emulation_required;
459
460         /* Support for vnmi-less CPUs */
461         int soft_vnmi_blocked;
462         ktime_t entry_time;
463         s64 vnmi_blocked_time;
464         u32 exit_reason;
465
466         bool rdtscp_enabled;
467
468         /* Posted interrupt descriptor */
469         struct pi_desc pi_desc;
470
471         /* Support for a guest hypervisor (nested VMX) */
472         struct nested_vmx nested;
473 };
474
475 enum segment_cache_field {
476         SEG_FIELD_SEL = 0,
477         SEG_FIELD_BASE = 1,
478         SEG_FIELD_LIMIT = 2,
479         SEG_FIELD_AR = 3,
480
481         SEG_FIELD_NR = 4
482 };
483
484 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
485 {
486         return container_of(vcpu, struct vcpu_vmx, vcpu);
487 }
488
489 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
490 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
491 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
492                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
493
494
495 static const unsigned long shadow_read_only_fields[] = {
496         /*
497          * We do NOT shadow fields that are modified when L0
498          * traps and emulates any vmx instruction (e.g. VMPTRLD,
499          * VMXON...) executed by L1.
500          * For example, VM_INSTRUCTION_ERROR is read
501          * by L1 if a vmx instruction fails (part of the error path).
502          * Note the code assumes this logic. If for some reason
503          * we start shadowing these fields then we need to
504          * force a shadow sync when L0 emulates vmx instructions
505          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
506          * by nested_vmx_failValid)
507          */
508         VM_EXIT_REASON,
509         VM_EXIT_INTR_INFO,
510         VM_EXIT_INSTRUCTION_LEN,
511         IDT_VECTORING_INFO_FIELD,
512         IDT_VECTORING_ERROR_CODE,
513         VM_EXIT_INTR_ERROR_CODE,
514         EXIT_QUALIFICATION,
515         GUEST_LINEAR_ADDRESS,
516         GUEST_PHYSICAL_ADDRESS
517 };
518 static const int max_shadow_read_only_fields =
519         ARRAY_SIZE(shadow_read_only_fields);
520
521 static const unsigned long shadow_read_write_fields[] = {
522         GUEST_RIP,
523         GUEST_RSP,
524         GUEST_CR0,
525         GUEST_CR3,
526         GUEST_CR4,
527         GUEST_INTERRUPTIBILITY_INFO,
528         GUEST_RFLAGS,
529         GUEST_CS_SELECTOR,
530         GUEST_CS_AR_BYTES,
531         GUEST_CS_LIMIT,
532         GUEST_CS_BASE,
533         GUEST_ES_BASE,
534         CR0_GUEST_HOST_MASK,
535         CR0_READ_SHADOW,
536         CR4_READ_SHADOW,
537         TSC_OFFSET,
538         EXCEPTION_BITMAP,
539         CPU_BASED_VM_EXEC_CONTROL,
540         VM_ENTRY_EXCEPTION_ERROR_CODE,
541         VM_ENTRY_INTR_INFO_FIELD,
542         VM_ENTRY_INSTRUCTION_LEN,
543         VM_ENTRY_EXCEPTION_ERROR_CODE,
544         HOST_FS_BASE,
545         HOST_GS_BASE,
546         HOST_FS_SELECTOR,
547         HOST_GS_SELECTOR
548 };
549 static const int max_shadow_read_write_fields =
550         ARRAY_SIZE(shadow_read_write_fields);
551
552 static const unsigned short vmcs_field_to_offset_table[] = {
553         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
554         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
555         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
556         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
557         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
558         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
559         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
560         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
561         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
562         FIELD(HOST_ES_SELECTOR, host_es_selector),
563         FIELD(HOST_CS_SELECTOR, host_cs_selector),
564         FIELD(HOST_SS_SELECTOR, host_ss_selector),
565         FIELD(HOST_DS_SELECTOR, host_ds_selector),
566         FIELD(HOST_FS_SELECTOR, host_fs_selector),
567         FIELD(HOST_GS_SELECTOR, host_gs_selector),
568         FIELD(HOST_TR_SELECTOR, host_tr_selector),
569         FIELD64(IO_BITMAP_A, io_bitmap_a),
570         FIELD64(IO_BITMAP_B, io_bitmap_b),
571         FIELD64(MSR_BITMAP, msr_bitmap),
572         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
573         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
574         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
575         FIELD64(TSC_OFFSET, tsc_offset),
576         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
577         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
578         FIELD64(EPT_POINTER, ept_pointer),
579         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
580         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
581         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
582         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
583         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
584         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
585         FIELD64(GUEST_PDPTR0, guest_pdptr0),
586         FIELD64(GUEST_PDPTR1, guest_pdptr1),
587         FIELD64(GUEST_PDPTR2, guest_pdptr2),
588         FIELD64(GUEST_PDPTR3, guest_pdptr3),
589         FIELD64(HOST_IA32_PAT, host_ia32_pat),
590         FIELD64(HOST_IA32_EFER, host_ia32_efer),
591         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
592         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
593         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
594         FIELD(EXCEPTION_BITMAP, exception_bitmap),
595         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
596         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
597         FIELD(CR3_TARGET_COUNT, cr3_target_count),
598         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
599         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
600         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
601         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
602         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
603         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
604         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
605         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
606         FIELD(TPR_THRESHOLD, tpr_threshold),
607         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
608         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
609         FIELD(VM_EXIT_REASON, vm_exit_reason),
610         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
611         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
612         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
613         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
614         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
615         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
616         FIELD(GUEST_ES_LIMIT, guest_es_limit),
617         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
618         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
619         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
620         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
621         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
622         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
623         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
624         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
625         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
626         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
627         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
628         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
629         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
630         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
631         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
632         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
633         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
634         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
635         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
636         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
637         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
638         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
639         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
640         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
641         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
642         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
643         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
644         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
645         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
646         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
647         FIELD(EXIT_QUALIFICATION, exit_qualification),
648         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
649         FIELD(GUEST_CR0, guest_cr0),
650         FIELD(GUEST_CR3, guest_cr3),
651         FIELD(GUEST_CR4, guest_cr4),
652         FIELD(GUEST_ES_BASE, guest_es_base),
653         FIELD(GUEST_CS_BASE, guest_cs_base),
654         FIELD(GUEST_SS_BASE, guest_ss_base),
655         FIELD(GUEST_DS_BASE, guest_ds_base),
656         FIELD(GUEST_FS_BASE, guest_fs_base),
657         FIELD(GUEST_GS_BASE, guest_gs_base),
658         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
659         FIELD(GUEST_TR_BASE, guest_tr_base),
660         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
661         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
662         FIELD(GUEST_DR7, guest_dr7),
663         FIELD(GUEST_RSP, guest_rsp),
664         FIELD(GUEST_RIP, guest_rip),
665         FIELD(GUEST_RFLAGS, guest_rflags),
666         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
667         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
668         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
669         FIELD(HOST_CR0, host_cr0),
670         FIELD(HOST_CR3, host_cr3),
671         FIELD(HOST_CR4, host_cr4),
672         FIELD(HOST_FS_BASE, host_fs_base),
673         FIELD(HOST_GS_BASE, host_gs_base),
674         FIELD(HOST_TR_BASE, host_tr_base),
675         FIELD(HOST_GDTR_BASE, host_gdtr_base),
676         FIELD(HOST_IDTR_BASE, host_idtr_base),
677         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
678         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
679         FIELD(HOST_RSP, host_rsp),
680         FIELD(HOST_RIP, host_rip),
681 };
682 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
683
684 static inline short vmcs_field_to_offset(unsigned long field)
685 {
686         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
687                 return -1;
688         return vmcs_field_to_offset_table[field];
689 }
690
691 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
692 {
693         return to_vmx(vcpu)->nested.current_vmcs12;
694 }
695
696 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
697 {
698         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
699         if (is_error_page(page))
700                 return NULL;
701
702         return page;
703 }
704
705 static void nested_release_page(struct page *page)
706 {
707         kvm_release_page_dirty(page);
708 }
709
710 static void nested_release_page_clean(struct page *page)
711 {
712         kvm_release_page_clean(page);
713 }
714
715 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
716 static u64 construct_eptp(unsigned long root_hpa);
717 static void kvm_cpu_vmxon(u64 addr);
718 static void kvm_cpu_vmxoff(void);
719 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
720 static void vmx_set_segment(struct kvm_vcpu *vcpu,
721                             struct kvm_segment *var, int seg);
722 static void vmx_get_segment(struct kvm_vcpu *vcpu,
723                             struct kvm_segment *var, int seg);
724 static bool guest_state_valid(struct kvm_vcpu *vcpu);
725 static u32 vmx_segment_access_rights(struct kvm_segment *var);
726 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
727 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
728 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
729
730 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
731 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
732 /*
733  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
734  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
735  */
736 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
737 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
738
739 static unsigned long *vmx_io_bitmap_a;
740 static unsigned long *vmx_io_bitmap_b;
741 static unsigned long *vmx_msr_bitmap_legacy;
742 static unsigned long *vmx_msr_bitmap_longmode;
743 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
744 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
745 static unsigned long *vmx_vmread_bitmap;
746 static unsigned long *vmx_vmwrite_bitmap;
747
748 static bool cpu_has_load_ia32_efer;
749 static bool cpu_has_load_perf_global_ctrl;
750
751 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
752 static DEFINE_SPINLOCK(vmx_vpid_lock);
753
754 static struct vmcs_config {
755         int size;
756         int order;
757         u32 revision_id;
758         u32 pin_based_exec_ctrl;
759         u32 cpu_based_exec_ctrl;
760         u32 cpu_based_2nd_exec_ctrl;
761         u32 vmexit_ctrl;
762         u32 vmentry_ctrl;
763 } vmcs_config;
764
765 static struct vmx_capability {
766         u32 ept;
767         u32 vpid;
768 } vmx_capability;
769
770 #define VMX_SEGMENT_FIELD(seg)                                  \
771         [VCPU_SREG_##seg] = {                                   \
772                 .selector = GUEST_##seg##_SELECTOR,             \
773                 .base = GUEST_##seg##_BASE,                     \
774                 .limit = GUEST_##seg##_LIMIT,                   \
775                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
776         }
777
778 static const struct kvm_vmx_segment_field {
779         unsigned selector;
780         unsigned base;
781         unsigned limit;
782         unsigned ar_bytes;
783 } kvm_vmx_segment_fields[] = {
784         VMX_SEGMENT_FIELD(CS),
785         VMX_SEGMENT_FIELD(DS),
786         VMX_SEGMENT_FIELD(ES),
787         VMX_SEGMENT_FIELD(FS),
788         VMX_SEGMENT_FIELD(GS),
789         VMX_SEGMENT_FIELD(SS),
790         VMX_SEGMENT_FIELD(TR),
791         VMX_SEGMENT_FIELD(LDTR),
792 };
793
794 static u64 host_efer;
795
796 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
797
798 /*
799  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
800  * away by decrementing the array size.
801  */
802 static const u32 vmx_msr_index[] = {
803 #ifdef CONFIG_X86_64
804         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
805 #endif
806         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
807 };
808 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
809
810 static inline bool is_page_fault(u32 intr_info)
811 {
812         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
813                              INTR_INFO_VALID_MASK)) ==
814                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
815 }
816
817 static inline bool is_no_device(u32 intr_info)
818 {
819         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
820                              INTR_INFO_VALID_MASK)) ==
821                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
822 }
823
824 static inline bool is_invalid_opcode(u32 intr_info)
825 {
826         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
827                              INTR_INFO_VALID_MASK)) ==
828                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
829 }
830
831 static inline bool is_external_interrupt(u32 intr_info)
832 {
833         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
834                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
835 }
836
837 static inline bool is_machine_check(u32 intr_info)
838 {
839         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
840                              INTR_INFO_VALID_MASK)) ==
841                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
842 }
843
844 static inline bool cpu_has_vmx_msr_bitmap(void)
845 {
846         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
847 }
848
849 static inline bool cpu_has_vmx_tpr_shadow(void)
850 {
851         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
852 }
853
854 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
855 {
856         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
857 }
858
859 static inline bool cpu_has_secondary_exec_ctrls(void)
860 {
861         return vmcs_config.cpu_based_exec_ctrl &
862                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
863 }
864
865 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
866 {
867         return vmcs_config.cpu_based_2nd_exec_ctrl &
868                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
869 }
870
871 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
872 {
873         return vmcs_config.cpu_based_2nd_exec_ctrl &
874                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
875 }
876
877 static inline bool cpu_has_vmx_apic_register_virt(void)
878 {
879         return vmcs_config.cpu_based_2nd_exec_ctrl &
880                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
881 }
882
883 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
884 {
885         return vmcs_config.cpu_based_2nd_exec_ctrl &
886                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
887 }
888
889 static inline bool cpu_has_vmx_posted_intr(void)
890 {
891         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
892 }
893
894 static inline bool cpu_has_vmx_apicv(void)
895 {
896         return cpu_has_vmx_apic_register_virt() &&
897                 cpu_has_vmx_virtual_intr_delivery() &&
898                 cpu_has_vmx_posted_intr();
899 }
900
901 static inline bool cpu_has_vmx_flexpriority(void)
902 {
903         return cpu_has_vmx_tpr_shadow() &&
904                 cpu_has_vmx_virtualize_apic_accesses();
905 }
906
907 static inline bool cpu_has_vmx_ept_execute_only(void)
908 {
909         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
910 }
911
912 static inline bool cpu_has_vmx_eptp_uncacheable(void)
913 {
914         return vmx_capability.ept & VMX_EPTP_UC_BIT;
915 }
916
917 static inline bool cpu_has_vmx_eptp_writeback(void)
918 {
919         return vmx_capability.ept & VMX_EPTP_WB_BIT;
920 }
921
922 static inline bool cpu_has_vmx_ept_2m_page(void)
923 {
924         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
925 }
926
927 static inline bool cpu_has_vmx_ept_1g_page(void)
928 {
929         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
930 }
931
932 static inline bool cpu_has_vmx_ept_4levels(void)
933 {
934         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
935 }
936
937 static inline bool cpu_has_vmx_ept_ad_bits(void)
938 {
939         return vmx_capability.ept & VMX_EPT_AD_BIT;
940 }
941
942 static inline bool cpu_has_vmx_invept_context(void)
943 {
944         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
945 }
946
947 static inline bool cpu_has_vmx_invept_global(void)
948 {
949         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
950 }
951
952 static inline bool cpu_has_vmx_invvpid_single(void)
953 {
954         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
955 }
956
957 static inline bool cpu_has_vmx_invvpid_global(void)
958 {
959         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
960 }
961
962 static inline bool cpu_has_vmx_ept(void)
963 {
964         return vmcs_config.cpu_based_2nd_exec_ctrl &
965                 SECONDARY_EXEC_ENABLE_EPT;
966 }
967
968 static inline bool cpu_has_vmx_unrestricted_guest(void)
969 {
970         return vmcs_config.cpu_based_2nd_exec_ctrl &
971                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
972 }
973
974 static inline bool cpu_has_vmx_ple(void)
975 {
976         return vmcs_config.cpu_based_2nd_exec_ctrl &
977                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
978 }
979
980 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
981 {
982         return flexpriority_enabled && irqchip_in_kernel(kvm);
983 }
984
985 static inline bool cpu_has_vmx_vpid(void)
986 {
987         return vmcs_config.cpu_based_2nd_exec_ctrl &
988                 SECONDARY_EXEC_ENABLE_VPID;
989 }
990
991 static inline bool cpu_has_vmx_rdtscp(void)
992 {
993         return vmcs_config.cpu_based_2nd_exec_ctrl &
994                 SECONDARY_EXEC_RDTSCP;
995 }
996
997 static inline bool cpu_has_vmx_invpcid(void)
998 {
999         return vmcs_config.cpu_based_2nd_exec_ctrl &
1000                 SECONDARY_EXEC_ENABLE_INVPCID;
1001 }
1002
1003 static inline bool cpu_has_virtual_nmis(void)
1004 {
1005         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1006 }
1007
1008 static inline bool cpu_has_vmx_wbinvd_exit(void)
1009 {
1010         return vmcs_config.cpu_based_2nd_exec_ctrl &
1011                 SECONDARY_EXEC_WBINVD_EXITING;
1012 }
1013
1014 static inline bool cpu_has_vmx_shadow_vmcs(void)
1015 {
1016         u64 vmx_msr;
1017         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1018         /* check if the cpu supports writing r/o exit information fields */
1019         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1020                 return false;
1021
1022         return vmcs_config.cpu_based_2nd_exec_ctrl &
1023                 SECONDARY_EXEC_SHADOW_VMCS;
1024 }
1025
1026 static inline bool report_flexpriority(void)
1027 {
1028         return flexpriority_enabled;
1029 }
1030
1031 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1032 {
1033         return vmcs12->cpu_based_vm_exec_control & bit;
1034 }
1035
1036 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1037 {
1038         return (vmcs12->cpu_based_vm_exec_control &
1039                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1040                 (vmcs12->secondary_vm_exec_control & bit);
1041 }
1042
1043 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1044 {
1045         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1046 }
1047
1048 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1049 {
1050         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1051 }
1052
1053 static inline bool is_exception(u32 intr_info)
1054 {
1055         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1056                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1057 }
1058
1059 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1060 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1061                         struct vmcs12 *vmcs12,
1062                         u32 reason, unsigned long qualification);
1063
1064 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1065 {
1066         int i;
1067
1068         for (i = 0; i < vmx->nmsrs; ++i)
1069                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1070                         return i;
1071         return -1;
1072 }
1073
1074 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1075 {
1076     struct {
1077         u64 vpid : 16;
1078         u64 rsvd : 48;
1079         u64 gva;
1080     } operand = { vpid, 0, gva };
1081
1082     asm volatile (__ex(ASM_VMX_INVVPID)
1083                   /* CF==1 or ZF==1 --> rc = -1 */
1084                   "; ja 1f ; ud2 ; 1:"
1085                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1086 }
1087
1088 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1089 {
1090         struct {
1091                 u64 eptp, gpa;
1092         } operand = {eptp, gpa};
1093
1094         asm volatile (__ex(ASM_VMX_INVEPT)
1095                         /* CF==1 or ZF==1 --> rc = -1 */
1096                         "; ja 1f ; ud2 ; 1:\n"
1097                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1098 }
1099
1100 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1101 {
1102         int i;
1103
1104         i = __find_msr_index(vmx, msr);
1105         if (i >= 0)
1106                 return &vmx->guest_msrs[i];
1107         return NULL;
1108 }
1109
1110 static void vmcs_clear(struct vmcs *vmcs)
1111 {
1112         u64 phys_addr = __pa(vmcs);
1113         u8 error;
1114
1115         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1116                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1117                       : "cc", "memory");
1118         if (error)
1119                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1120                        vmcs, phys_addr);
1121 }
1122
1123 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1124 {
1125         vmcs_clear(loaded_vmcs->vmcs);
1126         loaded_vmcs->cpu = -1;
1127         loaded_vmcs->launched = 0;
1128 }
1129
1130 static void vmcs_load(struct vmcs *vmcs)
1131 {
1132         u64 phys_addr = __pa(vmcs);
1133         u8 error;
1134
1135         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1136                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1137                         : "cc", "memory");
1138         if (error)
1139                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1140                        vmcs, phys_addr);
1141 }
1142
1143 #ifdef CONFIG_KEXEC
1144 /*
1145  * This bitmap is used to indicate whether the vmclear
1146  * operation is enabled on all cpus. All disabled by
1147  * default.
1148  */
1149 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1150
1151 static inline void crash_enable_local_vmclear(int cpu)
1152 {
1153         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1154 }
1155
1156 static inline void crash_disable_local_vmclear(int cpu)
1157 {
1158         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1159 }
1160
1161 static inline int crash_local_vmclear_enabled(int cpu)
1162 {
1163         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1164 }
1165
1166 static void crash_vmclear_local_loaded_vmcss(void)
1167 {
1168         int cpu = raw_smp_processor_id();
1169         struct loaded_vmcs *v;
1170
1171         if (!crash_local_vmclear_enabled(cpu))
1172                 return;
1173
1174         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1175                             loaded_vmcss_on_cpu_link)
1176                 vmcs_clear(v->vmcs);
1177 }
1178 #else
1179 static inline void crash_enable_local_vmclear(int cpu) { }
1180 static inline void crash_disable_local_vmclear(int cpu) { }
1181 #endif /* CONFIG_KEXEC */
1182
1183 static void __loaded_vmcs_clear(void *arg)
1184 {
1185         struct loaded_vmcs *loaded_vmcs = arg;
1186         int cpu = raw_smp_processor_id();
1187
1188         if (loaded_vmcs->cpu != cpu)
1189                 return; /* vcpu migration can race with cpu offline */
1190         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1191                 per_cpu(current_vmcs, cpu) = NULL;
1192         crash_disable_local_vmclear(cpu);
1193         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1194
1195         /*
1196          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1197          * is before setting loaded_vmcs->vcpu to -1 which is done in
1198          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1199          * then adds the vmcs into percpu list before it is deleted.
1200          */
1201         smp_wmb();
1202
1203         loaded_vmcs_init(loaded_vmcs);
1204         crash_enable_local_vmclear(cpu);
1205 }
1206
1207 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1208 {
1209         int cpu = loaded_vmcs->cpu;
1210
1211         if (cpu != -1)
1212                 smp_call_function_single(cpu,
1213                          __loaded_vmcs_clear, loaded_vmcs, 1);
1214 }
1215
1216 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1217 {
1218         if (vmx->vpid == 0)
1219                 return;
1220
1221         if (cpu_has_vmx_invvpid_single())
1222                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1223 }
1224
1225 static inline void vpid_sync_vcpu_global(void)
1226 {
1227         if (cpu_has_vmx_invvpid_global())
1228                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1229 }
1230
1231 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1232 {
1233         if (cpu_has_vmx_invvpid_single())
1234                 vpid_sync_vcpu_single(vmx);
1235         else
1236                 vpid_sync_vcpu_global();
1237 }
1238
1239 static inline void ept_sync_global(void)
1240 {
1241         if (cpu_has_vmx_invept_global())
1242                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1243 }
1244
1245 static inline void ept_sync_context(u64 eptp)
1246 {
1247         if (enable_ept) {
1248                 if (cpu_has_vmx_invept_context())
1249                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1250                 else
1251                         ept_sync_global();
1252         }
1253 }
1254
1255 static __always_inline unsigned long vmcs_readl(unsigned long field)
1256 {
1257         unsigned long value;
1258
1259         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1260                       : "=a"(value) : "d"(field) : "cc");
1261         return value;
1262 }
1263
1264 static __always_inline u16 vmcs_read16(unsigned long field)
1265 {
1266         return vmcs_readl(field);
1267 }
1268
1269 static __always_inline u32 vmcs_read32(unsigned long field)
1270 {
1271         return vmcs_readl(field);
1272 }
1273
1274 static __always_inline u64 vmcs_read64(unsigned long field)
1275 {
1276 #ifdef CONFIG_X86_64
1277         return vmcs_readl(field);
1278 #else
1279         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1280 #endif
1281 }
1282
1283 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1284 {
1285         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1286                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1287         dump_stack();
1288 }
1289
1290 static void vmcs_writel(unsigned long field, unsigned long value)
1291 {
1292         u8 error;
1293
1294         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1295                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1296         if (unlikely(error))
1297                 vmwrite_error(field, value);
1298 }
1299
1300 static void vmcs_write16(unsigned long field, u16 value)
1301 {
1302         vmcs_writel(field, value);
1303 }
1304
1305 static void vmcs_write32(unsigned long field, u32 value)
1306 {
1307         vmcs_writel(field, value);
1308 }
1309
1310 static void vmcs_write64(unsigned long field, u64 value)
1311 {
1312         vmcs_writel(field, value);
1313 #ifndef CONFIG_X86_64
1314         asm volatile ("");
1315         vmcs_writel(field+1, value >> 32);
1316 #endif
1317 }
1318
1319 static void vmcs_clear_bits(unsigned long field, u32 mask)
1320 {
1321         vmcs_writel(field, vmcs_readl(field) & ~mask);
1322 }
1323
1324 static void vmcs_set_bits(unsigned long field, u32 mask)
1325 {
1326         vmcs_writel(field, vmcs_readl(field) | mask);
1327 }
1328
1329 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1330 {
1331         vmx->segment_cache.bitmask = 0;
1332 }
1333
1334 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1335                                        unsigned field)
1336 {
1337         bool ret;
1338         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1339
1340         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1341                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1342                 vmx->segment_cache.bitmask = 0;
1343         }
1344         ret = vmx->segment_cache.bitmask & mask;
1345         vmx->segment_cache.bitmask |= mask;
1346         return ret;
1347 }
1348
1349 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1350 {
1351         u16 *p = &vmx->segment_cache.seg[seg].selector;
1352
1353         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1354                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1355         return *p;
1356 }
1357
1358 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1359 {
1360         ulong *p = &vmx->segment_cache.seg[seg].base;
1361
1362         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1363                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1364         return *p;
1365 }
1366
1367 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1368 {
1369         u32 *p = &vmx->segment_cache.seg[seg].limit;
1370
1371         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1372                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1373         return *p;
1374 }
1375
1376 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1377 {
1378         u32 *p = &vmx->segment_cache.seg[seg].ar;
1379
1380         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1381                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1382         return *p;
1383 }
1384
1385 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1386 {
1387         u32 eb;
1388
1389         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1390              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1391         if ((vcpu->guest_debug &
1392              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1393             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1394                 eb |= 1u << BP_VECTOR;
1395         if (to_vmx(vcpu)->rmode.vm86_active)
1396                 eb = ~0;
1397         if (enable_ept)
1398                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1399         if (vcpu->fpu_active)
1400                 eb &= ~(1u << NM_VECTOR);
1401
1402         /* When we are running a nested L2 guest and L1 specified for it a
1403          * certain exception bitmap, we must trap the same exceptions and pass
1404          * them to L1. When running L2, we will only handle the exceptions
1405          * specified above if L1 did not want them.
1406          */
1407         if (is_guest_mode(vcpu))
1408                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1409
1410         vmcs_write32(EXCEPTION_BITMAP, eb);
1411 }
1412
1413 static void clear_atomic_switch_msr_special(unsigned long entry,
1414                 unsigned long exit)
1415 {
1416         vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1417         vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1418 }
1419
1420 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1421 {
1422         unsigned i;
1423         struct msr_autoload *m = &vmx->msr_autoload;
1424
1425         switch (msr) {
1426         case MSR_EFER:
1427                 if (cpu_has_load_ia32_efer) {
1428                         clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1429                                         VM_EXIT_LOAD_IA32_EFER);
1430                         return;
1431                 }
1432                 break;
1433         case MSR_CORE_PERF_GLOBAL_CTRL:
1434                 if (cpu_has_load_perf_global_ctrl) {
1435                         clear_atomic_switch_msr_special(
1436                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1437                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1438                         return;
1439                 }
1440                 break;
1441         }
1442
1443         for (i = 0; i < m->nr; ++i)
1444                 if (m->guest[i].index == msr)
1445                         break;
1446
1447         if (i == m->nr)
1448                 return;
1449         --m->nr;
1450         m->guest[i] = m->guest[m->nr];
1451         m->host[i] = m->host[m->nr];
1452         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1453         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1454 }
1455
1456 static void add_atomic_switch_msr_special(unsigned long entry,
1457                 unsigned long exit, unsigned long guest_val_vmcs,
1458                 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1459 {
1460         vmcs_write64(guest_val_vmcs, guest_val);
1461         vmcs_write64(host_val_vmcs, host_val);
1462         vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1463         vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1464 }
1465
1466 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1467                                   u64 guest_val, u64 host_val)
1468 {
1469         unsigned i;
1470         struct msr_autoload *m = &vmx->msr_autoload;
1471
1472         switch (msr) {
1473         case MSR_EFER:
1474                 if (cpu_has_load_ia32_efer) {
1475                         add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1476                                         VM_EXIT_LOAD_IA32_EFER,
1477                                         GUEST_IA32_EFER,
1478                                         HOST_IA32_EFER,
1479                                         guest_val, host_val);
1480                         return;
1481                 }
1482                 break;
1483         case MSR_CORE_PERF_GLOBAL_CTRL:
1484                 if (cpu_has_load_perf_global_ctrl) {
1485                         add_atomic_switch_msr_special(
1486                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1487                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1488                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1489                                         HOST_IA32_PERF_GLOBAL_CTRL,
1490                                         guest_val, host_val);
1491                         return;
1492                 }
1493                 break;
1494         }
1495
1496         for (i = 0; i < m->nr; ++i)
1497                 if (m->guest[i].index == msr)
1498                         break;
1499
1500         if (i == NR_AUTOLOAD_MSRS) {
1501                 printk_once(KERN_WARNING"Not enough mst switch entries. "
1502                                 "Can't add msr %x\n", msr);
1503                 return;
1504         } else if (i == m->nr) {
1505                 ++m->nr;
1506                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1507                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1508         }
1509
1510         m->guest[i].index = msr;
1511         m->guest[i].value = guest_val;
1512         m->host[i].index = msr;
1513         m->host[i].value = host_val;
1514 }
1515
1516 static void reload_tss(void)
1517 {
1518         /*
1519          * VT restores TR but not its size.  Useless.
1520          */
1521         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1522         struct desc_struct *descs;
1523
1524         descs = (void *)gdt->address;
1525         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1526         load_TR_desc();
1527 }
1528
1529 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1530 {
1531         u64 guest_efer;
1532         u64 ignore_bits;
1533
1534         guest_efer = vmx->vcpu.arch.efer;
1535
1536         /*
1537          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1538          * outside long mode
1539          */
1540         ignore_bits = EFER_NX | EFER_SCE;
1541 #ifdef CONFIG_X86_64
1542         ignore_bits |= EFER_LMA | EFER_LME;
1543         /* SCE is meaningful only in long mode on Intel */
1544         if (guest_efer & EFER_LMA)
1545                 ignore_bits &= ~(u64)EFER_SCE;
1546 #endif
1547         guest_efer &= ~ignore_bits;
1548         guest_efer |= host_efer & ignore_bits;
1549         vmx->guest_msrs[efer_offset].data = guest_efer;
1550         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1551
1552         clear_atomic_switch_msr(vmx, MSR_EFER);
1553         /* On ept, can't emulate nx, and must switch nx atomically */
1554         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1555                 guest_efer = vmx->vcpu.arch.efer;
1556                 if (!(guest_efer & EFER_LMA))
1557                         guest_efer &= ~EFER_LME;
1558                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1559                 return false;
1560         }
1561
1562         return true;
1563 }
1564
1565 static unsigned long segment_base(u16 selector)
1566 {
1567         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1568         struct desc_struct *d;
1569         unsigned long table_base;
1570         unsigned long v;
1571
1572         if (!(selector & ~3))
1573                 return 0;
1574
1575         table_base = gdt->address;
1576
1577         if (selector & 4) {           /* from ldt */
1578                 u16 ldt_selector = kvm_read_ldt();
1579
1580                 if (!(ldt_selector & ~3))
1581                         return 0;
1582
1583                 table_base = segment_base(ldt_selector);
1584         }
1585         d = (struct desc_struct *)(table_base + (selector & ~7));
1586         v = get_desc_base(d);
1587 #ifdef CONFIG_X86_64
1588        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1589                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1590 #endif
1591         return v;
1592 }
1593
1594 static inline unsigned long kvm_read_tr_base(void)
1595 {
1596         u16 tr;
1597         asm("str %0" : "=g"(tr));
1598         return segment_base(tr);
1599 }
1600
1601 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1602 {
1603         struct vcpu_vmx *vmx = to_vmx(vcpu);
1604         int i;
1605
1606         if (vmx->host_state.loaded)
1607                 return;
1608
1609         vmx->host_state.loaded = 1;
1610         /*
1611          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1612          * allow segment selectors with cpl > 0 or ti == 1.
1613          */
1614         vmx->host_state.ldt_sel = kvm_read_ldt();
1615         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1616         savesegment(fs, vmx->host_state.fs_sel);
1617         if (!(vmx->host_state.fs_sel & 7)) {
1618                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1619                 vmx->host_state.fs_reload_needed = 0;
1620         } else {
1621                 vmcs_write16(HOST_FS_SELECTOR, 0);
1622                 vmx->host_state.fs_reload_needed = 1;
1623         }
1624         savesegment(gs, vmx->host_state.gs_sel);
1625         if (!(vmx->host_state.gs_sel & 7))
1626                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1627         else {
1628                 vmcs_write16(HOST_GS_SELECTOR, 0);
1629                 vmx->host_state.gs_ldt_reload_needed = 1;
1630         }
1631
1632 #ifdef CONFIG_X86_64
1633         savesegment(ds, vmx->host_state.ds_sel);
1634         savesegment(es, vmx->host_state.es_sel);
1635 #endif
1636
1637 #ifdef CONFIG_X86_64
1638         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1639         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1640 #else
1641         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1642         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1643 #endif
1644
1645 #ifdef CONFIG_X86_64
1646         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1647         if (is_long_mode(&vmx->vcpu))
1648                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1649 #endif
1650         for (i = 0; i < vmx->save_nmsrs; ++i)
1651                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1652                                    vmx->guest_msrs[i].data,
1653                                    vmx->guest_msrs[i].mask);
1654 }
1655
1656 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1657 {
1658         if (!vmx->host_state.loaded)
1659                 return;
1660
1661         ++vmx->vcpu.stat.host_state_reload;
1662         vmx->host_state.loaded = 0;
1663 #ifdef CONFIG_X86_64
1664         if (is_long_mode(&vmx->vcpu))
1665                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1666 #endif
1667         if (vmx->host_state.gs_ldt_reload_needed) {
1668                 kvm_load_ldt(vmx->host_state.ldt_sel);
1669 #ifdef CONFIG_X86_64
1670                 load_gs_index(vmx->host_state.gs_sel);
1671 #else
1672                 loadsegment(gs, vmx->host_state.gs_sel);
1673 #endif
1674         }
1675         if (vmx->host_state.fs_reload_needed)
1676                 loadsegment(fs, vmx->host_state.fs_sel);
1677 #ifdef CONFIG_X86_64
1678         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1679                 loadsegment(ds, vmx->host_state.ds_sel);
1680                 loadsegment(es, vmx->host_state.es_sel);
1681         }
1682 #endif
1683         reload_tss();
1684 #ifdef CONFIG_X86_64
1685         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1686 #endif
1687         /*
1688          * If the FPU is not active (through the host task or
1689          * the guest vcpu), then restore the cr0.TS bit.
1690          */
1691         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1692                 stts();
1693         load_gdt(&__get_cpu_var(host_gdt));
1694 }
1695
1696 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1697 {
1698         preempt_disable();
1699         __vmx_load_host_state(vmx);
1700         preempt_enable();
1701 }
1702
1703 /*
1704  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1705  * vcpu mutex is already taken.
1706  */
1707 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1708 {
1709         struct vcpu_vmx *vmx = to_vmx(vcpu);
1710         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1711
1712         if (!vmm_exclusive)
1713                 kvm_cpu_vmxon(phys_addr);
1714         else if (vmx->loaded_vmcs->cpu != cpu)
1715                 loaded_vmcs_clear(vmx->loaded_vmcs);
1716
1717         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1718                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1719                 vmcs_load(vmx->loaded_vmcs->vmcs);
1720         }
1721
1722         if (vmx->loaded_vmcs->cpu != cpu) {
1723                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1724                 unsigned long sysenter_esp;
1725
1726                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1727                 local_irq_disable();
1728                 crash_disable_local_vmclear(cpu);
1729
1730                 /*
1731                  * Read loaded_vmcs->cpu should be before fetching
1732                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1733                  * See the comments in __loaded_vmcs_clear().
1734                  */
1735                 smp_rmb();
1736
1737                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1738                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1739                 crash_enable_local_vmclear(cpu);
1740                 local_irq_enable();
1741
1742                 /*
1743                  * Linux uses per-cpu TSS and GDT, so set these when switching
1744                  * processors.
1745                  */
1746                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1747                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1748
1749                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1750                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1751                 vmx->loaded_vmcs->cpu = cpu;
1752         }
1753 }
1754
1755 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1756 {
1757         __vmx_load_host_state(to_vmx(vcpu));
1758         if (!vmm_exclusive) {
1759                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1760                 vcpu->cpu = -1;
1761                 kvm_cpu_vmxoff();
1762         }
1763 }
1764
1765 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1766 {
1767         ulong cr0;
1768
1769         if (vcpu->fpu_active)
1770                 return;
1771         vcpu->fpu_active = 1;
1772         cr0 = vmcs_readl(GUEST_CR0);
1773         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1774         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1775         vmcs_writel(GUEST_CR0, cr0);
1776         update_exception_bitmap(vcpu);
1777         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1778         if (is_guest_mode(vcpu))
1779                 vcpu->arch.cr0_guest_owned_bits &=
1780                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1781         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1782 }
1783
1784 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1785
1786 /*
1787  * Return the cr0 value that a nested guest would read. This is a combination
1788  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1789  * its hypervisor (cr0_read_shadow).
1790  */
1791 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1792 {
1793         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1794                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1795 }
1796 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1797 {
1798         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1799                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1800 }
1801
1802 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1803 {
1804         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1805          * set this *before* calling this function.
1806          */
1807         vmx_decache_cr0_guest_bits(vcpu);
1808         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1809         update_exception_bitmap(vcpu);
1810         vcpu->arch.cr0_guest_owned_bits = 0;
1811         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1812         if (is_guest_mode(vcpu)) {
1813                 /*
1814                  * L1's specified read shadow might not contain the TS bit,
1815                  * so now that we turned on shadowing of this bit, we need to
1816                  * set this bit of the shadow. Like in nested_vmx_run we need
1817                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1818                  * up-to-date here because we just decached cr0.TS (and we'll
1819                  * only update vmcs12->guest_cr0 on nested exit).
1820                  */
1821                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1822                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1823                         (vcpu->arch.cr0 & X86_CR0_TS);
1824                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1825         } else
1826                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1827 }
1828
1829 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1830 {
1831         unsigned long rflags, save_rflags;
1832
1833         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1834                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1835                 rflags = vmcs_readl(GUEST_RFLAGS);
1836                 if (to_vmx(vcpu)->rmode.vm86_active) {
1837                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1838                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1839                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1840                 }
1841                 to_vmx(vcpu)->rflags = rflags;
1842         }
1843         return to_vmx(vcpu)->rflags;
1844 }
1845
1846 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1847 {
1848         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1849         to_vmx(vcpu)->rflags = rflags;
1850         if (to_vmx(vcpu)->rmode.vm86_active) {
1851                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1852                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1853         }
1854         vmcs_writel(GUEST_RFLAGS, rflags);
1855 }
1856
1857 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1858 {
1859         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1860         int ret = 0;
1861
1862         if (interruptibility & GUEST_INTR_STATE_STI)
1863                 ret |= KVM_X86_SHADOW_INT_STI;
1864         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1865                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1866
1867         return ret & mask;
1868 }
1869
1870 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1871 {
1872         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1873         u32 interruptibility = interruptibility_old;
1874
1875         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1876
1877         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1878                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1879         else if (mask & KVM_X86_SHADOW_INT_STI)
1880                 interruptibility |= GUEST_INTR_STATE_STI;
1881
1882         if ((interruptibility != interruptibility_old))
1883                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1884 }
1885
1886 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1887 {
1888         unsigned long rip;
1889
1890         rip = kvm_rip_read(vcpu);
1891         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1892         kvm_rip_write(vcpu, rip);
1893
1894         /* skipping an emulated instruction also counts */
1895         vmx_set_interrupt_shadow(vcpu, 0);
1896 }
1897
1898 /*
1899  * KVM wants to inject page-faults which it got to the guest. This function
1900  * checks whether in a nested guest, we need to inject them to L1 or L2.
1901  * This function assumes it is called with the exit reason in vmcs02 being
1902  * a #PF exception (this is the only case in which KVM injects a #PF when L2
1903  * is running).
1904  */
1905 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1906 {
1907         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1908
1909         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1910         if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1911                 return 0;
1912
1913         nested_vmx_vmexit(vcpu);
1914         return 1;
1915 }
1916
1917 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1918                                 bool has_error_code, u32 error_code,
1919                                 bool reinject)
1920 {
1921         struct vcpu_vmx *vmx = to_vmx(vcpu);
1922         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1923
1924         if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1925             !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
1926                 return;
1927
1928         if (has_error_code) {
1929                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1930                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1931         }
1932
1933         if (vmx->rmode.vm86_active) {
1934                 int inc_eip = 0;
1935                 if (kvm_exception_is_soft(nr))
1936                         inc_eip = vcpu->arch.event_exit_inst_len;
1937                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1938                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1939                 return;
1940         }
1941
1942         if (kvm_exception_is_soft(nr)) {
1943                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1944                              vmx->vcpu.arch.event_exit_inst_len);
1945                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1946         } else
1947                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1948
1949         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1950 }
1951
1952 static bool vmx_rdtscp_supported(void)
1953 {
1954         return cpu_has_vmx_rdtscp();
1955 }
1956
1957 static bool vmx_invpcid_supported(void)
1958 {
1959         return cpu_has_vmx_invpcid() && enable_ept;
1960 }
1961
1962 /*
1963  * Swap MSR entry in host/guest MSR entry array.
1964  */
1965 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1966 {
1967         struct shared_msr_entry tmp;
1968
1969         tmp = vmx->guest_msrs[to];
1970         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1971         vmx->guest_msrs[from] = tmp;
1972 }
1973
1974 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1975 {
1976         unsigned long *msr_bitmap;
1977
1978         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1979                 if (is_long_mode(vcpu))
1980                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1981                 else
1982                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1983         } else {
1984                 if (is_long_mode(vcpu))
1985                         msr_bitmap = vmx_msr_bitmap_longmode;
1986                 else
1987                         msr_bitmap = vmx_msr_bitmap_legacy;
1988         }
1989
1990         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1991 }
1992
1993 /*
1994  * Set up the vmcs to automatically save and restore system
1995  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1996  * mode, as fiddling with msrs is very expensive.
1997  */
1998 static void setup_msrs(struct vcpu_vmx *vmx)
1999 {
2000         int save_nmsrs, index;
2001
2002         save_nmsrs = 0;
2003 #ifdef CONFIG_X86_64
2004         if (is_long_mode(&vmx->vcpu)) {
2005                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2006                 if (index >= 0)
2007                         move_msr_up(vmx, index, save_nmsrs++);
2008                 index = __find_msr_index(vmx, MSR_LSTAR);
2009                 if (index >= 0)
2010                         move_msr_up(vmx, index, save_nmsrs++);
2011                 index = __find_msr_index(vmx, MSR_CSTAR);
2012                 if (index >= 0)
2013                         move_msr_up(vmx, index, save_nmsrs++);
2014                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2015                 if (index >= 0 && vmx->rdtscp_enabled)
2016                         move_msr_up(vmx, index, save_nmsrs++);
2017                 /*
2018                  * MSR_STAR is only needed on long mode guests, and only
2019                  * if efer.sce is enabled.
2020                  */
2021                 index = __find_msr_index(vmx, MSR_STAR);
2022                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2023                         move_msr_up(vmx, index, save_nmsrs++);
2024         }
2025 #endif
2026         index = __find_msr_index(vmx, MSR_EFER);
2027         if (index >= 0 && update_transition_efer(vmx, index))
2028                 move_msr_up(vmx, index, save_nmsrs++);
2029
2030         vmx->save_nmsrs = save_nmsrs;
2031
2032         if (cpu_has_vmx_msr_bitmap())
2033                 vmx_set_msr_bitmap(&vmx->vcpu);
2034 }
2035
2036 /*
2037  * reads and returns guest's timestamp counter "register"
2038  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2039  */
2040 static u64 guest_read_tsc(void)
2041 {
2042         u64 host_tsc, tsc_offset;
2043
2044         rdtscll(host_tsc);
2045         tsc_offset = vmcs_read64(TSC_OFFSET);
2046         return host_tsc + tsc_offset;
2047 }
2048
2049 /*
2050  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2051  * counter, even if a nested guest (L2) is currently running.
2052  */
2053 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2054 {
2055         u64 tsc_offset;
2056
2057         tsc_offset = is_guest_mode(vcpu) ?
2058                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2059                 vmcs_read64(TSC_OFFSET);
2060         return host_tsc + tsc_offset;
2061 }
2062
2063 /*
2064  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2065  * software catchup for faster rates on slower CPUs.
2066  */
2067 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2068 {
2069         if (!scale)
2070                 return;
2071
2072         if (user_tsc_khz > tsc_khz) {
2073                 vcpu->arch.tsc_catchup = 1;
2074                 vcpu->arch.tsc_always_catchup = 1;
2075         } else
2076                 WARN(1, "user requested TSC rate below hardware speed\n");
2077 }
2078
2079 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2080 {
2081         return vmcs_read64(TSC_OFFSET);
2082 }
2083
2084 /*
2085  * writes 'offset' into guest's timestamp counter offset register
2086  */
2087 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2088 {
2089         if (is_guest_mode(vcpu)) {
2090                 /*
2091                  * We're here if L1 chose not to trap WRMSR to TSC. According
2092                  * to the spec, this should set L1's TSC; The offset that L1
2093                  * set for L2 remains unchanged, and still needs to be added
2094                  * to the newly set TSC to get L2's TSC.
2095                  */
2096                 struct vmcs12 *vmcs12;
2097                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2098                 /* recalculate vmcs02.TSC_OFFSET: */
2099                 vmcs12 = get_vmcs12(vcpu);
2100                 vmcs_write64(TSC_OFFSET, offset +
2101                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2102                          vmcs12->tsc_offset : 0));
2103         } else {
2104                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2105                                            vmcs_read64(TSC_OFFSET), offset);
2106                 vmcs_write64(TSC_OFFSET, offset);
2107         }
2108 }
2109
2110 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2111 {
2112         u64 offset = vmcs_read64(TSC_OFFSET);
2113
2114         vmcs_write64(TSC_OFFSET, offset + adjustment);
2115         if (is_guest_mode(vcpu)) {
2116                 /* Even when running L2, the adjustment needs to apply to L1 */
2117                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2118         } else
2119                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2120                                            offset + adjustment);
2121 }
2122
2123 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2124 {
2125         return target_tsc - native_read_tsc();
2126 }
2127
2128 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2129 {
2130         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2131         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2132 }
2133
2134 /*
2135  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2136  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2137  * all guests if the "nested" module option is off, and can also be disabled
2138  * for a single guest by disabling its VMX cpuid bit.
2139  */
2140 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2141 {
2142         return nested && guest_cpuid_has_vmx(vcpu);
2143 }
2144
2145 /*
2146  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2147  * returned for the various VMX controls MSRs when nested VMX is enabled.
2148  * The same values should also be used to verify that vmcs12 control fields are
2149  * valid during nested entry from L1 to L2.
2150  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2151  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2152  * bit in the high half is on if the corresponding bit in the control field
2153  * may be on. See also vmx_control_verify().
2154  * TODO: allow these variables to be modified (downgraded) by module options
2155  * or other means.
2156  */
2157 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2158 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2159 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2160 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2161 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2162 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2163 static u32 nested_vmx_ept_caps;
2164 static __init void nested_vmx_setup_ctls_msrs(void)
2165 {
2166         /*
2167          * Note that as a general rule, the high half of the MSRs (bits in
2168          * the control fields which may be 1) should be initialized by the
2169          * intersection of the underlying hardware's MSR (i.e., features which
2170          * can be supported) and the list of features we want to expose -
2171          * because they are known to be properly supported in our code.
2172          * Also, usually, the low half of the MSRs (bits which must be 1) can
2173          * be set to 0, meaning that L1 may turn off any of these bits. The
2174          * reason is that if one of these bits is necessary, it will appear
2175          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2176          * fields of vmcs01 and vmcs02, will turn these bits off - and
2177          * nested_vmx_exit_handled() will not pass related exits to L1.
2178          * These rules have exceptions below.
2179          */
2180
2181         /* pin-based controls */
2182         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2183               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2184         /*
2185          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2186          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2187          */
2188         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2189         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2190                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2191                 PIN_BASED_VMX_PREEMPTION_TIMER;
2192         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2193
2194         /*
2195          * Exit controls
2196          * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2197          * 17 must be 1.
2198          */
2199         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2200         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2201 #ifdef CONFIG_X86_64
2202         nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2203 #else
2204         nested_vmx_exit_ctls_high = 0;
2205 #endif
2206         nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2207                                       VM_EXIT_LOAD_IA32_EFER);
2208
2209         /* entry controls */
2210         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2211                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2212         /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2213         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2214         nested_vmx_entry_ctls_high &=
2215                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2216         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2217                                        VM_ENTRY_LOAD_IA32_EFER);
2218         /* cpu-based controls */
2219         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2220                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2221         nested_vmx_procbased_ctls_low = 0;
2222         nested_vmx_procbased_ctls_high &=
2223                 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2224                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2225                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2226                 CPU_BASED_CR3_STORE_EXITING |
2227 #ifdef CONFIG_X86_64
2228                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2229 #endif
2230                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2231                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2232                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2233                 CPU_BASED_PAUSE_EXITING |
2234                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2235         /*
2236          * We can allow some features even when not supported by the
2237          * hardware. For example, L1 can specify an MSR bitmap - and we
2238          * can use it to avoid exits to L1 - even when L0 runs L2
2239          * without MSR bitmaps.
2240          */
2241         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2242
2243         /* secondary cpu-based controls */
2244         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2245                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2246         nested_vmx_secondary_ctls_low = 0;
2247         nested_vmx_secondary_ctls_high &=
2248                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2249                 SECONDARY_EXEC_WBINVD_EXITING;
2250
2251         if (enable_ept) {
2252                 /* nested EPT: emulate EPT also to L1 */
2253                 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2254                 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2255                          VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2256                 nested_vmx_ept_caps &= vmx_capability.ept;
2257                 /*
2258                  * Since invept is completely emulated we support both global
2259                  * and context invalidation independent of what host cpu
2260                  * supports
2261                  */
2262                 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2263                         VMX_EPT_EXTENT_CONTEXT_BIT;
2264         } else
2265                 nested_vmx_ept_caps = 0;
2266
2267         /* miscellaneous data */
2268         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2269         nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2270                 VMX_MISC_SAVE_EFER_LMA;
2271         nested_vmx_misc_high = 0;
2272 }
2273
2274 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2275 {
2276         /*
2277          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2278          */
2279         return ((control & high) | low) == control;
2280 }
2281
2282 static inline u64 vmx_control_msr(u32 low, u32 high)
2283 {
2284         return low | ((u64)high << 32);
2285 }
2286
2287 /*
2288  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2289  * also let it use VMX-specific MSRs.
2290  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2291  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2292  * like all other MSRs).
2293  */
2294 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2295 {
2296         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2297                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2298                 /*
2299                  * According to the spec, processors which do not support VMX
2300                  * should throw a #GP(0) when VMX capability MSRs are read.
2301                  */
2302                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2303                 return 1;
2304         }
2305
2306         switch (msr_index) {
2307         case MSR_IA32_FEATURE_CONTROL:
2308                 if (nested_vmx_allowed(vcpu)) {
2309                         *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2310                         break;
2311                 }
2312                 return 0;
2313         case MSR_IA32_VMX_BASIC:
2314                 /*
2315                  * This MSR reports some information about VMX support. We
2316                  * should return information about the VMX we emulate for the
2317                  * guest, and the VMCS structure we give it - not about the
2318                  * VMX support of the underlying hardware.
2319                  */
2320                 *pdata = VMCS12_REVISION |
2321                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2322                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2323                 break;
2324         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2325         case MSR_IA32_VMX_PINBASED_CTLS:
2326                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2327                                         nested_vmx_pinbased_ctls_high);
2328                 break;
2329         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2330         case MSR_IA32_VMX_PROCBASED_CTLS:
2331                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2332                                         nested_vmx_procbased_ctls_high);
2333                 break;
2334         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2335         case MSR_IA32_VMX_EXIT_CTLS:
2336                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2337                                         nested_vmx_exit_ctls_high);
2338                 break;
2339         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2340         case MSR_IA32_VMX_ENTRY_CTLS:
2341                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2342                                         nested_vmx_entry_ctls_high);
2343                 break;
2344         case MSR_IA32_VMX_MISC:
2345                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2346                                          nested_vmx_misc_high);
2347                 break;
2348         /*
2349          * These MSRs specify bits which the guest must keep fixed (on or off)
2350          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2351          * We picked the standard core2 setting.
2352          */
2353 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2354 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2355         case MSR_IA32_VMX_CR0_FIXED0:
2356                 *pdata = VMXON_CR0_ALWAYSON;
2357                 break;
2358         case MSR_IA32_VMX_CR0_FIXED1:
2359                 *pdata = -1ULL;
2360                 break;
2361         case MSR_IA32_VMX_CR4_FIXED0:
2362                 *pdata = VMXON_CR4_ALWAYSON;
2363                 break;
2364         case MSR_IA32_VMX_CR4_FIXED1:
2365                 *pdata = -1ULL;
2366                 break;
2367         case MSR_IA32_VMX_VMCS_ENUM:
2368                 *pdata = 0x1f;
2369                 break;
2370         case MSR_IA32_VMX_PROCBASED_CTLS2:
2371                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2372                                         nested_vmx_secondary_ctls_high);
2373                 break;
2374         case MSR_IA32_VMX_EPT_VPID_CAP:
2375                 /* Currently, no nested vpid support */
2376                 *pdata = nested_vmx_ept_caps;
2377                 break;
2378         default:
2379                 return 0;
2380         }
2381
2382         return 1;
2383 }
2384
2385 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2386 {
2387         u32 msr_index = msr_info->index;
2388         u64 data = msr_info->data;
2389         bool host_initialized = msr_info->host_initiated;
2390
2391         if (!nested_vmx_allowed(vcpu))
2392                 return 0;
2393
2394         if (msr_index == MSR_IA32_FEATURE_CONTROL) {
2395                 if (!host_initialized &&
2396                                 to_vmx(vcpu)->nested.msr_ia32_feature_control
2397                                 & FEATURE_CONTROL_LOCKED)
2398                         return 0;
2399                 to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
2400                 return 1;
2401         }
2402
2403         /*
2404          * No need to treat VMX capability MSRs specially: If we don't handle
2405          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2406          */
2407         return 0;
2408 }
2409
2410 /*
2411  * Reads an msr value (of 'msr_index') into 'pdata'.
2412  * Returns 0 on success, non-0 otherwise.
2413  * Assumes vcpu_load() was already called.
2414  */
2415 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2416 {
2417         u64 data;
2418         struct shared_msr_entry *msr;
2419
2420         if (!pdata) {
2421                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2422                 return -EINVAL;
2423         }
2424
2425         switch (msr_index) {
2426 #ifdef CONFIG_X86_64
2427         case MSR_FS_BASE:
2428                 data = vmcs_readl(GUEST_FS_BASE);
2429                 break;
2430         case MSR_GS_BASE:
2431                 data = vmcs_readl(GUEST_GS_BASE);
2432                 break;
2433         case MSR_KERNEL_GS_BASE:
2434                 vmx_load_host_state(to_vmx(vcpu));
2435                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2436                 break;
2437 #endif
2438         case MSR_EFER:
2439                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2440         case MSR_IA32_TSC:
2441                 data = guest_read_tsc();
2442                 break;
2443         case MSR_IA32_SYSENTER_CS:
2444                 data = vmcs_read32(GUEST_SYSENTER_CS);
2445                 break;
2446         case MSR_IA32_SYSENTER_EIP:
2447                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2448                 break;
2449         case MSR_IA32_SYSENTER_ESP:
2450                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2451                 break;
2452         case MSR_TSC_AUX:
2453                 if (!to_vmx(vcpu)->rdtscp_enabled)
2454                         return 1;
2455                 /* Otherwise falls through */
2456         default:
2457                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2458                         return 0;
2459                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2460                 if (msr) {
2461                         data = msr->data;
2462                         break;
2463                 }
2464                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2465         }
2466
2467         *pdata = data;
2468         return 0;
2469 }
2470
2471 /*
2472  * Writes msr value into into the appropriate "register".
2473  * Returns 0 on success, non-0 otherwise.
2474  * Assumes vcpu_load() was already called.
2475  */
2476 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2477 {
2478         struct vcpu_vmx *vmx = to_vmx(vcpu);
2479         struct shared_msr_entry *msr;
2480         int ret = 0;
2481         u32 msr_index = msr_info->index;
2482         u64 data = msr_info->data;
2483
2484         switch (msr_index) {
2485         case MSR_EFER:
2486                 ret = kvm_set_msr_common(vcpu, msr_info);
2487                 break;
2488 #ifdef CONFIG_X86_64
2489         case MSR_FS_BASE:
2490                 vmx_segment_cache_clear(vmx);
2491                 vmcs_writel(GUEST_FS_BASE, data);
2492                 break;
2493         case MSR_GS_BASE:
2494                 vmx_segment_cache_clear(vmx);
2495                 vmcs_writel(GUEST_GS_BASE, data);
2496                 break;
2497         case MSR_KERNEL_GS_BASE:
2498                 vmx_load_host_state(vmx);
2499                 vmx->msr_guest_kernel_gs_base = data;
2500                 break;
2501 #endif
2502         case MSR_IA32_SYSENTER_CS:
2503                 vmcs_write32(GUEST_SYSENTER_CS, data);
2504                 break;
2505         case MSR_IA32_SYSENTER_EIP:
2506                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2507                 break;
2508         case MSR_IA32_SYSENTER_ESP:
2509                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2510                 break;
2511         case MSR_IA32_TSC:
2512                 kvm_write_tsc(vcpu, msr_info);
2513                 break;
2514         case MSR_IA32_CR_PAT:
2515                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2516                         vmcs_write64(GUEST_IA32_PAT, data);
2517                         vcpu->arch.pat = data;
2518                         break;
2519                 }
2520                 ret = kvm_set_msr_common(vcpu, msr_info);
2521                 break;
2522         case MSR_IA32_TSC_ADJUST:
2523                 ret = kvm_set_msr_common(vcpu, msr_info);
2524                 break;
2525         case MSR_TSC_AUX:
2526                 if (!vmx->rdtscp_enabled)
2527                         return 1;
2528                 /* Check reserved bit, higher 32 bits should be zero */
2529                 if ((data >> 32) != 0)
2530                         return 1;
2531                 /* Otherwise falls through */
2532         default:
2533                 if (vmx_set_vmx_msr(vcpu, msr_info))
2534                         break;
2535                 msr = find_msr_entry(vmx, msr_index);
2536                 if (msr) {
2537                         msr->data = data;
2538                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2539                                 preempt_disable();
2540                                 kvm_set_shared_msr(msr->index, msr->data,
2541                                                    msr->mask);
2542                                 preempt_enable();
2543                         }
2544                         break;
2545                 }
2546                 ret = kvm_set_msr_common(vcpu, msr_info);
2547         }
2548
2549         return ret;
2550 }
2551
2552 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2553 {
2554         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2555         switch (reg) {
2556         case VCPU_REGS_RSP:
2557                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2558                 break;
2559         case VCPU_REGS_RIP:
2560                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2561                 break;
2562         case VCPU_EXREG_PDPTR:
2563                 if (enable_ept)
2564                         ept_save_pdptrs(vcpu);
2565                 break;
2566         default:
2567                 break;
2568         }
2569 }
2570
2571 static __init int cpu_has_kvm_support(void)
2572 {
2573         return cpu_has_vmx();
2574 }
2575
2576 static __init int vmx_disabled_by_bios(void)
2577 {
2578         u64 msr;
2579
2580         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2581         if (msr & FEATURE_CONTROL_LOCKED) {
2582                 /* launched w/ TXT and VMX disabled */
2583                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2584                         && tboot_enabled())
2585                         return 1;
2586                 /* launched w/o TXT and VMX only enabled w/ TXT */
2587                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2588                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2589                         && !tboot_enabled()) {
2590                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2591                                 "activate TXT before enabling KVM\n");
2592                         return 1;
2593                 }
2594                 /* launched w/o TXT and VMX disabled */
2595                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2596                         && !tboot_enabled())
2597                         return 1;
2598         }
2599
2600         return 0;
2601 }
2602
2603 static void kvm_cpu_vmxon(u64 addr)
2604 {
2605         asm volatile (ASM_VMX_VMXON_RAX
2606                         : : "a"(&addr), "m"(addr)
2607                         : "memory", "cc");
2608 }
2609
2610 static int hardware_enable(void *garbage)
2611 {
2612         int cpu = raw_smp_processor_id();
2613         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2614         u64 old, test_bits;
2615
2616         if (read_cr4() & X86_CR4_VMXE)
2617                 return -EBUSY;
2618
2619         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2620
2621         /*
2622          * Now we can enable the vmclear operation in kdump
2623          * since the loaded_vmcss_on_cpu list on this cpu
2624          * has been initialized.
2625          *
2626          * Though the cpu is not in VMX operation now, there
2627          * is no problem to enable the vmclear operation
2628          * for the loaded_vmcss_on_cpu list is empty!
2629          */
2630         crash_enable_local_vmclear(cpu);
2631
2632         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2633
2634         test_bits = FEATURE_CONTROL_LOCKED;
2635         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2636         if (tboot_enabled())
2637                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2638
2639         if ((old & test_bits) != test_bits) {
2640                 /* enable and lock */
2641                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2642         }
2643         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2644
2645         if (vmm_exclusive) {
2646                 kvm_cpu_vmxon(phys_addr);
2647                 ept_sync_global();
2648         }
2649
2650         native_store_gdt(&__get_cpu_var(host_gdt));
2651
2652         return 0;
2653 }
2654
2655 static void vmclear_local_loaded_vmcss(void)
2656 {
2657         int cpu = raw_smp_processor_id();
2658         struct loaded_vmcs *v, *n;
2659
2660         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2661                                  loaded_vmcss_on_cpu_link)
2662                 __loaded_vmcs_clear(v);
2663 }
2664
2665
2666 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2667  * tricks.
2668  */
2669 static void kvm_cpu_vmxoff(void)
2670 {
2671         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2672 }
2673
2674 static void hardware_disable(void *garbage)
2675 {
2676         if (vmm_exclusive) {
2677                 vmclear_local_loaded_vmcss();
2678                 kvm_cpu_vmxoff();
2679         }
2680         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2681 }
2682
2683 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2684                                       u32 msr, u32 *result)
2685 {
2686         u32 vmx_msr_low, vmx_msr_high;
2687         u32 ctl = ctl_min | ctl_opt;
2688
2689         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2690
2691         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2692         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2693
2694         /* Ensure minimum (required) set of control bits are supported. */
2695         if (ctl_min & ~ctl)
2696                 return -EIO;
2697
2698         *result = ctl;
2699         return 0;
2700 }
2701
2702 static __init bool allow_1_setting(u32 msr, u32 ctl)
2703 {
2704         u32 vmx_msr_low, vmx_msr_high;
2705
2706         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2707         return vmx_msr_high & ctl;
2708 }
2709
2710 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2711 {
2712         u32 vmx_msr_low, vmx_msr_high;
2713         u32 min, opt, min2, opt2;
2714         u32 _pin_based_exec_control = 0;
2715         u32 _cpu_based_exec_control = 0;
2716         u32 _cpu_based_2nd_exec_control = 0;
2717         u32 _vmexit_control = 0;
2718         u32 _vmentry_control = 0;
2719
2720         min = CPU_BASED_HLT_EXITING |
2721 #ifdef CONFIG_X86_64
2722               CPU_BASED_CR8_LOAD_EXITING |
2723               CPU_BASED_CR8_STORE_EXITING |
2724 #endif
2725               CPU_BASED_CR3_LOAD_EXITING |
2726               CPU_BASED_CR3_STORE_EXITING |
2727               CPU_BASED_USE_IO_BITMAPS |
2728               CPU_BASED_MOV_DR_EXITING |
2729               CPU_BASED_USE_TSC_OFFSETING |
2730               CPU_BASED_MWAIT_EXITING |
2731               CPU_BASED_MONITOR_EXITING |
2732               CPU_BASED_INVLPG_EXITING |
2733               CPU_BASED_RDPMC_EXITING;
2734
2735         opt = CPU_BASED_TPR_SHADOW |
2736               CPU_BASED_USE_MSR_BITMAPS |
2737               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2738         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2739                                 &_cpu_based_exec_control) < 0)
2740                 return -EIO;
2741 #ifdef CONFIG_X86_64
2742         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2743                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2744                                            ~CPU_BASED_CR8_STORE_EXITING;
2745 #endif
2746         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2747                 min2 = 0;
2748                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2749                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2750                         SECONDARY_EXEC_WBINVD_EXITING |
2751                         SECONDARY_EXEC_ENABLE_VPID |
2752                         SECONDARY_EXEC_ENABLE_EPT |
2753                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2754                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2755                         SECONDARY_EXEC_RDTSCP |
2756                         SECONDARY_EXEC_ENABLE_INVPCID |
2757                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2758                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2759                         SECONDARY_EXEC_SHADOW_VMCS;
2760                 if (adjust_vmx_controls(min2, opt2,
2761                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2762                                         &_cpu_based_2nd_exec_control) < 0)
2763                         return -EIO;
2764         }
2765 #ifndef CONFIG_X86_64
2766         if (!(_cpu_based_2nd_exec_control &
2767                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2768                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2769 #endif
2770
2771         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2772                 _cpu_based_2nd_exec_control &= ~(
2773                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2774                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2775                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2776
2777         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2778                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2779                    enabled */
2780                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2781                                              CPU_BASED_CR3_STORE_EXITING |
2782                                              CPU_BASED_INVLPG_EXITING);
2783                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2784                       vmx_capability.ept, vmx_capability.vpid);
2785         }
2786
2787         min = 0;
2788 #ifdef CONFIG_X86_64
2789         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2790 #endif
2791         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2792                 VM_EXIT_ACK_INTR_ON_EXIT;
2793         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2794                                 &_vmexit_control) < 0)
2795                 return -EIO;
2796
2797         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2798         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2799         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2800                                 &_pin_based_exec_control) < 0)
2801                 return -EIO;
2802
2803         if (!(_cpu_based_2nd_exec_control &
2804                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2805                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2806                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2807
2808         min = 0;
2809         opt = VM_ENTRY_LOAD_IA32_PAT;
2810         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2811                                 &_vmentry_control) < 0)
2812                 return -EIO;
2813
2814         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2815
2816         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2817         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2818                 return -EIO;
2819
2820 #ifdef CONFIG_X86_64
2821         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2822         if (vmx_msr_high & (1u<<16))
2823                 return -EIO;
2824 #endif
2825
2826         /* Require Write-Back (WB) memory type for VMCS accesses. */
2827         if (((vmx_msr_high >> 18) & 15) != 6)
2828                 return -EIO;
2829
2830         vmcs_conf->size = vmx_msr_high & 0x1fff;
2831         vmcs_conf->order = get_order(vmcs_config.size);
2832         vmcs_conf->revision_id = vmx_msr_low;
2833
2834         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2835         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2836         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2837         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2838         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2839
2840         cpu_has_load_ia32_efer =
2841                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2842                                 VM_ENTRY_LOAD_IA32_EFER)
2843                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2844                                    VM_EXIT_LOAD_IA32_EFER);
2845
2846         cpu_has_load_perf_global_ctrl =
2847                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2848                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2849                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2850                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2851
2852         /*
2853          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2854          * but due to arrata below it can't be used. Workaround is to use
2855          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2856          *
2857          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2858          *
2859          * AAK155             (model 26)
2860          * AAP115             (model 30)
2861          * AAT100             (model 37)
2862          * BC86,AAY89,BD102   (model 44)
2863          * BA97               (model 46)
2864          *
2865          */
2866         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2867                 switch (boot_cpu_data.x86_model) {
2868                 case 26:
2869                 case 30:
2870                 case 37:
2871                 case 44:
2872                 case 46:
2873                         cpu_has_load_perf_global_ctrl = false;
2874                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2875                                         "does not work properly. Using workaround\n");
2876                         break;
2877                 default:
2878                         break;
2879                 }
2880         }
2881
2882         return 0;
2883 }
2884
2885 static struct vmcs *alloc_vmcs_cpu(int cpu)
2886 {
2887         int node = cpu_to_node(cpu);
2888         struct page *pages;
2889         struct vmcs *vmcs;
2890
2891         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2892         if (!pages)
2893                 return NULL;
2894         vmcs = page_address(pages);
2895         memset(vmcs, 0, vmcs_config.size);
2896         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2897         return vmcs;
2898 }
2899
2900 static struct vmcs *alloc_vmcs(void)
2901 {
2902         return alloc_vmcs_cpu(raw_smp_processor_id());
2903 }
2904
2905 static void free_vmcs(struct vmcs *vmcs)
2906 {
2907         free_pages((unsigned long)vmcs, vmcs_config.order);
2908 }
2909
2910 /*
2911  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2912  */
2913 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2914 {
2915         if (!loaded_vmcs->vmcs)
2916                 return;
2917         loaded_vmcs_clear(loaded_vmcs);
2918         free_vmcs(loaded_vmcs->vmcs);
2919         loaded_vmcs->vmcs = NULL;
2920 }
2921
2922 static void free_kvm_area(void)
2923 {
2924         int cpu;
2925
2926         for_each_possible_cpu(cpu) {
2927                 free_vmcs(per_cpu(vmxarea, cpu));
2928                 per_cpu(vmxarea, cpu) = NULL;
2929         }
2930 }
2931
2932 static __init int alloc_kvm_area(void)
2933 {
2934         int cpu;
2935
2936         for_each_possible_cpu(cpu) {
2937                 struct vmcs *vmcs;
2938
2939                 vmcs = alloc_vmcs_cpu(cpu);
2940                 if (!vmcs) {
2941                         free_kvm_area();
2942                         return -ENOMEM;
2943                 }
2944
2945                 per_cpu(vmxarea, cpu) = vmcs;
2946         }
2947         return 0;
2948 }
2949
2950 static __init int hardware_setup(void)
2951 {
2952         if (setup_vmcs_config(&vmcs_config) < 0)
2953                 return -EIO;
2954
2955         if (boot_cpu_has(X86_FEATURE_NX))
2956                 kvm_enable_efer_bits(EFER_NX);
2957
2958         if (!cpu_has_vmx_vpid())
2959                 enable_vpid = 0;
2960         if (!cpu_has_vmx_shadow_vmcs())
2961                 enable_shadow_vmcs = 0;
2962
2963         if (!cpu_has_vmx_ept() ||
2964             !cpu_has_vmx_ept_4levels()) {
2965                 enable_ept = 0;
2966                 enable_unrestricted_guest = 0;
2967                 enable_ept_ad_bits = 0;
2968         }
2969
2970         if (!cpu_has_vmx_ept_ad_bits())
2971                 enable_ept_ad_bits = 0;
2972
2973         if (!cpu_has_vmx_unrestricted_guest())
2974                 enable_unrestricted_guest = 0;
2975
2976         if (!cpu_has_vmx_flexpriority())
2977                 flexpriority_enabled = 0;
2978
2979         if (!cpu_has_vmx_tpr_shadow())
2980                 kvm_x86_ops->update_cr8_intercept = NULL;
2981
2982         if (enable_ept && !cpu_has_vmx_ept_2m_page())
2983                 kvm_disable_largepages();
2984
2985         if (!cpu_has_vmx_ple())
2986                 ple_gap = 0;
2987
2988         if (!cpu_has_vmx_apicv())
2989                 enable_apicv = 0;
2990
2991         if (enable_apicv)
2992                 kvm_x86_ops->update_cr8_intercept = NULL;
2993         else {
2994                 kvm_x86_ops->hwapic_irr_update = NULL;
2995                 kvm_x86_ops->deliver_posted_interrupt = NULL;
2996                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
2997         }
2998
2999         if (nested)
3000                 nested_vmx_setup_ctls_msrs();
3001
3002         return alloc_kvm_area();
3003 }
3004
3005 static __exit void hardware_unsetup(void)
3006 {
3007         free_kvm_area();
3008 }
3009
3010 static bool emulation_required(struct kvm_vcpu *vcpu)
3011 {
3012         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3013 }
3014
3015 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3016                 struct kvm_segment *save)
3017 {
3018         if (!emulate_invalid_guest_state) {
3019                 /*
3020                  * CS and SS RPL should be equal during guest entry according
3021                  * to VMX spec, but in reality it is not always so. Since vcpu
3022                  * is in the middle of the transition from real mode to
3023                  * protected mode it is safe to assume that RPL 0 is a good
3024                  * default value.
3025                  */
3026                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3027                         save->selector &= ~SELECTOR_RPL_MASK;
3028                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3029                 save->s = 1;
3030         }
3031         vmx_set_segment(vcpu, save, seg);
3032 }
3033
3034 static void enter_pmode(struct kvm_vcpu *vcpu)
3035 {
3036         unsigned long flags;
3037         struct vcpu_vmx *vmx = to_vmx(vcpu);
3038
3039         /*
3040          * Update real mode segment cache. It may be not up-to-date if sement
3041          * register was written while vcpu was in a guest mode.
3042          */
3043         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3044         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3045         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3046         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3047         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3048         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3049
3050         vmx->rmode.vm86_active = 0;
3051
3052         vmx_segment_cache_clear(vmx);
3053
3054         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3055
3056         flags = vmcs_readl(GUEST_RFLAGS);
3057         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3058         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3059         vmcs_writel(GUEST_RFLAGS, flags);
3060
3061         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3062                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3063
3064         update_exception_bitmap(vcpu);
3065
3066         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3067         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3068         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3069         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3070         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3071         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3072
3073         /* CPL is always 0 when CPU enters protected mode */
3074         __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3075         vmx->cpl = 0;
3076 }
3077
3078 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3079 {
3080         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3081         struct kvm_segment var = *save;
3082
3083         var.dpl = 0x3;
3084         if (seg == VCPU_SREG_CS)
3085                 var.type = 0x3;
3086
3087         if (!emulate_invalid_guest_state) {
3088                 var.selector = var.base >> 4;
3089                 var.base = var.base & 0xffff0;
3090                 var.limit = 0xffff;
3091                 var.g = 0;
3092                 var.db = 0;
3093                 var.present = 1;
3094                 var.s = 1;
3095                 var.l = 0;
3096                 var.unusable = 0;
3097                 var.type = 0x3;
3098                 var.avl = 0;
3099                 if (save->base & 0xf)
3100                         printk_once(KERN_WARNING "kvm: segment base is not "
3101                                         "paragraph aligned when entering "
3102                                         "protected mode (seg=%d)", seg);
3103         }
3104
3105         vmcs_write16(sf->selector, var.selector);
3106         vmcs_write32(sf->base, var.base);
3107         vmcs_write32(sf->limit, var.limit);
3108         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3109 }
3110
3111 static void enter_rmode(struct kvm_vcpu *vcpu)
3112 {
3113         unsigned long flags;
3114         struct vcpu_vmx *vmx = to_vmx(vcpu);
3115
3116         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3117         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3118         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3119         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3120         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3121         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3122         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3123
3124         vmx->rmode.vm86_active = 1;
3125
3126         /*
3127          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3128          * vcpu. Warn the user that an update is overdue.
3129          */
3130         if (!vcpu->kvm->arch.tss_addr)
3131                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3132                              "called before entering vcpu\n");
3133
3134         vmx_segment_cache_clear(vmx);
3135
3136         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3137         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3138         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3139
3140         flags = vmcs_readl(GUEST_RFLAGS);
3141         vmx->rmode.save_rflags = flags;
3142
3143         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3144
3145         vmcs_writel(GUEST_RFLAGS, flags);
3146         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3147         update_exception_bitmap(vcpu);
3148
3149         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3150         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3151         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3152         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3153         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3154         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3155
3156         kvm_mmu_reset_context(vcpu);
3157 }
3158
3159 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3160 {
3161         struct vcpu_vmx *vmx = to_vmx(vcpu);
3162         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3163
3164         if (!msr)
3165                 return;
3166
3167         /*
3168          * Force kernel_gs_base reloading before EFER changes, as control
3169          * of this msr depends on is_long_mode().
3170          */
3171         vmx_load_host_state(to_vmx(vcpu));
3172         vcpu->arch.efer = efer;
3173         if (efer & EFER_LMA) {
3174                 vmcs_write32(VM_ENTRY_CONTROLS,
3175                              vmcs_read32(VM_ENTRY_CONTROLS) |
3176                              VM_ENTRY_IA32E_MODE);
3177                 msr->data = efer;
3178         } else {
3179                 vmcs_write32(VM_ENTRY_CONTROLS,
3180                              vmcs_read32(VM_ENTRY_CONTROLS) &
3181                              ~VM_ENTRY_IA32E_MODE);
3182
3183                 msr->data = efer & ~EFER_LME;
3184         }
3185         setup_msrs(vmx);
3186 }
3187
3188 #ifdef CONFIG_X86_64
3189
3190 static void enter_lmode(struct kvm_vcpu *vcpu)
3191 {
3192         u32 guest_tr_ar;
3193
3194         vmx_segment_cache_clear(to_vmx(vcpu));
3195
3196         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3197         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3198                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3199                                      __func__);
3200                 vmcs_write32(GUEST_TR_AR_BYTES,
3201                              (guest_tr_ar & ~AR_TYPE_MASK)
3202                              | AR_TYPE_BUSY_64_TSS);
3203         }
3204         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3205 }
3206
3207 static void exit_lmode(struct kvm_vcpu *vcpu)
3208 {
3209         vmcs_write32(VM_ENTRY_CONTROLS,
3210                      vmcs_read32(VM_ENTRY_CONTROLS)
3211                      & ~VM_ENTRY_IA32E_MODE);
3212         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3213 }
3214
3215 #endif
3216
3217 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3218 {
3219         vpid_sync_context(to_vmx(vcpu));
3220         if (enable_ept) {
3221                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3222                         return;
3223                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3224         }
3225 }
3226
3227 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3228 {
3229         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3230
3231         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3232         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3233 }
3234
3235 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3236 {
3237         if (enable_ept && is_paging(vcpu))
3238                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3239         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3240 }
3241
3242 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3243 {
3244         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3245
3246         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3247         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3248 }
3249
3250 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3251 {
3252         if (!test_bit(VCPU_EXREG_PDPTR,
3253                       (unsigned long *)&vcpu->arch.regs_dirty))
3254                 return;
3255
3256         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3257                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3258                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3259                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3260                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
3261         }
3262 }
3263
3264 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3265 {
3266         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3267                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3268                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3269                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3270                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3271         }
3272
3273         __set_bit(VCPU_EXREG_PDPTR,
3274                   (unsigned long *)&vcpu->arch.regs_avail);
3275         __set_bit(VCPU_EXREG_PDPTR,
3276                   (unsigned long *)&vcpu->arch.regs_dirty);
3277 }
3278
3279 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3280
3281 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3282                                         unsigned long cr0,
3283                                         struct kvm_vcpu *vcpu)
3284 {
3285         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3286                 vmx_decache_cr3(vcpu);
3287         if (!(cr0 & X86_CR0_PG)) {
3288                 /* From paging/starting to nonpaging */
3289                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3290                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3291                              (CPU_BASED_CR3_LOAD_EXITING |
3292                               CPU_BASED_CR3_STORE_EXITING));
3293                 vcpu->arch.cr0 = cr0;
3294                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3295         } else if (!is_paging(vcpu)) {
3296                 /* From nonpaging to paging */
3297                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3298                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3299                              ~(CPU_BASED_CR3_LOAD_EXITING |
3300                                CPU_BASED_CR3_STORE_EXITING));
3301                 vcpu->arch.cr0 = cr0;
3302                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3303         }
3304
3305         if (!(cr0 & X86_CR0_WP))
3306                 *hw_cr0 &= ~X86_CR0_WP;
3307 }
3308
3309 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3310 {
3311         struct vcpu_vmx *vmx = to_vmx(vcpu);
3312         unsigned long hw_cr0;
3313
3314         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3315         if (enable_unrestricted_guest)
3316                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3317         else {
3318                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3319
3320                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3321                         enter_pmode(vcpu);
3322
3323                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3324                         enter_rmode(vcpu);
3325         }
3326
3327 #ifdef CONFIG_X86_64
3328         if (vcpu->arch.efer & EFER_LME) {
3329                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3330                         enter_lmode(vcpu);
3331                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3332                         exit_lmode(vcpu);
3333         }
3334 #endif
3335
3336         if (enable_ept)
3337                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3338
3339         if (!vcpu->fpu_active)
3340                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3341
3342         vmcs_writel(CR0_READ_SHADOW, cr0);
3343         vmcs_writel(GUEST_CR0, hw_cr0);
3344         vcpu->arch.cr0 = cr0;
3345
3346         /* depends on vcpu->arch.cr0 to be set to a new value */
3347         vmx->emulation_required = emulation_required(vcpu);
3348 }
3349
3350 static u64 construct_eptp(unsigned long root_hpa)
3351 {
3352         u64 eptp;
3353
3354         /* TODO write the value reading from MSR */
3355         eptp = VMX_EPT_DEFAULT_MT |
3356                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3357         if (enable_ept_ad_bits)
3358                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3359         eptp |= (root_hpa & PAGE_MASK);
3360
3361         return eptp;
3362 }
3363
3364 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3365 {
3366         unsigned long guest_cr3;
3367         u64 eptp;
3368
3369         guest_cr3 = cr3;
3370         if (enable_ept) {
3371                 eptp = construct_eptp(cr3);
3372                 vmcs_write64(EPT_POINTER, eptp);
3373                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3374                         vcpu->kvm->arch.ept_identity_map_addr;
3375                 ept_load_pdptrs(vcpu);
3376         }
3377
3378         vmx_flush_tlb(vcpu);
3379         vmcs_writel(GUEST_CR3, guest_cr3);
3380 }
3381
3382 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3383 {
3384         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3385                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3386
3387         if (cr4 & X86_CR4_VMXE) {
3388                 /*
3389                  * To use VMXON (and later other VMX instructions), a guest
3390                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3391                  * So basically the check on whether to allow nested VMX
3392                  * is here.
3393                  */
3394                 if (!nested_vmx_allowed(vcpu))
3395                         return 1;
3396         }
3397         if (to_vmx(vcpu)->nested.vmxon &&
3398             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3399                 return 1;
3400
3401         vcpu->arch.cr4 = cr4;
3402         if (enable_ept) {
3403                 if (!is_paging(vcpu)) {
3404                         hw_cr4 &= ~X86_CR4_PAE;
3405                         hw_cr4 |= X86_CR4_PSE;
3406                         /*
3407                          * SMEP is disabled if CPU is in non-paging mode in
3408                          * hardware. However KVM always uses paging mode to
3409                          * emulate guest non-paging mode with TDP.
3410                          * To emulate this behavior, SMEP needs to be manually
3411                          * disabled when guest switches to non-paging mode.
3412                          */
3413                         hw_cr4 &= ~X86_CR4_SMEP;
3414                 } else if (!(cr4 & X86_CR4_PAE)) {
3415                         hw_cr4 &= ~X86_CR4_PAE;
3416                 }
3417         }
3418
3419         vmcs_writel(CR4_READ_SHADOW, cr4);
3420         vmcs_writel(GUEST_CR4, hw_cr4);
3421         return 0;
3422 }
3423
3424 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3425                             struct kvm_segment *var, int seg)
3426 {
3427         struct vcpu_vmx *vmx = to_vmx(vcpu);
3428         u32 ar;
3429
3430         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3431                 *var = vmx->rmode.segs[seg];
3432                 if (seg == VCPU_SREG_TR
3433                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3434                         return;
3435                 var->base = vmx_read_guest_seg_base(vmx, seg);
3436                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3437                 return;
3438         }
3439         var->base = vmx_read_guest_seg_base(vmx, seg);
3440         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3441         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3442         ar = vmx_read_guest_seg_ar(vmx, seg);
3443         var->unusable = (ar >> 16) & 1;
3444         var->type = ar & 15;
3445         var->s = (ar >> 4) & 1;
3446         var->dpl = (ar >> 5) & 3;
3447         /*
3448          * Some userspaces do not preserve unusable property. Since usable
3449          * segment has to be present according to VMX spec we can use present
3450          * property to amend userspace bug by making unusable segment always
3451          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3452          * segment as unusable.
3453          */
3454         var->present = !var->unusable;
3455         var->avl = (ar >> 12) & 1;
3456         var->l = (ar >> 13) & 1;
3457         var->db = (ar >> 14) & 1;
3458         var->g = (ar >> 15) & 1;
3459 }
3460
3461 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3462 {
3463         struct kvm_segment s;
3464
3465         if (to_vmx(vcpu)->rmode.vm86_active) {
3466                 vmx_get_segment(vcpu, &s, seg);
3467                 return s.base;
3468         }
3469         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3470 }
3471
3472 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3473 {
3474         struct vcpu_vmx *vmx = to_vmx(vcpu);
3475
3476         if (!is_protmode(vcpu))
3477                 return 0;
3478
3479         if (!is_long_mode(vcpu)
3480             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3481                 return 3;
3482
3483         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3484                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3485                 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3486         }
3487
3488         return vmx->cpl;
3489 }
3490
3491
3492 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3493 {
3494         u32 ar;
3495
3496         if (var->unusable || !var->present)
3497                 ar = 1 << 16;
3498         else {
3499                 ar = var->type & 15;
3500                 ar |= (var->s & 1) << 4;
3501                 ar |= (var->dpl & 3) << 5;
3502                 ar |= (var->present & 1) << 7;
3503                 ar |= (var->avl & 1) << 12;
3504                 ar |= (var->l & 1) << 13;
3505                 ar |= (var->db & 1) << 14;
3506                 ar |= (var->g & 1) << 15;
3507         }
3508
3509         return ar;
3510 }
3511
3512 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3513                             struct kvm_segment *var, int seg)
3514 {
3515         struct vcpu_vmx *vmx = to_vmx(vcpu);
3516         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3517
3518         vmx_segment_cache_clear(vmx);
3519         if (seg == VCPU_SREG_CS)
3520                 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3521
3522         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3523                 vmx->rmode.segs[seg] = *var;
3524                 if (seg == VCPU_SREG_TR)
3525                         vmcs_write16(sf->selector, var->selector);
3526                 else if (var->s)
3527                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3528                 goto out;
3529         }
3530
3531         vmcs_writel(sf->base, var->base);
3532         vmcs_write32(sf->limit, var->limit);
3533         vmcs_write16(sf->selector, var->selector);
3534
3535         /*
3536          *   Fix the "Accessed" bit in AR field of segment registers for older
3537          * qemu binaries.
3538          *   IA32 arch specifies that at the time of processor reset the
3539          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3540          * is setting it to 0 in the userland code. This causes invalid guest
3541          * state vmexit when "unrestricted guest" mode is turned on.
3542          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3543          * tree. Newer qemu binaries with that qemu fix would not need this
3544          * kvm hack.
3545          */
3546         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3547                 var->type |= 0x1; /* Accessed */
3548
3549         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3550
3551 out:
3552         vmx->emulation_required |= emulation_required(vcpu);
3553 }
3554
3555 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3556 {
3557         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3558
3559         *db = (ar >> 14) & 1;
3560         *l = (ar >> 13) & 1;
3561 }
3562
3563 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3564 {
3565         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3566         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3567 }
3568
3569 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3570 {
3571         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3572         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3573 }
3574
3575 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3576 {
3577         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3578         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3579 }
3580
3581 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3582 {
3583         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3584         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3585 }
3586
3587 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3588 {
3589         struct kvm_segment var;
3590         u32 ar;
3591
3592         vmx_get_segment(vcpu, &var, seg);
3593         var.dpl = 0x3;
3594         if (seg == VCPU_SREG_CS)
3595                 var.type = 0x3;
3596         ar = vmx_segment_access_rights(&var);
3597
3598         if (var.base != (var.selector << 4))
3599                 return false;
3600         if (var.limit != 0xffff)
3601                 return false;
3602         if (ar != 0xf3)
3603                 return false;
3604
3605         return true;
3606 }
3607
3608 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3609 {
3610         struct kvm_segment cs;
3611         unsigned int cs_rpl;
3612
3613         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3614         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3615
3616         if (cs.unusable)
3617                 return false;
3618         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3619                 return false;
3620         if (!cs.s)
3621                 return false;
3622         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3623                 if (cs.dpl > cs_rpl)
3624                         return false;
3625         } else {
3626                 if (cs.dpl != cs_rpl)
3627                         return false;
3628         }
3629         if (!cs.present)
3630                 return false;
3631
3632         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3633         return true;
3634 }
3635
3636 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3637 {
3638         struct kvm_segment ss;
3639         unsigned int ss_rpl;
3640
3641         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3642         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3643
3644         if (ss.unusable)
3645                 return true;
3646         if (ss.type != 3 && ss.type != 7)
3647                 return false;
3648         if (!ss.s)
3649                 return false;
3650         if (ss.dpl != ss_rpl) /* DPL != RPL */
3651                 return false;
3652         if (!ss.present)
3653                 return false;
3654
3655         return true;
3656 }
3657
3658 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3659 {
3660         struct kvm_segment var;
3661         unsigned int rpl;
3662
3663         vmx_get_segment(vcpu, &var, seg);
3664         rpl = var.selector & SELECTOR_RPL_MASK;
3665
3666         if (var.unusable)
3667                 return true;
3668         if (!var.s)
3669                 return false;
3670         if (!var.present)
3671                 return false;
3672         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3673                 if (var.dpl < rpl) /* DPL < RPL */
3674                         return false;
3675         }
3676
3677         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3678          * rights flags
3679          */
3680         return true;
3681 }
3682
3683 static bool tr_valid(struct kvm_vcpu *vcpu)
3684 {
3685         struct kvm_segment tr;
3686
3687         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3688
3689         if (tr.unusable)
3690                 return false;
3691         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3692                 return false;
3693         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3694                 return false;
3695         if (!tr.present)
3696                 return false;
3697
3698         return true;
3699 }
3700
3701 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3702 {
3703         struct kvm_segment ldtr;
3704
3705         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3706
3707         if (ldtr.unusable)
3708                 return true;
3709         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3710                 return false;
3711         if (ldtr.type != 2)
3712                 return false;
3713         if (!ldtr.present)
3714                 return false;
3715
3716         return true;
3717 }
3718
3719 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3720 {
3721         struct kvm_segment cs, ss;
3722
3723         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3724         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3725
3726         return ((cs.selector & SELECTOR_RPL_MASK) ==
3727                  (ss.selector & SELECTOR_RPL_MASK));
3728 }
3729
3730 /*
3731  * Check if guest state is valid. Returns true if valid, false if
3732  * not.
3733  * We assume that registers are always usable
3734  */
3735 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3736 {
3737         if (enable_unrestricted_guest)
3738                 return true;
3739
3740         /* real mode guest state checks */
3741         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3742                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3743                         return false;
3744                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3745                         return false;
3746                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3747                         return false;
3748                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3749                         return false;
3750                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3751                         return false;
3752                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3753                         return false;
3754         } else {
3755         /* protected mode guest state checks */
3756                 if (!cs_ss_rpl_check(vcpu))
3757                         return false;
3758                 if (!code_segment_valid(vcpu))
3759                         return false;
3760                 if (!stack_segment_valid(vcpu))
3761                         return false;
3762                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3763                         return false;
3764                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3765                         return false;
3766                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3767                         return false;
3768                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3769                         return false;
3770                 if (!tr_valid(vcpu))
3771                         return false;
3772                 if (!ldtr_valid(vcpu))
3773                         return false;
3774         }
3775         /* TODO:
3776          * - Add checks on RIP
3777          * - Add checks on RFLAGS
3778          */
3779
3780         return true;
3781 }
3782
3783 static int init_rmode_tss(struct kvm *kvm)
3784 {
3785         gfn_t fn;
3786         u16 data = 0;
3787         int r, idx, ret = 0;
3788
3789         idx = srcu_read_lock(&kvm->srcu);
3790         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3791         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3792         if (r < 0)
3793                 goto out;
3794         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3795         r = kvm_write_guest_page(kvm, fn++, &data,
3796                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3797         if (r < 0)
3798                 goto out;
3799         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3800         if (r < 0)
3801                 goto out;
3802         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3803         if (r < 0)
3804                 goto out;
3805         data = ~0;
3806         r = kvm_write_guest_page(kvm, fn, &data,
3807                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3808                                  sizeof(u8));
3809         if (r < 0)
3810                 goto out;
3811
3812         ret = 1;
3813 out:
3814         srcu_read_unlock(&kvm->srcu, idx);
3815         return ret;
3816 }
3817
3818 static int init_rmode_identity_map(struct kvm *kvm)
3819 {
3820         int i, idx, r, ret;
3821         pfn_t identity_map_pfn;
3822         u32 tmp;
3823
3824         if (!enable_ept)
3825                 return 1;
3826         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3827                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3828                         "haven't been allocated!\n");
3829                 return 0;
3830         }
3831         if (likely(kvm->arch.ept_identity_pagetable_done))
3832                 return 1;
3833         ret = 0;
3834         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3835         idx = srcu_read_lock(&kvm->srcu);
3836         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3837         if (r < 0)
3838                 goto out;
3839         /* Set up identity-mapping pagetable for EPT in real mode */
3840         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3841                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3842                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3843                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3844                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3845                 if (r < 0)
3846                         goto out;
3847         }
3848         kvm->arch.ept_identity_pagetable_done = true;
3849         ret = 1;
3850 out:
3851         srcu_read_unlock(&kvm->srcu, idx);
3852         return ret;
3853 }
3854
3855 static void seg_setup(int seg)
3856 {
3857         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3858         unsigned int ar;
3859
3860         vmcs_write16(sf->selector, 0);
3861         vmcs_writel(sf->base, 0);
3862         vmcs_write32(sf->limit, 0xffff);
3863         ar = 0x93;
3864         if (seg == VCPU_SREG_CS)
3865                 ar |= 0x08; /* code segment */
3866
3867         vmcs_write32(sf->ar_bytes, ar);
3868 }
3869
3870 static int alloc_apic_access_page(struct kvm *kvm)
3871 {
3872         struct page *page;
3873         struct kvm_userspace_memory_region kvm_userspace_mem;
3874         int r = 0;
3875
3876         mutex_lock(&kvm->slots_lock);
3877         if (kvm->arch.apic_access_page)
3878                 goto out;
3879         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3880         kvm_userspace_mem.flags = 0;
3881         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3882         kvm_userspace_mem.memory_size = PAGE_SIZE;
3883         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3884         if (r)
3885                 goto out;
3886
3887         page = gfn_to_page(kvm, 0xfee00);
3888         if (is_error_page(page)) {
3889                 r = -EFAULT;
3890                 goto out;
3891         }
3892
3893         kvm->arch.apic_access_page = page;
3894 out:
3895         mutex_unlock(&kvm->slots_lock);
3896         return r;
3897 }
3898
3899 static int alloc_identity_pagetable(struct kvm *kvm)
3900 {
3901         struct page *page;
3902         struct kvm_userspace_memory_region kvm_userspace_mem;
3903         int r = 0;
3904
3905         mutex_lock(&kvm->slots_lock);
3906         if (kvm->arch.ept_identity_pagetable)
3907                 goto out;
3908         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3909         kvm_userspace_mem.flags = 0;
3910         kvm_userspace_mem.guest_phys_addr =
3911                 kvm->arch.ept_identity_map_addr;
3912         kvm_userspace_mem.memory_size = PAGE_SIZE;
3913         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3914         if (r)
3915                 goto out;
3916
3917         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3918         if (is_error_page(page)) {
3919                 r = -EFAULT;
3920                 goto out;
3921         }
3922
3923         kvm->arch.ept_identity_pagetable = page;
3924 out:
3925         mutex_unlock(&kvm->slots_lock);
3926         return r;
3927 }
3928
3929 static void allocate_vpid(struct vcpu_vmx *vmx)
3930 {
3931         int vpid;
3932
3933         vmx->vpid = 0;
3934         if (!enable_vpid)
3935                 return;
3936         spin_lock(&vmx_vpid_lock);
3937         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3938         if (vpid < VMX_NR_VPIDS) {
3939                 vmx->vpid = vpid;
3940                 __set_bit(vpid, vmx_vpid_bitmap);
3941         }
3942         spin_unlock(&vmx_vpid_lock);
3943 }
3944
3945 static void free_vpid(struct vcpu_vmx *vmx)
3946 {
3947         if (!enable_vpid)
3948                 return;
3949         spin_lock(&vmx_vpid_lock);
3950         if (vmx->vpid != 0)
3951                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3952         spin_unlock(&vmx_vpid_lock);
3953 }
3954
3955 #define MSR_TYPE_R      1
3956 #define MSR_TYPE_W      2
3957 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3958                                                 u32 msr, int type)
3959 {
3960         int f = sizeof(unsigned long);
3961
3962         if (!cpu_has_vmx_msr_bitmap())
3963                 return;
3964
3965         /*
3966          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3967          * have the write-low and read-high bitmap offsets the wrong way round.
3968          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3969          */
3970         if (msr <= 0x1fff) {
3971                 if (type & MSR_TYPE_R)
3972                         /* read-low */
3973                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3974
3975                 if (type & MSR_TYPE_W)
3976                         /* write-low */
3977                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3978
3979         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3980                 msr &= 0x1fff;
3981                 if (type & MSR_TYPE_R)
3982                         /* read-high */
3983                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3984
3985                 if (type & MSR_TYPE_W)
3986                         /* write-high */
3987                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3988
3989         }
3990 }
3991
3992 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3993                                                 u32 msr, int type)
3994 {
3995         int f = sizeof(unsigned long);
3996
3997         if (!cpu_has_vmx_msr_bitmap())
3998                 return;
3999
4000         /*
4001          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4002          * have the write-low and read-high bitmap offsets the wrong way round.
4003          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4004          */
4005         if (msr <= 0x1fff) {
4006                 if (type & MSR_TYPE_R)
4007                         /* read-low */
4008                         __set_bit(msr, msr_bitmap + 0x000 / f);
4009
4010                 if (type & MSR_TYPE_W)
4011                         /* write-low */
4012                         __set_bit(msr, msr_bitmap + 0x800 / f);
4013
4014         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4015                 msr &= 0x1fff;
4016                 if (type & MSR_TYPE_R)
4017                         /* read-high */
4018                         __set_bit(msr, msr_bitmap + 0x400 / f);
4019
4020                 if (type & MSR_TYPE_W)
4021                         /* write-high */
4022                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4023
4024         }
4025 }
4026
4027 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4028 {
4029         if (!longmode_only)
4030                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4031                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4032         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4033                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4034 }
4035
4036 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4037 {
4038         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4039                         msr, MSR_TYPE_R);
4040         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4041                         msr, MSR_TYPE_R);
4042 }
4043
4044 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4045 {
4046         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4047                         msr, MSR_TYPE_R);
4048         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4049                         msr, MSR_TYPE_R);
4050 }
4051
4052 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4053 {
4054         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4055                         msr, MSR_TYPE_W);
4056         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4057                         msr, MSR_TYPE_W);
4058 }
4059
4060 static int vmx_vm_has_apicv(struct kvm *kvm)
4061 {
4062         return enable_apicv && irqchip_in_kernel(kvm);
4063 }
4064
4065 /*
4066  * Send interrupt to vcpu via posted interrupt way.
4067  * 1. If target vcpu is running(non-root mode), send posted interrupt
4068  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4069  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4070  * interrupt from PIR in next vmentry.
4071  */
4072 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4073 {
4074         struct vcpu_vmx *vmx = to_vmx(vcpu);
4075         int r;
4076
4077         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4078                 return;
4079
4080         r = pi_test_and_set_on(&vmx->pi_desc);
4081         kvm_make_request(KVM_REQ_EVENT, vcpu);
4082 #ifdef CONFIG_SMP
4083         if (!r && (vcpu->mode == IN_GUEST_MODE))
4084                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4085                                 POSTED_INTR_VECTOR);
4086         else
4087 #endif
4088                 kvm_vcpu_kick(vcpu);
4089 }
4090
4091 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4092 {
4093         struct vcpu_vmx *vmx = to_vmx(vcpu);
4094
4095         if (!pi_test_and_clear_on(&vmx->pi_desc))
4096                 return;
4097
4098         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4099 }
4100
4101 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4102 {
4103         return;
4104 }
4105
4106 /*
4107  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4108  * will not change in the lifetime of the guest.
4109  * Note that host-state that does change is set elsewhere. E.g., host-state
4110  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4111  */
4112 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4113 {
4114         u32 low32, high32;
4115         unsigned long tmpl;
4116         struct desc_ptr dt;
4117
4118         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4119         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4120         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4121
4122         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4123 #ifdef CONFIG_X86_64
4124         /*
4125          * Load null selectors, so we can avoid reloading them in
4126          * __vmx_load_host_state(), in case userspace uses the null selectors
4127          * too (the expected case).
4128          */
4129         vmcs_write16(HOST_DS_SELECTOR, 0);
4130         vmcs_write16(HOST_ES_SELECTOR, 0);
4131 #else
4132         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4133         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4134 #endif
4135         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4136         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4137
4138         native_store_idt(&dt);
4139         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4140         vmx->host_idt_base = dt.address;
4141
4142         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4143
4144         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4145         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4146         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4147         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4148
4149         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4150                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4151                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4152         }
4153 }
4154
4155 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4156 {
4157         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4158         if (enable_ept)
4159                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4160         if (is_guest_mode(&vmx->vcpu))
4161                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4162                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4163         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4164 }
4165
4166 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4167 {
4168         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4169
4170         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4171                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4172         return pin_based_exec_ctrl;
4173 }
4174
4175 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4176 {
4177         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4178         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4179                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4180 #ifdef CONFIG_X86_64
4181                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4182                                 CPU_BASED_CR8_LOAD_EXITING;
4183 #endif
4184         }
4185         if (!enable_ept)
4186                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4187                                 CPU_BASED_CR3_LOAD_EXITING  |
4188                                 CPU_BASED_INVLPG_EXITING;
4189         return exec_control;
4190 }
4191
4192 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4193 {
4194         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4195         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4196                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4197         if (vmx->vpid == 0)
4198                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4199         if (!enable_ept) {
4200                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4201                 enable_unrestricted_guest = 0;
4202                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4203                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4204         }
4205         if (!enable_unrestricted_guest)
4206                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4207         if (!ple_gap)
4208                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4209         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4210                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4211                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4212         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4213         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4214            (handle_vmptrld).
4215            We can NOT enable shadow_vmcs here because we don't have yet
4216            a current VMCS12
4217         */
4218         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4219         return exec_control;
4220 }
4221
4222 static void ept_set_mmio_spte_mask(void)
4223 {
4224         /*
4225          * EPT Misconfigurations can be generated if the value of bits 2:0
4226          * of an EPT paging-structure entry is 110b (write/execute).
4227          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4228          * spte.
4229          */
4230         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4231 }
4232
4233 /*
4234  * Sets up the vmcs for emulated real mode.
4235  */
4236 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4237 {
4238 #ifdef CONFIG_X86_64
4239         unsigned long a;
4240 #endif
4241         int i;
4242
4243         /* I/O */
4244         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4245         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4246
4247         if (enable_shadow_vmcs) {
4248                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4249                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4250         }
4251         if (cpu_has_vmx_msr_bitmap())
4252                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4253
4254         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4255
4256         /* Control */
4257         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4258
4259         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4260
4261         if (cpu_has_secondary_exec_ctrls()) {
4262                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4263                                 vmx_secondary_exec_control(vmx));
4264         }
4265
4266         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4267                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4268                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4269                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4270                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4271
4272                 vmcs_write16(GUEST_INTR_STATUS, 0);
4273
4274                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4275                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4276         }
4277
4278         if (ple_gap) {
4279                 vmcs_write32(PLE_GAP, ple_gap);
4280                 vmcs_write32(PLE_WINDOW, ple_window);
4281         }
4282
4283         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4284         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4285         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4286
4287         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4288         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4289         vmx_set_constant_host_state(vmx);
4290 #ifdef CONFIG_X86_64
4291         rdmsrl(MSR_FS_BASE, a);
4292         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4293         rdmsrl(MSR_GS_BASE, a);
4294         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4295 #else
4296         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4297         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4298 #endif
4299
4300         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4301         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4302         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4303         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4304         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4305
4306         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4307                 u32 msr_low, msr_high;
4308                 u64 host_pat;
4309                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4310                 host_pat = msr_low | ((u64) msr_high << 32);
4311                 /* Write the default value follow host pat */
4312                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4313                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4314                 vmx->vcpu.arch.pat = host_pat;
4315         }
4316
4317         for (i = 0; i < NR_VMX_MSR; ++i) {
4318                 u32 index = vmx_msr_index[i];
4319                 u32 data_low, data_high;
4320                 int j = vmx->nmsrs;
4321
4322                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4323                         continue;
4324                 if (wrmsr_safe(index, data_low, data_high) < 0)
4325                         continue;
4326                 vmx->guest_msrs[j].index = i;
4327                 vmx->guest_msrs[j].data = 0;
4328                 vmx->guest_msrs[j].mask = -1ull;
4329                 ++vmx->nmsrs;
4330         }
4331
4332         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4333
4334         /* 22.2.1, 20.8.1 */
4335         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4336
4337         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4338         set_cr4_guest_host_mask(vmx);
4339
4340         return 0;
4341 }
4342
4343 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4344 {
4345         struct vcpu_vmx *vmx = to_vmx(vcpu);
4346         u64 msr;
4347
4348         vmx->rmode.vm86_active = 0;
4349
4350         vmx->soft_vnmi_blocked = 0;
4351
4352         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4353         kvm_set_cr8(&vmx->vcpu, 0);
4354         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4355         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4356                 msr |= MSR_IA32_APICBASE_BSP;
4357         kvm_set_apic_base(&vmx->vcpu, msr);
4358
4359         vmx_segment_cache_clear(vmx);
4360
4361         seg_setup(VCPU_SREG_CS);
4362         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4363         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4364
4365         seg_setup(VCPU_SREG_DS);
4366         seg_setup(VCPU_SREG_ES);
4367         seg_setup(VCPU_SREG_FS);
4368         seg_setup(VCPU_SREG_GS);
4369         seg_setup(VCPU_SREG_SS);
4370
4371         vmcs_write16(GUEST_TR_SELECTOR, 0);
4372         vmcs_writel(GUEST_TR_BASE, 0);
4373         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4374         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4375
4376         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4377         vmcs_writel(GUEST_LDTR_BASE, 0);
4378         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4379         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4380
4381         vmcs_write32(GUEST_SYSENTER_CS, 0);
4382         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4383         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4384
4385         vmcs_writel(GUEST_RFLAGS, 0x02);
4386         kvm_rip_write(vcpu, 0xfff0);
4387
4388         vmcs_writel(GUEST_GDTR_BASE, 0);
4389         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4390
4391         vmcs_writel(GUEST_IDTR_BASE, 0);
4392         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4393
4394         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4395         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4396         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4397
4398         /* Special registers */
4399         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4400
4401         setup_msrs(vmx);
4402
4403         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4404
4405         if (cpu_has_vmx_tpr_shadow()) {
4406                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4407                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4408                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4409                                      __pa(vmx->vcpu.arch.apic->regs));
4410                 vmcs_write32(TPR_THRESHOLD, 0);
4411         }
4412
4413         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4414                 vmcs_write64(APIC_ACCESS_ADDR,
4415                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4416
4417         if (vmx_vm_has_apicv(vcpu->kvm))
4418                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4419
4420         if (vmx->vpid != 0)
4421                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4422
4423         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4424         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4425         vmx_set_cr4(&vmx->vcpu, 0);
4426         vmx_set_efer(&vmx->vcpu, 0);
4427         vmx_fpu_activate(&vmx->vcpu);
4428         update_exception_bitmap(&vmx->vcpu);
4429
4430         vpid_sync_context(vmx);
4431 }
4432
4433 /*
4434  * In nested virtualization, check if L1 asked to exit on external interrupts.
4435  * For most existing hypervisors, this will always return true.
4436  */
4437 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4438 {
4439         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4440                 PIN_BASED_EXT_INTR_MASK;
4441 }
4442
4443 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4444 {
4445         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4446                 PIN_BASED_NMI_EXITING;
4447 }
4448
4449 static int enable_irq_window(struct kvm_vcpu *vcpu)
4450 {
4451         u32 cpu_based_vm_exec_control;
4452
4453         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4454                 /*
4455                  * We get here if vmx_interrupt_allowed() said we can't
4456                  * inject to L1 now because L2 must run. The caller will have
4457                  * to make L2 exit right after entry, so we can inject to L1
4458                  * more promptly.
4459                  */
4460                 return -EBUSY;
4461
4462         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4463         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4464         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4465         return 0;
4466 }
4467
4468 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4469 {
4470         u32 cpu_based_vm_exec_control;
4471
4472         if (!cpu_has_virtual_nmis())
4473                 return enable_irq_window(vcpu);
4474
4475         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4476                 return enable_irq_window(vcpu);
4477
4478         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4479         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4480         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4481         return 0;
4482 }
4483
4484 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4485 {
4486         struct vcpu_vmx *vmx = to_vmx(vcpu);
4487         uint32_t intr;
4488         int irq = vcpu->arch.interrupt.nr;
4489
4490         trace_kvm_inj_virq(irq);
4491
4492         ++vcpu->stat.irq_injections;
4493         if (vmx->rmode.vm86_active) {
4494                 int inc_eip = 0;
4495                 if (vcpu->arch.interrupt.soft)
4496                         inc_eip = vcpu->arch.event_exit_inst_len;
4497                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4498                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4499                 return;
4500         }
4501         intr = irq | INTR_INFO_VALID_MASK;
4502         if (vcpu->arch.interrupt.soft) {
4503                 intr |= INTR_TYPE_SOFT_INTR;
4504                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4505                              vmx->vcpu.arch.event_exit_inst_len);
4506         } else
4507                 intr |= INTR_TYPE_EXT_INTR;
4508         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4509 }
4510
4511 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4512 {
4513         struct vcpu_vmx *vmx = to_vmx(vcpu);
4514
4515         if (is_guest_mode(vcpu))
4516                 return;
4517
4518         if (!cpu_has_virtual_nmis()) {
4519                 /*
4520                  * Tracking the NMI-blocked state in software is built upon
4521                  * finding the next open IRQ window. This, in turn, depends on
4522                  * well-behaving guests: They have to keep IRQs disabled at
4523                  * least as long as the NMI handler runs. Otherwise we may
4524                  * cause NMI nesting, maybe breaking the guest. But as this is
4525                  * highly unlikely, we can live with the residual risk.
4526                  */
4527                 vmx->soft_vnmi_blocked = 1;
4528                 vmx->vnmi_blocked_time = 0;
4529         }
4530
4531         ++vcpu->stat.nmi_injections;
4532         vmx->nmi_known_unmasked = false;
4533         if (vmx->rmode.vm86_active) {
4534                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4535                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4536                 return;
4537         }
4538         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4539                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4540 }
4541
4542 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4543 {
4544         if (!cpu_has_virtual_nmis())
4545                 return to_vmx(vcpu)->soft_vnmi_blocked;
4546         if (to_vmx(vcpu)->nmi_known_unmasked)
4547                 return false;
4548         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4549 }
4550
4551 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4552 {
4553         struct vcpu_vmx *vmx = to_vmx(vcpu);
4554
4555         if (!cpu_has_virtual_nmis()) {
4556                 if (vmx->soft_vnmi_blocked != masked) {
4557                         vmx->soft_vnmi_blocked = masked;
4558                         vmx->vnmi_blocked_time = 0;
4559                 }
4560         } else {
4561                 vmx->nmi_known_unmasked = !masked;
4562                 if (masked)
4563                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4564                                       GUEST_INTR_STATE_NMI);
4565                 else
4566                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4567                                         GUEST_INTR_STATE_NMI);
4568         }
4569 }
4570
4571 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4572 {
4573         if (is_guest_mode(vcpu)) {
4574                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4575
4576                 if (to_vmx(vcpu)->nested.nested_run_pending)
4577                         return 0;
4578                 if (nested_exit_on_nmi(vcpu)) {
4579                         nested_vmx_vmexit(vcpu);
4580                         vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4581                         vmcs12->vm_exit_intr_info = NMI_VECTOR |
4582                                 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4583                         /*
4584                          * The NMI-triggered VM exit counts as injection:
4585                          * clear this one and block further NMIs.
4586                          */
4587                         vcpu->arch.nmi_pending = 0;
4588                         vmx_set_nmi_mask(vcpu, true);
4589                         return 0;
4590                 }
4591         }
4592
4593         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4594                 return 0;
4595
4596         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4597                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4598                    | GUEST_INTR_STATE_NMI));
4599 }
4600
4601 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4602 {
4603         if (is_guest_mode(vcpu)) {
4604                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4605
4606                 if (to_vmx(vcpu)->nested.nested_run_pending)
4607                         return 0;
4608                 if (nested_exit_on_intr(vcpu)) {
4609                         nested_vmx_vmexit(vcpu);
4610                         vmcs12->vm_exit_reason =
4611                                 EXIT_REASON_EXTERNAL_INTERRUPT;
4612                         vmcs12->vm_exit_intr_info = 0;
4613                         /*
4614                          * fall through to normal code, but now in L1, not L2
4615                          */
4616                 }
4617         }
4618
4619         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4620                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4621                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4622 }
4623
4624 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4625 {
4626         int ret;
4627         struct kvm_userspace_memory_region tss_mem = {
4628                 .slot = TSS_PRIVATE_MEMSLOT,
4629                 .guest_phys_addr = addr,
4630                 .memory_size = PAGE_SIZE * 3,
4631                 .flags = 0,
4632         };
4633
4634         ret = kvm_set_memory_region(kvm, &tss_mem);
4635         if (ret)
4636                 return ret;
4637         kvm->arch.tss_addr = addr;
4638         if (!init_rmode_tss(kvm))
4639                 return  -ENOMEM;
4640
4641         return 0;
4642 }
4643
4644 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4645 {
4646         switch (vec) {
4647         case BP_VECTOR:
4648                 /*
4649                  * Update instruction length as we may reinject the exception
4650                  * from user space while in guest debugging mode.
4651                  */
4652                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4653                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4654                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4655                         return false;
4656                 /* fall through */
4657         case DB_VECTOR:
4658                 if (vcpu->guest_debug &
4659                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4660                         return false;
4661                 /* fall through */
4662         case DE_VECTOR:
4663         case OF_VECTOR:
4664         case BR_VECTOR:
4665         case UD_VECTOR:
4666         case DF_VECTOR:
4667         case SS_VECTOR:
4668         case GP_VECTOR:
4669         case MF_VECTOR:
4670                 return true;
4671         break;
4672         }
4673         return false;
4674 }
4675
4676 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4677                                   int vec, u32 err_code)
4678 {
4679         /*
4680          * Instruction with address size override prefix opcode 0x67
4681          * Cause the #SS fault with 0 error code in VM86 mode.
4682          */
4683         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4684                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4685                         if (vcpu->arch.halt_request) {
4686                                 vcpu->arch.halt_request = 0;
4687                                 return kvm_emulate_halt(vcpu);
4688                         }
4689                         return 1;
4690                 }
4691                 return 0;
4692         }
4693
4694         /*
4695          * Forward all other exceptions that are valid in real mode.
4696          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4697          *        the required debugging infrastructure rework.
4698          */
4699         kvm_queue_exception(vcpu, vec);
4700         return 1;
4701 }
4702
4703 /*
4704  * Trigger machine check on the host. We assume all the MSRs are already set up
4705  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4706  * We pass a fake environment to the machine check handler because we want
4707  * the guest to be always treated like user space, no matter what context
4708  * it used internally.
4709  */
4710 static void kvm_machine_check(void)
4711 {
4712 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4713         struct pt_regs regs = {
4714                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4715                 .flags = X86_EFLAGS_IF,
4716         };
4717
4718         do_machine_check(&regs, 0);
4719 #endif
4720 }
4721
4722 static int handle_machine_check(struct kvm_vcpu *vcpu)
4723 {
4724         /* already handled by vcpu_run */
4725         return 1;
4726 }
4727
4728 static int handle_exception(struct kvm_vcpu *vcpu)
4729 {
4730         struct vcpu_vmx *vmx = to_vmx(vcpu);
4731         struct kvm_run *kvm_run = vcpu->run;
4732         u32 intr_info, ex_no, error_code;
4733         unsigned long cr2, rip, dr6;
4734         u32 vect_info;
4735         enum emulation_result er;
4736
4737         vect_info = vmx->idt_vectoring_info;
4738         intr_info = vmx->exit_intr_info;
4739
4740         if (is_machine_check(intr_info))
4741                 return handle_machine_check(vcpu);
4742
4743         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4744                 return 1;  /* already handled by vmx_vcpu_run() */
4745
4746         if (is_no_device(intr_info)) {
4747                 vmx_fpu_activate(vcpu);
4748                 return 1;
4749         }
4750
4751         if (is_invalid_opcode(intr_info)) {
4752                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4753                 if (er != EMULATE_DONE)
4754                         kvm_queue_exception(vcpu, UD_VECTOR);
4755                 return 1;
4756         }
4757
4758         error_code = 0;
4759         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4760                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4761
4762         /*
4763          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4764          * MMIO, it is better to report an internal error.
4765          * See the comments in vmx_handle_exit.
4766          */
4767         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4768             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4769                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4770                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4771                 vcpu->run->internal.ndata = 2;
4772                 vcpu->run->internal.data[0] = vect_info;
4773                 vcpu->run->internal.data[1] = intr_info;
4774                 return 0;
4775         }
4776
4777         if (is_page_fault(intr_info)) {
4778                 /* EPT won't cause page fault directly */
4779                 BUG_ON(enable_ept);
4780                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4781                 trace_kvm_page_fault(cr2, error_code);
4782
4783                 if (kvm_event_needs_reinjection(vcpu))
4784                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4785                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4786         }
4787
4788         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4789
4790         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4791                 return handle_rmode_exception(vcpu, ex_no, error_code);
4792
4793         switch (ex_no) {
4794         case DB_VECTOR:
4795                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4796                 if (!(vcpu->guest_debug &
4797                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4798                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4799                         kvm_queue_exception(vcpu, DB_VECTOR);
4800                         return 1;
4801                 }
4802                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4803                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4804                 /* fall through */
4805         case BP_VECTOR:
4806                 /*
4807                  * Update instruction length as we may reinject #BP from
4808                  * user space while in guest debugging mode. Reading it for
4809                  * #DB as well causes no harm, it is not used in that case.
4810                  */
4811                 vmx->vcpu.arch.event_exit_inst_len =
4812                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4813                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4814                 rip = kvm_rip_read(vcpu);
4815                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4816                 kvm_run->debug.arch.exception = ex_no;
4817                 break;
4818         default:
4819                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4820                 kvm_run->ex.exception = ex_no;
4821                 kvm_run->ex.error_code = error_code;
4822                 break;
4823         }
4824         return 0;
4825 }
4826
4827 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4828 {
4829         ++vcpu->stat.irq_exits;
4830         return 1;
4831 }
4832
4833 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4834 {
4835         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4836         return 0;
4837 }
4838
4839 static int handle_io(struct kvm_vcpu *vcpu)
4840 {
4841         unsigned long exit_qualification;
4842         int size, in, string;
4843         unsigned port;
4844
4845         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4846         string = (exit_qualification & 16) != 0;
4847         in = (exit_qualification & 8) != 0;
4848
4849         ++vcpu->stat.io_exits;
4850
4851         if (string || in)
4852                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4853
4854         port = exit_qualification >> 16;
4855         size = (exit_qualification & 7) + 1;
4856         skip_emulated_instruction(vcpu);
4857
4858         return kvm_fast_pio_out(vcpu, size, port);
4859 }
4860
4861 static void
4862 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4863 {
4864         /*
4865          * Patch in the VMCALL instruction:
4866          */
4867         hypercall[0] = 0x0f;
4868         hypercall[1] = 0x01;
4869         hypercall[2] = 0xc1;
4870 }
4871
4872 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4873 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4874 {
4875         if (is_guest_mode(vcpu)) {
4876                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4877                 unsigned long orig_val = val;
4878
4879                 /*
4880                  * We get here when L2 changed cr0 in a way that did not change
4881                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4882                  * but did change L0 shadowed bits. So we first calculate the
4883                  * effective cr0 value that L1 would like to write into the
4884                  * hardware. It consists of the L2-owned bits from the new
4885                  * value combined with the L1-owned bits from L1's guest_cr0.
4886                  */
4887                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4888                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4889
4890                 /* TODO: will have to take unrestricted guest mode into
4891                  * account */
4892                 if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
4893                         return 1;
4894
4895                 if (kvm_set_cr0(vcpu, val))
4896                         return 1;
4897                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4898                 return 0;
4899         } else {
4900                 if (to_vmx(vcpu)->nested.vmxon &&
4901                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4902                         return 1;
4903                 return kvm_set_cr0(vcpu, val);
4904         }
4905 }
4906
4907 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4908 {
4909         if (is_guest_mode(vcpu)) {
4910                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4911                 unsigned long orig_val = val;
4912
4913                 /* analogously to handle_set_cr0 */
4914                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4915                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4916                 if (kvm_set_cr4(vcpu, val))
4917                         return 1;
4918                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4919                 return 0;
4920         } else
4921                 return kvm_set_cr4(vcpu, val);
4922 }
4923
4924 /* called to set cr0 as approriate for clts instruction exit. */
4925 static void handle_clts(struct kvm_vcpu *vcpu)
4926 {
4927         if (is_guest_mode(vcpu)) {
4928                 /*
4929                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4930                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4931                  * just pretend it's off (also in arch.cr0 for fpu_activate).
4932                  */
4933                 vmcs_writel(CR0_READ_SHADOW,
4934                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4935                 vcpu->arch.cr0 &= ~X86_CR0_TS;
4936         } else
4937                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4938 }
4939
4940 static int handle_cr(struct kvm_vcpu *vcpu)
4941 {
4942         unsigned long exit_qualification, val;
4943         int cr;
4944         int reg;
4945         int err;
4946
4947         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4948         cr = exit_qualification & 15;
4949         reg = (exit_qualification >> 8) & 15;
4950         switch ((exit_qualification >> 4) & 3) {
4951         case 0: /* mov to cr */
4952                 val = kvm_register_read(vcpu, reg);
4953                 trace_kvm_cr_write(cr, val);
4954                 switch (cr) {
4955                 case 0:
4956                         err = handle_set_cr0(vcpu, val);
4957                         kvm_complete_insn_gp(vcpu, err);
4958                         return 1;
4959                 case 3:
4960                         err = kvm_set_cr3(vcpu, val);
4961                         kvm_complete_insn_gp(vcpu, err);
4962                         return 1;
4963                 case 4:
4964                         err = handle_set_cr4(vcpu, val);
4965                         kvm_complete_insn_gp(vcpu, err);
4966                         return 1;
4967                 case 8: {
4968                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4969                                 u8 cr8 = kvm_register_read(vcpu, reg);
4970                                 err = kvm_set_cr8(vcpu, cr8);
4971                                 kvm_complete_insn_gp(vcpu, err);
4972                                 if (irqchip_in_kernel(vcpu->kvm))
4973                                         return 1;
4974                                 if (cr8_prev <= cr8)
4975                                         return 1;
4976                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4977                                 return 0;
4978                         }
4979                 }
4980                 break;
4981         case 2: /* clts */
4982                 handle_clts(vcpu);
4983                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4984                 skip_emulated_instruction(vcpu);
4985                 vmx_fpu_activate(vcpu);
4986                 return 1;
4987         case 1: /*mov from cr*/
4988                 switch (cr) {
4989                 case 3:
4990                         val = kvm_read_cr3(vcpu);
4991                         kvm_register_write(vcpu, reg, val);
4992                         trace_kvm_cr_read(cr, val);
4993                         skip_emulated_instruction(vcpu);
4994                         return 1;
4995                 case 8:
4996                         val = kvm_get_cr8(vcpu);
4997                         kvm_register_write(vcpu, reg, val);
4998                         trace_kvm_cr_read(cr, val);
4999                         skip_emulated_instruction(vcpu);
5000                         return 1;
5001                 }
5002                 break;
5003         case 3: /* lmsw */
5004                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5005                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5006                 kvm_lmsw(vcpu, val);
5007
5008                 skip_emulated_instruction(vcpu);
5009                 return 1;
5010         default:
5011                 break;
5012         }
5013         vcpu->run->exit_reason = 0;
5014         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5015                (int)(exit_qualification >> 4) & 3, cr);
5016         return 0;
5017 }
5018
5019 static int handle_dr(struct kvm_vcpu *vcpu)
5020 {
5021         unsigned long exit_qualification;
5022         int dr, reg;
5023
5024         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5025         if (!kvm_require_cpl(vcpu, 0))
5026                 return 1;
5027         dr = vmcs_readl(GUEST_DR7);
5028         if (dr & DR7_GD) {
5029                 /*
5030                  * As the vm-exit takes precedence over the debug trap, we
5031                  * need to emulate the latter, either for the host or the
5032                  * guest debugging itself.
5033                  */
5034                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5035                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5036                         vcpu->run->debug.arch.dr7 = dr;
5037                         vcpu->run->debug.arch.pc =
5038                                 vmcs_readl(GUEST_CS_BASE) +
5039                                 vmcs_readl(GUEST_RIP);
5040                         vcpu->run->debug.arch.exception = DB_VECTOR;
5041                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5042                         return 0;
5043                 } else {
5044                         vcpu->arch.dr7 &= ~DR7_GD;
5045                         vcpu->arch.dr6 |= DR6_BD;
5046                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5047                         kvm_queue_exception(vcpu, DB_VECTOR);
5048                         return 1;
5049                 }
5050         }
5051
5052         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5053         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5054         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5055         if (exit_qualification & TYPE_MOV_FROM_DR) {
5056                 unsigned long val;
5057                 if (!kvm_get_dr(vcpu, dr, &val))
5058                         kvm_register_write(vcpu, reg, val);
5059         } else
5060                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
5061         skip_emulated_instruction(vcpu);
5062         return 1;
5063 }
5064
5065 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5066 {
5067         vmcs_writel(GUEST_DR7, val);
5068 }
5069
5070 static int handle_cpuid(struct kvm_vcpu *vcpu)
5071 {
5072         kvm_emulate_cpuid(vcpu);
5073         return 1;
5074 }
5075
5076 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5077 {
5078         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5079         u64 data;
5080
5081         if (vmx_get_msr(vcpu, ecx, &data)) {
5082                 trace_kvm_msr_read_ex(ecx);
5083                 kvm_inject_gp(vcpu, 0);
5084                 return 1;
5085         }
5086
5087         trace_kvm_msr_read(ecx, data);
5088
5089         /* FIXME: handling of bits 32:63 of rax, rdx */
5090         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5091         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5092         skip_emulated_instruction(vcpu);
5093         return 1;
5094 }
5095
5096 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5097 {
5098         struct msr_data msr;
5099         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5100         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5101                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5102
5103         msr.data = data;
5104         msr.index = ecx;
5105         msr.host_initiated = false;
5106         if (vmx_set_msr(vcpu, &msr) != 0) {
5107                 trace_kvm_msr_write_ex(ecx, data);
5108                 kvm_inject_gp(vcpu, 0);
5109                 return 1;
5110         }
5111
5112         trace_kvm_msr_write(ecx, data);
5113         skip_emulated_instruction(vcpu);
5114         return 1;
5115 }
5116
5117 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5118 {
5119         kvm_make_request(KVM_REQ_EVENT, vcpu);
5120         return 1;
5121 }
5122
5123 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5124 {
5125         u32 cpu_based_vm_exec_control;
5126
5127         /* clear pending irq */
5128         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5129         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5130         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5131
5132         kvm_make_request(KVM_REQ_EVENT, vcpu);
5133
5134         ++vcpu->stat.irq_window_exits;
5135
5136         /*
5137          * If the user space waits to inject interrupts, exit as soon as
5138          * possible
5139          */
5140         if (!irqchip_in_kernel(vcpu->kvm) &&
5141             vcpu->run->request_interrupt_window &&
5142             !kvm_cpu_has_interrupt(vcpu)) {
5143                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5144                 return 0;
5145         }
5146         return 1;
5147 }
5148
5149 static int handle_halt(struct kvm_vcpu *vcpu)
5150 {
5151         skip_emulated_instruction(vcpu);
5152         return kvm_emulate_halt(vcpu);
5153 }
5154
5155 static int handle_vmcall(struct kvm_vcpu *vcpu)
5156 {
5157         skip_emulated_instruction(vcpu);
5158         kvm_emulate_hypercall(vcpu);
5159         return 1;
5160 }
5161
5162 static int handle_invd(struct kvm_vcpu *vcpu)
5163 {
5164         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5165 }
5166
5167 static int handle_invlpg(struct kvm_vcpu *vcpu)
5168 {
5169         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5170
5171         kvm_mmu_invlpg(vcpu, exit_qualification);
5172         skip_emulated_instruction(vcpu);
5173         return 1;
5174 }
5175
5176 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5177 {
5178         int err;
5179
5180         err = kvm_rdpmc(vcpu);
5181         kvm_complete_insn_gp(vcpu, err);
5182
5183         return 1;
5184 }
5185
5186 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5187 {
5188         skip_emulated_instruction(vcpu);
5189         kvm_emulate_wbinvd(vcpu);
5190         return 1;
5191 }
5192
5193 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5194 {
5195         u64 new_bv = kvm_read_edx_eax(vcpu);
5196         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5197
5198         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5199                 skip_emulated_instruction(vcpu);
5200         return 1;
5201 }
5202
5203 static int handle_apic_access(struct kvm_vcpu *vcpu)
5204 {
5205         if (likely(fasteoi)) {
5206                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5207                 int access_type, offset;
5208
5209                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5210                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5211                 /*
5212                  * Sane guest uses MOV to write EOI, with written value
5213                  * not cared. So make a short-circuit here by avoiding
5214                  * heavy instruction emulation.
5215                  */
5216                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5217                     (offset == APIC_EOI)) {
5218                         kvm_lapic_set_eoi(vcpu);
5219                         skip_emulated_instruction(vcpu);
5220                         return 1;
5221                 }
5222         }
5223         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5224 }
5225
5226 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5227 {
5228         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5229         int vector = exit_qualification & 0xff;
5230
5231         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5232         kvm_apic_set_eoi_accelerated(vcpu, vector);
5233         return 1;
5234 }
5235
5236 static int handle_apic_write(struct kvm_vcpu *vcpu)
5237 {
5238         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5239         u32 offset = exit_qualification & 0xfff;
5240
5241         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5242         kvm_apic_write_nodecode(vcpu, offset);
5243         return 1;
5244 }
5245
5246 static int handle_task_switch(struct kvm_vcpu *vcpu)
5247 {
5248         struct vcpu_vmx *vmx = to_vmx(vcpu);
5249         unsigned long exit_qualification;
5250         bool has_error_code = false;
5251         u32 error_code = 0;
5252         u16 tss_selector;
5253         int reason, type, idt_v, idt_index;
5254
5255         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5256         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5257         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5258
5259         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5260
5261         reason = (u32)exit_qualification >> 30;
5262         if (reason == TASK_SWITCH_GATE && idt_v) {
5263                 switch (type) {
5264                 case INTR_TYPE_NMI_INTR:
5265                         vcpu->arch.nmi_injected = false;
5266                         vmx_set_nmi_mask(vcpu, true);
5267                         break;
5268                 case INTR_TYPE_EXT_INTR:
5269                 case INTR_TYPE_SOFT_INTR:
5270                         kvm_clear_interrupt_queue(vcpu);
5271                         break;
5272                 case INTR_TYPE_HARD_EXCEPTION:
5273                         if (vmx->idt_vectoring_info &
5274                             VECTORING_INFO_DELIVER_CODE_MASK) {
5275                                 has_error_code = true;
5276                                 error_code =
5277                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5278                         }
5279                         /* fall through */
5280                 case INTR_TYPE_SOFT_EXCEPTION:
5281                         kvm_clear_exception_queue(vcpu);
5282                         break;
5283                 default:
5284                         break;
5285                 }
5286         }
5287         tss_selector = exit_qualification;
5288
5289         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5290                        type != INTR_TYPE_EXT_INTR &&
5291                        type != INTR_TYPE_NMI_INTR))
5292                 skip_emulated_instruction(vcpu);
5293
5294         if (kvm_task_switch(vcpu, tss_selector,
5295                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5296                             has_error_code, error_code) == EMULATE_FAIL) {
5297                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5298                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5299                 vcpu->run->internal.ndata = 0;
5300                 return 0;
5301         }
5302
5303         /* clear all local breakpoint enable flags */
5304         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5305
5306         /*
5307          * TODO: What about debug traps on tss switch?
5308          *       Are we supposed to inject them and update dr6?
5309          */
5310
5311         return 1;
5312 }
5313
5314 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5315 {
5316         unsigned long exit_qualification;
5317         gpa_t gpa;
5318         u32 error_code;
5319         int gla_validity;
5320
5321         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5322
5323         gla_validity = (exit_qualification >> 7) & 0x3;
5324         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5325                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5326                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5327                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5328                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5329                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5330                         (long unsigned int)exit_qualification);
5331                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5332                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5333                 return 0;
5334         }
5335
5336         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5337         trace_kvm_page_fault(gpa, exit_qualification);
5338
5339         /* It is a write fault? */
5340         error_code = exit_qualification & (1U << 1);
5341         /* It is a fetch fault? */
5342         error_code |= (exit_qualification & (1U << 2)) << 2;
5343         /* ept page table is present? */
5344         error_code |= (exit_qualification >> 3) & 0x1;
5345
5346         vcpu->arch.exit_qualification = exit_qualification;
5347
5348         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5349 }
5350
5351 static u64 ept_rsvd_mask(u64 spte, int level)
5352 {
5353         int i;
5354         u64 mask = 0;
5355
5356         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5357                 mask |= (1ULL << i);
5358
5359         if (level > 2)
5360                 /* bits 7:3 reserved */
5361                 mask |= 0xf8;
5362         else if (level == 2) {
5363                 if (spte & (1ULL << 7))
5364                         /* 2MB ref, bits 20:12 reserved */
5365                         mask |= 0x1ff000;
5366                 else
5367                         /* bits 6:3 reserved */
5368                         mask |= 0x78;
5369         }
5370
5371         return mask;
5372 }
5373
5374 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5375                                        int level)
5376 {
5377         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5378
5379         /* 010b (write-only) */
5380         WARN_ON((spte & 0x7) == 0x2);
5381
5382         /* 110b (write/execute) */
5383         WARN_ON((spte & 0x7) == 0x6);
5384
5385         /* 100b (execute-only) and value not supported by logical processor */
5386         if (!cpu_has_vmx_ept_execute_only())
5387                 WARN_ON((spte & 0x7) == 0x4);
5388
5389         /* not 000b */
5390         if ((spte & 0x7)) {
5391                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5392
5393                 if (rsvd_bits != 0) {
5394                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5395                                          __func__, rsvd_bits);
5396                         WARN_ON(1);
5397                 }
5398
5399                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5400                         u64 ept_mem_type = (spte & 0x38) >> 3;
5401
5402                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5403                             ept_mem_type == 7) {
5404                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5405                                                 __func__, ept_mem_type);
5406                                 WARN_ON(1);
5407                         }
5408                 }
5409         }
5410 }
5411
5412 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5413 {
5414         u64 sptes[4];
5415         int nr_sptes, i, ret;
5416         gpa_t gpa;
5417
5418         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5419
5420         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5421         if (likely(ret == RET_MMIO_PF_EMULATE))
5422                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5423                                               EMULATE_DONE;
5424
5425         if (unlikely(ret == RET_MMIO_PF_INVALID))
5426                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5427
5428         if (unlikely(ret == RET_MMIO_PF_RETRY))
5429                 return 1;
5430
5431         /* It is the real ept misconfig */
5432         printk(KERN_ERR "EPT: Misconfiguration.\n");
5433         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5434
5435         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5436
5437         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5438                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5439
5440         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5441         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5442
5443         return 0;
5444 }
5445
5446 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5447 {
5448         u32 cpu_based_vm_exec_control;
5449
5450         /* clear pending NMI */
5451         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5452         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5453         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5454         ++vcpu->stat.nmi_window_exits;
5455         kvm_make_request(KVM_REQ_EVENT, vcpu);
5456
5457         return 1;
5458 }
5459
5460 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5461 {
5462         struct vcpu_vmx *vmx = to_vmx(vcpu);
5463         enum emulation_result err = EMULATE_DONE;
5464         int ret = 1;
5465         u32 cpu_exec_ctrl;
5466         bool intr_window_requested;
5467         unsigned count = 130;
5468
5469         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5470         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5471
5472         while (!guest_state_valid(vcpu) && count-- != 0) {
5473                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5474                         return handle_interrupt_window(&vmx->vcpu);
5475
5476                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5477                         return 1;
5478
5479                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5480
5481                 if (err == EMULATE_USER_EXIT) {
5482                         ret = 0;
5483                         goto out;
5484                 }
5485
5486                 if (err != EMULATE_DONE) {
5487                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5488                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5489                         vcpu->run->internal.ndata = 0;
5490                         return 0;
5491                 }
5492
5493                 if (vcpu->arch.halt_request) {
5494                         vcpu->arch.halt_request = 0;
5495                         ret = kvm_emulate_halt(vcpu);
5496                         goto out;
5497                 }
5498
5499                 if (signal_pending(current))
5500                         goto out;
5501                 if (need_resched())
5502                         schedule();
5503         }
5504
5505         vmx->emulation_required = emulation_required(vcpu);
5506 out:
5507         return ret;
5508 }
5509
5510 /*
5511  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5512  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5513  */
5514 static int handle_pause(struct kvm_vcpu *vcpu)
5515 {
5516         skip_emulated_instruction(vcpu);
5517         kvm_vcpu_on_spin(vcpu);
5518
5519         return 1;
5520 }
5521
5522 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5523 {
5524         kvm_queue_exception(vcpu, UD_VECTOR);
5525         return 1;
5526 }
5527
5528 /*
5529  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5530  * We could reuse a single VMCS for all the L2 guests, but we also want the
5531  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5532  * allows keeping them loaded on the processor, and in the future will allow
5533  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5534  * every entry if they never change.
5535  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5536  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5537  *
5538  * The following functions allocate and free a vmcs02 in this pool.
5539  */
5540
5541 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5542 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5543 {
5544         struct vmcs02_list *item;
5545         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5546                 if (item->vmptr == vmx->nested.current_vmptr) {
5547                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5548                         return &item->vmcs02;
5549                 }
5550
5551         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5552                 /* Recycle the least recently used VMCS. */
5553                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5554                         struct vmcs02_list, list);
5555                 item->vmptr = vmx->nested.current_vmptr;
5556                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5557                 return &item->vmcs02;
5558         }
5559
5560         /* Create a new VMCS */
5561         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5562         if (!item)
5563                 return NULL;
5564         item->vmcs02.vmcs = alloc_vmcs();
5565         if (!item->vmcs02.vmcs) {
5566                 kfree(item);
5567                 return NULL;
5568         }
5569         loaded_vmcs_init(&item->vmcs02);
5570         item->vmptr = vmx->nested.current_vmptr;
5571         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5572         vmx->nested.vmcs02_num++;
5573         return &item->vmcs02;
5574 }
5575
5576 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5577 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5578 {
5579         struct vmcs02_list *item;
5580         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5581                 if (item->vmptr == vmptr) {
5582                         free_loaded_vmcs(&item->vmcs02);
5583                         list_del(&item->list);
5584                         kfree(item);
5585                         vmx->nested.vmcs02_num--;
5586                         return;
5587                 }
5588 }
5589
5590 /*
5591  * Free all VMCSs saved for this vcpu, except the one pointed by
5592  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5593  * currently used, if running L2), and vmcs01 when running L2.
5594  */
5595 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5596 {
5597         struct vmcs02_list *item, *n;
5598         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5599                 if (vmx->loaded_vmcs != &item->vmcs02)
5600                         free_loaded_vmcs(&item->vmcs02);
5601                 list_del(&item->list);
5602                 kfree(item);
5603         }
5604         vmx->nested.vmcs02_num = 0;
5605
5606         if (vmx->loaded_vmcs != &vmx->vmcs01)
5607                 free_loaded_vmcs(&vmx->vmcs01);
5608 }
5609
5610 /*
5611  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5612  * set the success or error code of an emulated VMX instruction, as specified
5613  * by Vol 2B, VMX Instruction Reference, "Conventions".
5614  */
5615 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5616 {
5617         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5618                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5619                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5620 }
5621
5622 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5623 {
5624         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5625                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5626                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5627                         | X86_EFLAGS_CF);
5628 }
5629
5630 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5631                                         u32 vm_instruction_error)
5632 {
5633         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5634                 /*
5635                  * failValid writes the error number to the current VMCS, which
5636                  * can't be done there isn't a current VMCS.
5637                  */
5638                 nested_vmx_failInvalid(vcpu);
5639                 return;
5640         }
5641         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5642                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5643                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5644                         | X86_EFLAGS_ZF);
5645         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5646         /*
5647          * We don't need to force a shadow sync because
5648          * VM_INSTRUCTION_ERROR is not shadowed
5649          */
5650 }
5651
5652 /*
5653  * Emulate the VMXON instruction.
5654  * Currently, we just remember that VMX is active, and do not save or even
5655  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5656  * do not currently need to store anything in that guest-allocated memory
5657  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5658  * argument is different from the VMXON pointer (which the spec says they do).
5659  */
5660 static int handle_vmon(struct kvm_vcpu *vcpu)
5661 {
5662         struct kvm_segment cs;
5663         struct vcpu_vmx *vmx = to_vmx(vcpu);
5664         struct vmcs *shadow_vmcs;
5665         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5666                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5667
5668         /* The Intel VMX Instruction Reference lists a bunch of bits that
5669          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5670          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5671          * Otherwise, we should fail with #UD. We test these now:
5672          */
5673         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5674             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5675             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5676                 kvm_queue_exception(vcpu, UD_VECTOR);
5677                 return 1;
5678         }
5679
5680         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5681         if (is_long_mode(vcpu) && !cs.l) {
5682                 kvm_queue_exception(vcpu, UD_VECTOR);
5683                 return 1;
5684         }
5685
5686         if (vmx_get_cpl(vcpu)) {
5687                 kvm_inject_gp(vcpu, 0);
5688                 return 1;
5689         }
5690         if (vmx->nested.vmxon) {
5691                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5692                 skip_emulated_instruction(vcpu);
5693                 return 1;
5694         }
5695
5696         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5697                         != VMXON_NEEDED_FEATURES) {
5698                 kvm_inject_gp(vcpu, 0);
5699                 return 1;
5700         }
5701
5702         if (enable_shadow_vmcs) {
5703                 shadow_vmcs = alloc_vmcs();
5704                 if (!shadow_vmcs)
5705                         return -ENOMEM;
5706                 /* mark vmcs as shadow */
5707                 shadow_vmcs->revision_id |= (1u << 31);
5708                 /* init shadow vmcs */
5709                 vmcs_clear(shadow_vmcs);
5710                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5711         }
5712
5713         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5714         vmx->nested.vmcs02_num = 0;
5715
5716         vmx->nested.vmxon = true;
5717
5718         skip_emulated_instruction(vcpu);
5719         nested_vmx_succeed(vcpu);
5720         return 1;
5721 }
5722
5723 /*
5724  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5725  * for running VMX instructions (except VMXON, whose prerequisites are
5726  * slightly different). It also specifies what exception to inject otherwise.
5727  */
5728 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5729 {
5730         struct kvm_segment cs;
5731         struct vcpu_vmx *vmx = to_vmx(vcpu);
5732
5733         if (!vmx->nested.vmxon) {
5734                 kvm_queue_exception(vcpu, UD_VECTOR);
5735                 return 0;
5736         }
5737
5738         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5739         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5740             (is_long_mode(vcpu) && !cs.l)) {
5741                 kvm_queue_exception(vcpu, UD_VECTOR);
5742                 return 0;
5743         }
5744
5745         if (vmx_get_cpl(vcpu)) {
5746                 kvm_inject_gp(vcpu, 0);
5747                 return 0;
5748         }
5749
5750         return 1;
5751 }
5752
5753 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5754 {
5755         u32 exec_control;
5756         if (enable_shadow_vmcs) {
5757                 if (vmx->nested.current_vmcs12 != NULL) {
5758                         /* copy to memory all shadowed fields in case
5759                            they were modified */
5760                         copy_shadow_to_vmcs12(vmx);
5761                         vmx->nested.sync_shadow_vmcs = false;
5762                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5763                         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5764                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5765                         vmcs_write64(VMCS_LINK_POINTER, -1ull);
5766                 }
5767         }
5768         kunmap(vmx->nested.current_vmcs12_page);
5769         nested_release_page(vmx->nested.current_vmcs12_page);
5770 }
5771
5772 /*
5773  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5774  * just stops using VMX.
5775  */
5776 static void free_nested(struct vcpu_vmx *vmx)
5777 {
5778         if (!vmx->nested.vmxon)
5779                 return;
5780         vmx->nested.vmxon = false;
5781         if (vmx->nested.current_vmptr != -1ull) {
5782                 nested_release_vmcs12(vmx);
5783                 vmx->nested.current_vmptr = -1ull;
5784                 vmx->nested.current_vmcs12 = NULL;
5785         }
5786         if (enable_shadow_vmcs)
5787                 free_vmcs(vmx->nested.current_shadow_vmcs);
5788         /* Unpin physical memory we referred to in current vmcs02 */
5789         if (vmx->nested.apic_access_page) {
5790                 nested_release_page(vmx->nested.apic_access_page);
5791                 vmx->nested.apic_access_page = 0;
5792         }
5793
5794         nested_free_all_saved_vmcss(vmx);
5795 }
5796
5797 /* Emulate the VMXOFF instruction */
5798 static int handle_vmoff(struct kvm_vcpu *vcpu)
5799 {
5800         if (!nested_vmx_check_permission(vcpu))
5801                 return 1;
5802         free_nested(to_vmx(vcpu));
5803         skip_emulated_instruction(vcpu);
5804         nested_vmx_succeed(vcpu);
5805         return 1;
5806 }
5807
5808 /*
5809  * Decode the memory-address operand of a vmx instruction, as recorded on an
5810  * exit caused by such an instruction (run by a guest hypervisor).
5811  * On success, returns 0. When the operand is invalid, returns 1 and throws
5812  * #UD or #GP.
5813  */
5814 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5815                                  unsigned long exit_qualification,
5816                                  u32 vmx_instruction_info, gva_t *ret)
5817 {
5818         /*
5819          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5820          * Execution", on an exit, vmx_instruction_info holds most of the
5821          * addressing components of the operand. Only the displacement part
5822          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5823          * For how an actual address is calculated from all these components,
5824          * refer to Vol. 1, "Operand Addressing".
5825          */
5826         int  scaling = vmx_instruction_info & 3;
5827         int  addr_size = (vmx_instruction_info >> 7) & 7;
5828         bool is_reg = vmx_instruction_info & (1u << 10);
5829         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5830         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5831         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5832         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5833         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5834
5835         if (is_reg) {
5836                 kvm_queue_exception(vcpu, UD_VECTOR);
5837                 return 1;
5838         }
5839
5840         /* Addr = segment_base + offset */
5841         /* offset = base + [index * scale] + displacement */
5842         *ret = vmx_get_segment_base(vcpu, seg_reg);
5843         if (base_is_valid)
5844                 *ret += kvm_register_read(vcpu, base_reg);
5845         if (index_is_valid)
5846                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5847         *ret += exit_qualification; /* holds the displacement */
5848
5849         if (addr_size == 1) /* 32 bit */
5850                 *ret &= 0xffffffff;
5851
5852         /*
5853          * TODO: throw #GP (and return 1) in various cases that the VM*
5854          * instructions require it - e.g., offset beyond segment limit,
5855          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5856          * address, and so on. Currently these are not checked.
5857          */
5858         return 0;
5859 }
5860
5861 /* Emulate the VMCLEAR instruction */
5862 static int handle_vmclear(struct kvm_vcpu *vcpu)
5863 {
5864         struct vcpu_vmx *vmx = to_vmx(vcpu);
5865         gva_t gva;
5866         gpa_t vmptr;
5867         struct vmcs12 *vmcs12;
5868         struct page *page;
5869         struct x86_exception e;
5870
5871         if (!nested_vmx_check_permission(vcpu))
5872                 return 1;
5873
5874         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5875                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5876                 return 1;
5877
5878         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5879                                 sizeof(vmptr), &e)) {
5880                 kvm_inject_page_fault(vcpu, &e);
5881                 return 1;
5882         }
5883
5884         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5885                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5886                 skip_emulated_instruction(vcpu);
5887                 return 1;
5888         }
5889
5890         if (vmptr == vmx->nested.current_vmptr) {
5891                 nested_release_vmcs12(vmx);
5892                 vmx->nested.current_vmptr = -1ull;
5893                 vmx->nested.current_vmcs12 = NULL;
5894         }
5895
5896         page = nested_get_page(vcpu, vmptr);
5897         if (page == NULL) {
5898                 /*
5899                  * For accurate processor emulation, VMCLEAR beyond available
5900                  * physical memory should do nothing at all. However, it is
5901                  * possible that a nested vmx bug, not a guest hypervisor bug,
5902                  * resulted in this case, so let's shut down before doing any
5903                  * more damage:
5904                  */
5905                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5906                 return 1;
5907         }
5908         vmcs12 = kmap(page);
5909         vmcs12->launch_state = 0;
5910         kunmap(page);
5911         nested_release_page(page);
5912
5913         nested_free_vmcs02(vmx, vmptr);
5914
5915         skip_emulated_instruction(vcpu);
5916         nested_vmx_succeed(vcpu);
5917         return 1;
5918 }
5919
5920 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5921
5922 /* Emulate the VMLAUNCH instruction */
5923 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5924 {
5925         return nested_vmx_run(vcpu, true);
5926 }
5927
5928 /* Emulate the VMRESUME instruction */
5929 static int handle_vmresume(struct kvm_vcpu *vcpu)
5930 {
5931
5932         return nested_vmx_run(vcpu, false);
5933 }
5934
5935 enum vmcs_field_type {
5936         VMCS_FIELD_TYPE_U16 = 0,
5937         VMCS_FIELD_TYPE_U64 = 1,
5938         VMCS_FIELD_TYPE_U32 = 2,
5939         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5940 };
5941
5942 static inline int vmcs_field_type(unsigned long field)
5943 {
5944         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5945                 return VMCS_FIELD_TYPE_U32;
5946         return (field >> 13) & 0x3 ;
5947 }
5948
5949 static inline int vmcs_field_readonly(unsigned long field)
5950 {
5951         return (((field >> 10) & 0x3) == 1);
5952 }
5953
5954 /*
5955  * Read a vmcs12 field. Since these can have varying lengths and we return
5956  * one type, we chose the biggest type (u64) and zero-extend the return value
5957  * to that size. Note that the caller, handle_vmread, might need to use only
5958  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5959  * 64-bit fields are to be returned).
5960  */
5961 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5962                                         unsigned long field, u64 *ret)
5963 {
5964         short offset = vmcs_field_to_offset(field);
5965         char *p;
5966
5967         if (offset < 0)
5968                 return 0;
5969
5970         p = ((char *)(get_vmcs12(vcpu))) + offset;
5971
5972         switch (vmcs_field_type(field)) {
5973         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5974                 *ret = *((natural_width *)p);
5975                 return 1;
5976         case VMCS_FIELD_TYPE_U16:
5977                 *ret = *((u16 *)p);
5978                 return 1;
5979         case VMCS_FIELD_TYPE_U32:
5980                 *ret = *((u32 *)p);
5981                 return 1;
5982         case VMCS_FIELD_TYPE_U64:
5983                 *ret = *((u64 *)p);
5984                 return 1;
5985         default:
5986                 return 0; /* can never happen. */
5987         }
5988 }
5989
5990
5991 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
5992                                     unsigned long field, u64 field_value){
5993         short offset = vmcs_field_to_offset(field);
5994         char *p = ((char *) get_vmcs12(vcpu)) + offset;
5995         if (offset < 0)
5996                 return false;
5997
5998         switch (vmcs_field_type(field)) {
5999         case VMCS_FIELD_TYPE_U16:
6000                 *(u16 *)p = field_value;
6001                 return true;
6002         case VMCS_FIELD_TYPE_U32:
6003                 *(u32 *)p = field_value;
6004                 return true;
6005         case VMCS_FIELD_TYPE_U64:
6006                 *(u64 *)p = field_value;
6007                 return true;
6008         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6009                 *(natural_width *)p = field_value;
6010                 return true;
6011         default:
6012                 return false; /* can never happen. */
6013         }
6014
6015 }
6016
6017 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6018 {
6019         int i;
6020         unsigned long field;
6021         u64 field_value;
6022         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6023         const unsigned long *fields = shadow_read_write_fields;
6024         const int num_fields = max_shadow_read_write_fields;
6025
6026         vmcs_load(shadow_vmcs);
6027
6028         for (i = 0; i < num_fields; i++) {
6029                 field = fields[i];
6030                 switch (vmcs_field_type(field)) {
6031                 case VMCS_FIELD_TYPE_U16:
6032                         field_value = vmcs_read16(field);
6033                         break;
6034                 case VMCS_FIELD_TYPE_U32:
6035                         field_value = vmcs_read32(field);
6036                         break;
6037                 case VMCS_FIELD_TYPE_U64:
6038                         field_value = vmcs_read64(field);
6039                         break;
6040                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6041                         field_value = vmcs_readl(field);
6042                         break;
6043                 }
6044                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6045         }
6046
6047         vmcs_clear(shadow_vmcs);
6048         vmcs_load(vmx->loaded_vmcs->vmcs);
6049 }
6050
6051 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6052 {
6053         const unsigned long *fields[] = {
6054                 shadow_read_write_fields,
6055                 shadow_read_only_fields
6056         };
6057         const int max_fields[] = {
6058                 max_shadow_read_write_fields,
6059                 max_shadow_read_only_fields
6060         };
6061         int i, q;
6062         unsigned long field;
6063         u64 field_value = 0;
6064         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6065
6066         vmcs_load(shadow_vmcs);
6067
6068         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6069                 for (i = 0; i < max_fields[q]; i++) {
6070                         field = fields[q][i];
6071                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6072
6073                         switch (vmcs_field_type(field)) {
6074                         case VMCS_FIELD_TYPE_U16:
6075                                 vmcs_write16(field, (u16)field_value);
6076                                 break;
6077                         case VMCS_FIELD_TYPE_U32:
6078                                 vmcs_write32(field, (u32)field_value);
6079                                 break;
6080                         case VMCS_FIELD_TYPE_U64:
6081                                 vmcs_write64(field, (u64)field_value);
6082                                 break;
6083                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6084                                 vmcs_writel(field, (long)field_value);
6085                                 break;
6086                         }
6087                 }
6088         }
6089
6090         vmcs_clear(shadow_vmcs);
6091         vmcs_load(vmx->loaded_vmcs->vmcs);
6092 }
6093
6094 /*
6095  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6096  * used before) all generate the same failure when it is missing.
6097  */
6098 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6099 {
6100         struct vcpu_vmx *vmx = to_vmx(vcpu);
6101         if (vmx->nested.current_vmptr == -1ull) {
6102                 nested_vmx_failInvalid(vcpu);
6103                 skip_emulated_instruction(vcpu);
6104                 return 0;
6105         }
6106         return 1;
6107 }
6108
6109 static int handle_vmread(struct kvm_vcpu *vcpu)
6110 {
6111         unsigned long field;
6112         u64 field_value;
6113         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6114         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6115         gva_t gva = 0;
6116
6117         if (!nested_vmx_check_permission(vcpu) ||
6118             !nested_vmx_check_vmcs12(vcpu))
6119                 return 1;
6120
6121         /* Decode instruction info and find the field to read */
6122         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6123         /* Read the field, zero-extended to a u64 field_value */
6124         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6125                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6126                 skip_emulated_instruction(vcpu);
6127                 return 1;
6128         }
6129         /*
6130          * Now copy part of this value to register or memory, as requested.
6131          * Note that the number of bits actually copied is 32 or 64 depending
6132          * on the guest's mode (32 or 64 bit), not on the given field's length.
6133          */
6134         if (vmx_instruction_info & (1u << 10)) {
6135                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6136                         field_value);
6137         } else {
6138                 if (get_vmx_mem_address(vcpu, exit_qualification,
6139                                 vmx_instruction_info, &gva))
6140                         return 1;
6141                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6142                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6143                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6144         }
6145
6146         nested_vmx_succeed(vcpu);
6147         skip_emulated_instruction(vcpu);
6148         return 1;
6149 }
6150
6151
6152 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6153 {
6154         unsigned long field;
6155         gva_t gva;
6156         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6157         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6158         /* The value to write might be 32 or 64 bits, depending on L1's long
6159          * mode, and eventually we need to write that into a field of several
6160          * possible lengths. The code below first zero-extends the value to 64
6161          * bit (field_value), and then copies only the approriate number of
6162          * bits into the vmcs12 field.
6163          */
6164         u64 field_value = 0;
6165         struct x86_exception e;
6166
6167         if (!nested_vmx_check_permission(vcpu) ||
6168             !nested_vmx_check_vmcs12(vcpu))
6169                 return 1;
6170
6171         if (vmx_instruction_info & (1u << 10))
6172                 field_value = kvm_register_read(vcpu,
6173                         (((vmx_instruction_info) >> 3) & 0xf));
6174         else {
6175                 if (get_vmx_mem_address(vcpu, exit_qualification,
6176                                 vmx_instruction_info, &gva))
6177                         return 1;
6178                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6179                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6180                         kvm_inject_page_fault(vcpu, &e);
6181                         return 1;
6182                 }
6183         }
6184
6185
6186         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6187         if (vmcs_field_readonly(field)) {
6188                 nested_vmx_failValid(vcpu,
6189                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6190                 skip_emulated_instruction(vcpu);
6191                 return 1;
6192         }
6193
6194         if (!vmcs12_write_any(vcpu, field, field_value)) {
6195                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6196                 skip_emulated_instruction(vcpu);
6197                 return 1;
6198         }
6199
6200         nested_vmx_succeed(vcpu);
6201         skip_emulated_instruction(vcpu);
6202         return 1;
6203 }
6204
6205 /* Emulate the VMPTRLD instruction */
6206 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6207 {
6208         struct vcpu_vmx *vmx = to_vmx(vcpu);
6209         gva_t gva;
6210         gpa_t vmptr;
6211         struct x86_exception e;
6212         u32 exec_control;
6213
6214         if (!nested_vmx_check_permission(vcpu))
6215                 return 1;
6216
6217         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6218                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6219                 return 1;
6220
6221         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6222                                 sizeof(vmptr), &e)) {
6223                 kvm_inject_page_fault(vcpu, &e);
6224                 return 1;
6225         }
6226
6227         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6228                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6229                 skip_emulated_instruction(vcpu);
6230                 return 1;
6231         }
6232
6233         if (vmx->nested.current_vmptr != vmptr) {
6234                 struct vmcs12 *new_vmcs12;
6235                 struct page *page;
6236                 page = nested_get_page(vcpu, vmptr);
6237                 if (page == NULL) {
6238                         nested_vmx_failInvalid(vcpu);
6239                         skip_emulated_instruction(vcpu);
6240                         return 1;
6241                 }
6242                 new_vmcs12 = kmap(page);
6243                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6244                         kunmap(page);
6245                         nested_release_page_clean(page);
6246                         nested_vmx_failValid(vcpu,
6247                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6248                         skip_emulated_instruction(vcpu);
6249                         return 1;
6250                 }
6251                 if (vmx->nested.current_vmptr != -1ull)
6252                         nested_release_vmcs12(vmx);
6253
6254                 vmx->nested.current_vmptr = vmptr;
6255                 vmx->nested.current_vmcs12 = new_vmcs12;
6256                 vmx->nested.current_vmcs12_page = page;
6257                 if (enable_shadow_vmcs) {
6258                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6259                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6260                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6261                         vmcs_write64(VMCS_LINK_POINTER,
6262                                      __pa(vmx->nested.current_shadow_vmcs));
6263                         vmx->nested.sync_shadow_vmcs = true;
6264                 }
6265         }
6266
6267         nested_vmx_succeed(vcpu);
6268         skip_emulated_instruction(vcpu);
6269         return 1;
6270 }
6271
6272 /* Emulate the VMPTRST instruction */
6273 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6274 {
6275         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6276         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6277         gva_t vmcs_gva;
6278         struct x86_exception e;
6279
6280         if (!nested_vmx_check_permission(vcpu))
6281                 return 1;
6282
6283         if (get_vmx_mem_address(vcpu, exit_qualification,
6284                         vmx_instruction_info, &vmcs_gva))
6285                 return 1;
6286         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6287         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6288                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6289                                  sizeof(u64), &e)) {
6290                 kvm_inject_page_fault(vcpu, &e);
6291                 return 1;
6292         }
6293         nested_vmx_succeed(vcpu);
6294         skip_emulated_instruction(vcpu);
6295         return 1;
6296 }
6297
6298 /* Emulate the INVEPT instruction */
6299 static int handle_invept(struct kvm_vcpu *vcpu)
6300 {
6301         u32 vmx_instruction_info, types;
6302         unsigned long type;
6303         gva_t gva;
6304         struct x86_exception e;
6305         struct {
6306                 u64 eptp, gpa;
6307         } operand;
6308         u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6309
6310         if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6311             !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6312                 kvm_queue_exception(vcpu, UD_VECTOR);
6313                 return 1;
6314         }
6315
6316         if (!nested_vmx_check_permission(vcpu))
6317                 return 1;
6318
6319         if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6320                 kvm_queue_exception(vcpu, UD_VECTOR);
6321                 return 1;
6322         }
6323
6324         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6325         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6326
6327         types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6328
6329         if (!(types & (1UL << type))) {
6330                 nested_vmx_failValid(vcpu,
6331                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6332                 return 1;
6333         }
6334
6335         /* According to the Intel VMX instruction reference, the memory
6336          * operand is read even if it isn't needed (e.g., for type==global)
6337          */
6338         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6339                         vmx_instruction_info, &gva))
6340                 return 1;
6341         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6342                                 sizeof(operand), &e)) {
6343                 kvm_inject_page_fault(vcpu, &e);
6344                 return 1;
6345         }
6346
6347         switch (type) {
6348         case VMX_EPT_EXTENT_CONTEXT:
6349                 if ((operand.eptp & eptp_mask) !=
6350                                 (nested_ept_get_cr3(vcpu) & eptp_mask))
6351                         break;
6352         case VMX_EPT_EXTENT_GLOBAL:
6353                 kvm_mmu_sync_roots(vcpu);
6354                 kvm_mmu_flush_tlb(vcpu);
6355                 nested_vmx_succeed(vcpu);
6356                 break;
6357         default:
6358                 BUG_ON(1);
6359                 break;
6360         }
6361
6362         skip_emulated_instruction(vcpu);
6363         return 1;
6364 }
6365
6366 /*
6367  * The exit handlers return 1 if the exit was handled fully and guest execution
6368  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6369  * to be done to userspace and return 0.
6370  */
6371 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6372         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6373         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6374         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6375         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6376         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6377         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6378         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6379         [EXIT_REASON_CPUID]                   = handle_cpuid,
6380         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6381         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6382         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6383         [EXIT_REASON_HLT]                     = handle_halt,
6384         [EXIT_REASON_INVD]                    = handle_invd,
6385         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6386         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6387         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6388         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6389         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6390         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6391         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6392         [EXIT_REASON_VMREAD]                  = handle_vmread,
6393         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6394         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6395         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6396         [EXIT_REASON_VMON]                    = handle_vmon,
6397         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6398         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6399         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6400         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6401         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6402         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6403         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6404         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6405         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6406         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6407         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6408         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
6409         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
6410         [EXIT_REASON_INVEPT]                  = handle_invept,
6411 };
6412
6413 static const int kvm_vmx_max_exit_handlers =
6414         ARRAY_SIZE(kvm_vmx_exit_handlers);
6415
6416 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6417                                        struct vmcs12 *vmcs12)
6418 {
6419         unsigned long exit_qualification;
6420         gpa_t bitmap, last_bitmap;
6421         unsigned int port;
6422         int size;
6423         u8 b;
6424
6425         if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6426                 return 1;
6427
6428         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6429                 return 0;
6430
6431         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6432
6433         port = exit_qualification >> 16;
6434         size = (exit_qualification & 7) + 1;
6435
6436         last_bitmap = (gpa_t)-1;
6437         b = -1;
6438
6439         while (size > 0) {
6440                 if (port < 0x8000)
6441                         bitmap = vmcs12->io_bitmap_a;
6442                 else if (port < 0x10000)
6443                         bitmap = vmcs12->io_bitmap_b;
6444                 else
6445                         return 1;
6446                 bitmap += (port & 0x7fff) / 8;
6447
6448                 if (last_bitmap != bitmap)
6449                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6450                                 return 1;
6451                 if (b & (1 << (port & 7)))
6452                         return 1;
6453
6454                 port++;
6455                 size--;
6456                 last_bitmap = bitmap;
6457         }
6458
6459         return 0;
6460 }
6461
6462 /*
6463  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6464  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6465  * disinterest in the current event (read or write a specific MSR) by using an
6466  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6467  */
6468 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6469         struct vmcs12 *vmcs12, u32 exit_reason)
6470 {
6471         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6472         gpa_t bitmap;
6473
6474         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6475                 return 1;
6476
6477         /*
6478          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6479          * for the four combinations of read/write and low/high MSR numbers.
6480          * First we need to figure out which of the four to use:
6481          */
6482         bitmap = vmcs12->msr_bitmap;
6483         if (exit_reason == EXIT_REASON_MSR_WRITE)
6484                 bitmap += 2048;
6485         if (msr_index >= 0xc0000000) {
6486                 msr_index -= 0xc0000000;
6487                 bitmap += 1024;
6488         }
6489
6490         /* Then read the msr_index'th bit from this bitmap: */
6491         if (msr_index < 1024*8) {
6492                 unsigned char b;
6493                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6494                         return 1;
6495                 return 1 & (b >> (msr_index & 7));
6496         } else
6497                 return 1; /* let L1 handle the wrong parameter */
6498 }
6499
6500 /*
6501  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6502  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6503  * intercept (via guest_host_mask etc.) the current event.
6504  */
6505 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6506         struct vmcs12 *vmcs12)
6507 {
6508         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6509         int cr = exit_qualification & 15;
6510         int reg = (exit_qualification >> 8) & 15;
6511         unsigned long val = kvm_register_read(vcpu, reg);
6512
6513         switch ((exit_qualification >> 4) & 3) {
6514         case 0: /* mov to cr */
6515                 switch (cr) {
6516                 case 0:
6517                         if (vmcs12->cr0_guest_host_mask &
6518                             (val ^ vmcs12->cr0_read_shadow))
6519                                 return 1;
6520                         break;
6521                 case 3:
6522                         if ((vmcs12->cr3_target_count >= 1 &&
6523                                         vmcs12->cr3_target_value0 == val) ||
6524                                 (vmcs12->cr3_target_count >= 2 &&
6525                                         vmcs12->cr3_target_value1 == val) ||
6526                                 (vmcs12->cr3_target_count >= 3 &&
6527                                         vmcs12->cr3_target_value2 == val) ||
6528                                 (vmcs12->cr3_target_count >= 4 &&
6529                                         vmcs12->cr3_target_value3 == val))
6530                                 return 0;
6531                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6532                                 return 1;
6533                         break;
6534                 case 4:
6535                         if (vmcs12->cr4_guest_host_mask &
6536                             (vmcs12->cr4_read_shadow ^ val))
6537                                 return 1;
6538                         break;
6539                 case 8:
6540                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6541                                 return 1;
6542                         break;
6543                 }
6544                 break;
6545         case 2: /* clts */
6546                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6547                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6548                         return 1;
6549                 break;
6550         case 1: /* mov from cr */
6551                 switch (cr) {
6552                 case 3:
6553                         if (vmcs12->cpu_based_vm_exec_control &
6554                             CPU_BASED_CR3_STORE_EXITING)
6555                                 return 1;
6556                         break;
6557                 case 8:
6558                         if (vmcs12->cpu_based_vm_exec_control &
6559                             CPU_BASED_CR8_STORE_EXITING)
6560                                 return 1;
6561                         break;
6562                 }
6563                 break;
6564         case 3: /* lmsw */
6565                 /*
6566                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6567                  * cr0. Other attempted changes are ignored, with no exit.
6568                  */
6569                 if (vmcs12->cr0_guest_host_mask & 0xe &
6570                     (val ^ vmcs12->cr0_read_shadow))
6571                         return 1;
6572                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6573                     !(vmcs12->cr0_read_shadow & 0x1) &&
6574                     (val & 0x1))
6575                         return 1;
6576                 break;
6577         }
6578         return 0;
6579 }
6580
6581 /*
6582  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6583  * should handle it ourselves in L0 (and then continue L2). Only call this
6584  * when in is_guest_mode (L2).
6585  */
6586 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6587 {
6588         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6589         struct vcpu_vmx *vmx = to_vmx(vcpu);
6590         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6591         u32 exit_reason = vmx->exit_reason;
6592
6593         if (vmx->nested.nested_run_pending)
6594                 return 0;
6595
6596         if (unlikely(vmx->fail)) {
6597                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6598                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6599                 return 1;
6600         }
6601
6602         switch (exit_reason) {
6603         case EXIT_REASON_EXCEPTION_NMI:
6604                 if (!is_exception(intr_info))
6605                         return 0;
6606                 else if (is_page_fault(intr_info))
6607                         return enable_ept;
6608                 return vmcs12->exception_bitmap &
6609                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6610         case EXIT_REASON_EXTERNAL_INTERRUPT:
6611                 return 0;
6612         case EXIT_REASON_TRIPLE_FAULT:
6613                 return 1;
6614         case EXIT_REASON_PENDING_INTERRUPT:
6615                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6616         case EXIT_REASON_NMI_WINDOW:
6617                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6618         case EXIT_REASON_TASK_SWITCH:
6619                 return 1;
6620         case EXIT_REASON_CPUID:
6621                 return 1;
6622         case EXIT_REASON_HLT:
6623                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6624         case EXIT_REASON_INVD:
6625                 return 1;
6626         case EXIT_REASON_INVLPG:
6627                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6628         case EXIT_REASON_RDPMC:
6629                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6630         case EXIT_REASON_RDTSC:
6631                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6632         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6633         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6634         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6635         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6636         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6637         case EXIT_REASON_INVEPT:
6638                 /*
6639                  * VMX instructions trap unconditionally. This allows L1 to
6640                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6641                  */
6642                 return 1;
6643         case EXIT_REASON_CR_ACCESS:
6644                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6645         case EXIT_REASON_DR_ACCESS:
6646                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6647         case EXIT_REASON_IO_INSTRUCTION:
6648                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6649         case EXIT_REASON_MSR_READ:
6650         case EXIT_REASON_MSR_WRITE:
6651                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6652         case EXIT_REASON_INVALID_STATE:
6653                 return 1;
6654         case EXIT_REASON_MWAIT_INSTRUCTION:
6655                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6656         case EXIT_REASON_MONITOR_INSTRUCTION:
6657                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6658         case EXIT_REASON_PAUSE_INSTRUCTION:
6659                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6660                         nested_cpu_has2(vmcs12,
6661                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6662         case EXIT_REASON_MCE_DURING_VMENTRY:
6663                 return 0;
6664         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6665                 return 1;
6666         case EXIT_REASON_APIC_ACCESS:
6667                 return nested_cpu_has2(vmcs12,
6668                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6669         case EXIT_REASON_EPT_VIOLATION:
6670                 /*
6671                  * L0 always deals with the EPT violation. If nested EPT is
6672                  * used, and the nested mmu code discovers that the address is
6673                  * missing in the guest EPT table (EPT12), the EPT violation
6674                  * will be injected with nested_ept_inject_page_fault()
6675                  */
6676                 return 0;
6677         case EXIT_REASON_EPT_MISCONFIG:
6678                 /*
6679                  * L2 never uses directly L1's EPT, but rather L0's own EPT
6680                  * table (shadow on EPT) or a merged EPT table that L0 built
6681                  * (EPT on EPT). So any problems with the structure of the
6682                  * table is L0's fault.
6683                  */
6684                 return 0;
6685         case EXIT_REASON_PREEMPTION_TIMER:
6686                 return vmcs12->pin_based_vm_exec_control &
6687                         PIN_BASED_VMX_PREEMPTION_TIMER;
6688         case EXIT_REASON_WBINVD:
6689                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6690         case EXIT_REASON_XSETBV:
6691                 return 1;
6692         default:
6693                 return 1;
6694         }
6695 }
6696
6697 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6698 {
6699         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6700         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6701 }
6702
6703 /*
6704  * The guest has exited.  See if we can fix it or if we need userspace
6705  * assistance.
6706  */
6707 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6708 {
6709         struct vcpu_vmx *vmx = to_vmx(vcpu);
6710         u32 exit_reason = vmx->exit_reason;
6711         u32 vectoring_info = vmx->idt_vectoring_info;
6712
6713         /* If guest state is invalid, start emulating */
6714         if (vmx->emulation_required)
6715                 return handle_invalid_guest_state(vcpu);
6716
6717         /*
6718          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6719          * we did not inject a still-pending event to L1 now because of
6720          * nested_run_pending, we need to re-enable this bit.
6721          */
6722         if (vmx->nested.nested_run_pending)
6723                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6724
6725         if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6726             exit_reason == EXIT_REASON_VMRESUME))
6727                 vmx->nested.nested_run_pending = 1;
6728         else
6729                 vmx->nested.nested_run_pending = 0;
6730
6731         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6732                 nested_vmx_vmexit(vcpu);
6733                 return 1;
6734         }
6735
6736         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6737                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6738                 vcpu->run->fail_entry.hardware_entry_failure_reason
6739                         = exit_reason;
6740                 return 0;
6741         }
6742
6743         if (unlikely(vmx->fail)) {
6744                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6745                 vcpu->run->fail_entry.hardware_entry_failure_reason
6746                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6747                 return 0;
6748         }
6749
6750         /*
6751          * Note:
6752          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6753          * delivery event since it indicates guest is accessing MMIO.
6754          * The vm-exit can be triggered again after return to guest that
6755          * will cause infinite loop.
6756          */
6757         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6758                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6759                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6760                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6761                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6762                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6763                 vcpu->run->internal.ndata = 2;
6764                 vcpu->run->internal.data[0] = vectoring_info;
6765                 vcpu->run->internal.data[1] = exit_reason;
6766                 return 0;
6767         }
6768
6769         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6770             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6771                                         get_vmcs12(vcpu))))) {
6772                 if (vmx_interrupt_allowed(vcpu)) {
6773                         vmx->soft_vnmi_blocked = 0;
6774                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6775                            vcpu->arch.nmi_pending) {
6776                         /*
6777                          * This CPU don't support us in finding the end of an
6778                          * NMI-blocked window if the guest runs with IRQs
6779                          * disabled. So we pull the trigger after 1 s of
6780                          * futile waiting, but inform the user about this.
6781                          */
6782                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6783                                "state on VCPU %d after 1 s timeout\n",
6784                                __func__, vcpu->vcpu_id);
6785                         vmx->soft_vnmi_blocked = 0;
6786                 }
6787         }
6788
6789         if (exit_reason < kvm_vmx_max_exit_handlers
6790             && kvm_vmx_exit_handlers[exit_reason])
6791                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6792         else {
6793                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6794                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6795         }
6796         return 0;
6797 }
6798
6799 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6800 {
6801         if (irr == -1 || tpr < irr) {
6802                 vmcs_write32(TPR_THRESHOLD, 0);
6803                 return;
6804         }
6805
6806         vmcs_write32(TPR_THRESHOLD, irr);
6807 }
6808
6809 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6810 {
6811         u32 sec_exec_control;
6812
6813         /*
6814          * There is not point to enable virtualize x2apic without enable
6815          * apicv
6816          */
6817         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6818                                 !vmx_vm_has_apicv(vcpu->kvm))
6819                 return;
6820
6821         if (!vm_need_tpr_shadow(vcpu->kvm))
6822                 return;
6823
6824         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6825
6826         if (set) {
6827                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6828                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6829         } else {
6830                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6831                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6832         }
6833         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6834
6835         vmx_set_msr_bitmap(vcpu);
6836 }
6837
6838 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6839 {
6840         u16 status;
6841         u8 old;
6842
6843         if (!vmx_vm_has_apicv(kvm))
6844                 return;
6845
6846         if (isr == -1)
6847                 isr = 0;
6848
6849         status = vmcs_read16(GUEST_INTR_STATUS);
6850         old = status >> 8;
6851         if (isr != old) {
6852                 status &= 0xff;
6853                 status |= isr << 8;
6854                 vmcs_write16(GUEST_INTR_STATUS, status);
6855         }
6856 }
6857
6858 static void vmx_set_rvi(int vector)
6859 {
6860         u16 status;
6861         u8 old;
6862
6863         status = vmcs_read16(GUEST_INTR_STATUS);
6864         old = (u8)status & 0xff;
6865         if ((u8)vector != old) {
6866                 status &= ~0xff;
6867                 status |= (u8)vector;
6868                 vmcs_write16(GUEST_INTR_STATUS, status);
6869         }
6870 }
6871
6872 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6873 {
6874         if (max_irr == -1)
6875                 return;
6876
6877         vmx_set_rvi(max_irr);
6878 }
6879
6880 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6881 {
6882         if (!vmx_vm_has_apicv(vcpu->kvm))
6883                 return;
6884
6885         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6886         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6887         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6888         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6889 }
6890
6891 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6892 {
6893         u32 exit_intr_info;
6894
6895         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6896               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6897                 return;
6898
6899         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6900         exit_intr_info = vmx->exit_intr_info;
6901
6902         /* Handle machine checks before interrupts are enabled */
6903         if (is_machine_check(exit_intr_info))
6904                 kvm_machine_check();
6905
6906         /* We need to handle NMIs before interrupts are enabled */
6907         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6908             (exit_intr_info & INTR_INFO_VALID_MASK)) {
6909                 kvm_before_handle_nmi(&vmx->vcpu);
6910                 asm("int $2");
6911                 kvm_after_handle_nmi(&vmx->vcpu);
6912         }
6913 }
6914
6915 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6916 {
6917         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6918
6919         /*
6920          * If external interrupt exists, IF bit is set in rflags/eflags on the
6921          * interrupt stack frame, and interrupt will be enabled on a return
6922          * from interrupt handler.
6923          */
6924         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6925                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6926                 unsigned int vector;
6927                 unsigned long entry;
6928                 gate_desc *desc;
6929                 struct vcpu_vmx *vmx = to_vmx(vcpu);
6930 #ifdef CONFIG_X86_64
6931                 unsigned long tmp;
6932 #endif
6933
6934                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6935                 desc = (gate_desc *)vmx->host_idt_base + vector;
6936                 entry = gate_offset(*desc);
6937                 asm volatile(
6938 #ifdef CONFIG_X86_64
6939                         "mov %%" _ASM_SP ", %[sp]\n\t"
6940                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6941                         "push $%c[ss]\n\t"
6942                         "push %[sp]\n\t"
6943 #endif
6944                         "pushf\n\t"
6945                         "orl $0x200, (%%" _ASM_SP ")\n\t"
6946                         __ASM_SIZE(push) " $%c[cs]\n\t"
6947                         "call *%[entry]\n\t"
6948                         :
6949 #ifdef CONFIG_X86_64
6950                         [sp]"=&r"(tmp)
6951 #endif
6952                         :
6953                         [entry]"r"(entry),
6954                         [ss]"i"(__KERNEL_DS),
6955                         [cs]"i"(__KERNEL_CS)
6956                         );
6957         } else
6958                 local_irq_enable();
6959 }
6960
6961 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6962 {
6963         u32 exit_intr_info;
6964         bool unblock_nmi;
6965         u8 vector;
6966         bool idtv_info_valid;
6967
6968         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6969
6970         if (cpu_has_virtual_nmis()) {
6971                 if (vmx->nmi_known_unmasked)
6972                         return;
6973                 /*
6974                  * Can't use vmx->exit_intr_info since we're not sure what
6975                  * the exit reason is.
6976                  */
6977                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6978                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6979                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6980                 /*
6981                  * SDM 3: 27.7.1.2 (September 2008)
6982                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6983                  * a guest IRET fault.
6984                  * SDM 3: 23.2.2 (September 2008)
6985                  * Bit 12 is undefined in any of the following cases:
6986                  *  If the VM exit sets the valid bit in the IDT-vectoring
6987                  *   information field.
6988                  *  If the VM exit is due to a double fault.
6989                  */
6990                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6991                     vector != DF_VECTOR && !idtv_info_valid)
6992                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6993                                       GUEST_INTR_STATE_NMI);
6994                 else
6995                         vmx->nmi_known_unmasked =
6996                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6997                                   & GUEST_INTR_STATE_NMI);
6998         } else if (unlikely(vmx->soft_vnmi_blocked))
6999                 vmx->vnmi_blocked_time +=
7000                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7001 }
7002
7003 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7004                                       u32 idt_vectoring_info,
7005                                       int instr_len_field,
7006                                       int error_code_field)
7007 {
7008         u8 vector;
7009         int type;
7010         bool idtv_info_valid;
7011
7012         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7013
7014         vcpu->arch.nmi_injected = false;
7015         kvm_clear_exception_queue(vcpu);
7016         kvm_clear_interrupt_queue(vcpu);
7017
7018         if (!idtv_info_valid)
7019                 return;
7020
7021         kvm_make_request(KVM_REQ_EVENT, vcpu);
7022
7023         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7024         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7025
7026         switch (type) {
7027         case INTR_TYPE_NMI_INTR:
7028                 vcpu->arch.nmi_injected = true;
7029                 /*
7030                  * SDM 3: 27.7.1.2 (September 2008)
7031                  * Clear bit "block by NMI" before VM entry if a NMI
7032                  * delivery faulted.
7033                  */
7034                 vmx_set_nmi_mask(vcpu, false);
7035                 break;
7036         case INTR_TYPE_SOFT_EXCEPTION:
7037                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7038                 /* fall through */
7039         case INTR_TYPE_HARD_EXCEPTION:
7040                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7041                         u32 err = vmcs_read32(error_code_field);
7042                         kvm_queue_exception_e(vcpu, vector, err);
7043                 } else
7044                         kvm_queue_exception(vcpu, vector);
7045                 break;
7046         case INTR_TYPE_SOFT_INTR:
7047                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7048                 /* fall through */
7049         case INTR_TYPE_EXT_INTR:
7050                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7051                 break;
7052         default:
7053                 break;
7054         }
7055 }
7056
7057 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7058 {
7059         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7060                                   VM_EXIT_INSTRUCTION_LEN,
7061                                   IDT_VECTORING_ERROR_CODE);
7062 }
7063
7064 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7065 {
7066         __vmx_complete_interrupts(vcpu,
7067                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7068                                   VM_ENTRY_INSTRUCTION_LEN,
7069                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
7070
7071         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7072 }
7073
7074 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7075 {
7076         int i, nr_msrs;
7077         struct perf_guest_switch_msr *msrs;
7078
7079         msrs = perf_guest_get_msrs(&nr_msrs);
7080
7081         if (!msrs)
7082                 return;
7083
7084         for (i = 0; i < nr_msrs; i++)
7085                 if (msrs[i].host == msrs[i].guest)
7086                         clear_atomic_switch_msr(vmx, msrs[i].msr);
7087                 else
7088                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7089                                         msrs[i].host);
7090 }
7091
7092 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7093 {
7094         struct vcpu_vmx *vmx = to_vmx(vcpu);
7095         unsigned long debugctlmsr;
7096
7097         /* Record the guest's net vcpu time for enforced NMI injections. */
7098         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7099                 vmx->entry_time = ktime_get();
7100
7101         /* Don't enter VMX if guest state is invalid, let the exit handler
7102            start emulation until we arrive back to a valid state */
7103         if (vmx->emulation_required)
7104                 return;
7105
7106         if (vmx->nested.sync_shadow_vmcs) {
7107                 copy_vmcs12_to_shadow(vmx);
7108                 vmx->nested.sync_shadow_vmcs = false;
7109         }
7110
7111         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7112                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7113         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7114                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7115
7116         /* When single-stepping over STI and MOV SS, we must clear the
7117          * corresponding interruptibility bits in the guest state. Otherwise
7118          * vmentry fails as it then expects bit 14 (BS) in pending debug
7119          * exceptions being set, but that's not correct for the guest debugging
7120          * case. */
7121         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7122                 vmx_set_interrupt_shadow(vcpu, 0);
7123
7124         atomic_switch_perf_msrs(vmx);
7125         debugctlmsr = get_debugctlmsr();
7126
7127         vmx->__launched = vmx->loaded_vmcs->launched;
7128         asm(
7129                 /* Store host registers */
7130                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7131                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7132                 "push %%" _ASM_CX " \n\t"
7133                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7134                 "je 1f \n\t"
7135                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7136                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7137                 "1: \n\t"
7138                 /* Reload cr2 if changed */
7139                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7140                 "mov %%cr2, %%" _ASM_DX " \n\t"
7141                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7142                 "je 2f \n\t"
7143                 "mov %%" _ASM_AX", %%cr2 \n\t"
7144                 "2: \n\t"
7145                 /* Check if vmlaunch of vmresume is needed */
7146                 "cmpl $0, %c[launched](%0) \n\t"
7147                 /* Load guest registers.  Don't clobber flags. */
7148                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7149                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7150                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7151                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7152                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7153                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7154 #ifdef CONFIG_X86_64
7155                 "mov %c[r8](%0),  %%r8  \n\t"
7156                 "mov %c[r9](%0),  %%r9  \n\t"
7157                 "mov %c[r10](%0), %%r10 \n\t"
7158                 "mov %c[r11](%0), %%r11 \n\t"
7159                 "mov %c[r12](%0), %%r12 \n\t"
7160                 "mov %c[r13](%0), %%r13 \n\t"
7161                 "mov %c[r14](%0), %%r14 \n\t"
7162                 "mov %c[r15](%0), %%r15 \n\t"
7163 #endif
7164                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7165
7166                 /* Enter guest mode */
7167                 "jne 1f \n\t"
7168                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7169                 "jmp 2f \n\t"
7170                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7171                 "2: "
7172                 /* Save guest registers, load host registers, keep flags */
7173                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7174                 "pop %0 \n\t"
7175                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7176                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7177                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7178                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7179                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7180                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7181                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7182 #ifdef CONFIG_X86_64
7183                 "mov %%r8,  %c[r8](%0) \n\t"
7184                 "mov %%r9,  %c[r9](%0) \n\t"
7185                 "mov %%r10, %c[r10](%0) \n\t"
7186                 "mov %%r11, %c[r11](%0) \n\t"
7187                 "mov %%r12, %c[r12](%0) \n\t"
7188                 "mov %%r13, %c[r13](%0) \n\t"
7189                 "mov %%r14, %c[r14](%0) \n\t"
7190                 "mov %%r15, %c[r15](%0) \n\t"
7191 #endif
7192                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7193                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7194
7195                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7196                 "setbe %c[fail](%0) \n\t"
7197                 ".pushsection .rodata \n\t"
7198                 ".global vmx_return \n\t"
7199                 "vmx_return: " _ASM_PTR " 2b \n\t"
7200                 ".popsection"
7201               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7202                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7203                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7204                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7205                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7206                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7207                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7208                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7209                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7210                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7211                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7212 #ifdef CONFIG_X86_64
7213                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7214                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7215                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7216                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7217                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7218                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7219                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7220                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7221 #endif
7222                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7223                 [wordsize]"i"(sizeof(ulong))
7224               : "cc", "memory"
7225 #ifdef CONFIG_X86_64
7226                 , "rax", "rbx", "rdi", "rsi"
7227                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7228 #else
7229                 , "eax", "ebx", "edi", "esi"
7230 #endif
7231               );
7232
7233         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7234         if (debugctlmsr)
7235                 update_debugctlmsr(debugctlmsr);
7236
7237 #ifndef CONFIG_X86_64
7238         /*
7239          * The sysexit path does not restore ds/es, so we must set them to
7240          * a reasonable value ourselves.
7241          *
7242          * We can't defer this to vmx_load_host_state() since that function
7243          * may be executed in interrupt context, which saves and restore segments
7244          * around it, nullifying its effect.
7245          */
7246         loadsegment(ds, __USER_DS);
7247         loadsegment(es, __USER_DS);
7248 #endif
7249
7250         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7251                                   | (1 << VCPU_EXREG_RFLAGS)
7252                                   | (1 << VCPU_EXREG_CPL)
7253                                   | (1 << VCPU_EXREG_PDPTR)
7254                                   | (1 << VCPU_EXREG_SEGMENTS)
7255                                   | (1 << VCPU_EXREG_CR3));
7256         vcpu->arch.regs_dirty = 0;
7257
7258         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7259
7260         vmx->loaded_vmcs->launched = 1;
7261
7262         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7263         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7264
7265         vmx_complete_atomic_exit(vmx);
7266         vmx_recover_nmi_blocking(vmx);
7267         vmx_complete_interrupts(vmx);
7268 }
7269
7270 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7271 {
7272         struct vcpu_vmx *vmx = to_vmx(vcpu);
7273
7274         free_vpid(vmx);
7275         free_nested(vmx);
7276         free_loaded_vmcs(vmx->loaded_vmcs);
7277         kfree(vmx->guest_msrs);
7278         kvm_vcpu_uninit(vcpu);
7279         kmem_cache_free(kvm_vcpu_cache, vmx);
7280 }
7281
7282 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7283 {
7284         int err;
7285         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7286         int cpu;
7287
7288         if (!vmx)
7289                 return ERR_PTR(-ENOMEM);
7290
7291         allocate_vpid(vmx);
7292
7293         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7294         if (err)
7295                 goto free_vcpu;
7296
7297         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7298         err = -ENOMEM;
7299         if (!vmx->guest_msrs) {
7300                 goto uninit_vcpu;
7301         }
7302
7303         vmx->loaded_vmcs = &vmx->vmcs01;
7304         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7305         if (!vmx->loaded_vmcs->vmcs)
7306                 goto free_msrs;
7307         if (!vmm_exclusive)
7308                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7309         loaded_vmcs_init(vmx->loaded_vmcs);
7310         if (!vmm_exclusive)
7311                 kvm_cpu_vmxoff();
7312
7313         cpu = get_cpu();
7314         vmx_vcpu_load(&vmx->vcpu, cpu);
7315         vmx->vcpu.cpu = cpu;
7316         err = vmx_vcpu_setup(vmx);
7317         vmx_vcpu_put(&vmx->vcpu);
7318         put_cpu();
7319         if (err)
7320                 goto free_vmcs;
7321         if (vm_need_virtualize_apic_accesses(kvm)) {
7322                 err = alloc_apic_access_page(kvm);
7323                 if (err)
7324                         goto free_vmcs;
7325         }
7326
7327         if (enable_ept) {
7328                 if (!kvm->arch.ept_identity_map_addr)
7329                         kvm->arch.ept_identity_map_addr =
7330                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7331                 err = -ENOMEM;
7332                 if (alloc_identity_pagetable(kvm) != 0)
7333                         goto free_vmcs;
7334                 if (!init_rmode_identity_map(kvm))
7335                         goto free_vmcs;
7336         }
7337
7338         vmx->nested.current_vmptr = -1ull;
7339         vmx->nested.current_vmcs12 = NULL;
7340
7341         return &vmx->vcpu;
7342
7343 free_vmcs:
7344         free_loaded_vmcs(vmx->loaded_vmcs);
7345 free_msrs:
7346         kfree(vmx->guest_msrs);
7347 uninit_vcpu:
7348         kvm_vcpu_uninit(&vmx->vcpu);
7349 free_vcpu:
7350         free_vpid(vmx);
7351         kmem_cache_free(kvm_vcpu_cache, vmx);
7352         return ERR_PTR(err);
7353 }
7354
7355 static void __init vmx_check_processor_compat(void *rtn)
7356 {
7357         struct vmcs_config vmcs_conf;
7358
7359         *(int *)rtn = 0;
7360         if (setup_vmcs_config(&vmcs_conf) < 0)
7361                 *(int *)rtn = -EIO;
7362         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7363                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7364                                 smp_processor_id());
7365                 *(int *)rtn = -EIO;
7366         }
7367 }
7368
7369 static int get_ept_level(void)
7370 {
7371         return VMX_EPT_DEFAULT_GAW + 1;
7372 }
7373
7374 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7375 {
7376         u64 ret;
7377
7378         /* For VT-d and EPT combination
7379          * 1. MMIO: always map as UC
7380          * 2. EPT with VT-d:
7381          *   a. VT-d without snooping control feature: can't guarantee the
7382          *      result, try to trust guest.
7383          *   b. VT-d with snooping control feature: snooping control feature of
7384          *      VT-d engine can guarantee the cache correctness. Just set it
7385          *      to WB to keep consistent with host. So the same as item 3.
7386          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7387          *    consistent with host MTRR
7388          */
7389         if (is_mmio)
7390                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7391         else if (vcpu->kvm->arch.iommu_domain &&
7392                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7393                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7394                       VMX_EPT_MT_EPTE_SHIFT;
7395         else
7396                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7397                         | VMX_EPT_IPAT_BIT;
7398
7399         return ret;
7400 }
7401
7402 static int vmx_get_lpage_level(void)
7403 {
7404         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7405                 return PT_DIRECTORY_LEVEL;
7406         else
7407                 /* For shadow and EPT supported 1GB page */
7408                 return PT_PDPE_LEVEL;
7409 }
7410
7411 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7412 {
7413         struct kvm_cpuid_entry2 *best;
7414         struct vcpu_vmx *vmx = to_vmx(vcpu);
7415         u32 exec_control;
7416
7417         vmx->rdtscp_enabled = false;
7418         if (vmx_rdtscp_supported()) {
7419                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7420                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7421                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7422                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7423                                 vmx->rdtscp_enabled = true;
7424                         else {
7425                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7426                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7427                                                 exec_control);
7428                         }
7429                 }
7430         }
7431
7432         /* Exposing INVPCID only when PCID is exposed */
7433         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7434         if (vmx_invpcid_supported() &&
7435             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7436             guest_cpuid_has_pcid(vcpu)) {
7437                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7438                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7439                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7440                              exec_control);
7441         } else {
7442                 if (cpu_has_secondary_exec_ctrls()) {
7443                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7444                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7445                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7446                                      exec_control);
7447                 }
7448                 if (best)
7449                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7450         }
7451 }
7452
7453 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7454 {
7455         if (func == 1 && nested)
7456                 entry->ecx |= bit(X86_FEATURE_VMX);
7457 }
7458
7459 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7460                 struct x86_exception *fault)
7461 {
7462         struct vmcs12 *vmcs12;
7463         nested_vmx_vmexit(vcpu);
7464         vmcs12 = get_vmcs12(vcpu);
7465
7466         if (fault->error_code & PFERR_RSVD_MASK)
7467                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
7468         else
7469                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
7470         vmcs12->exit_qualification = vcpu->arch.exit_qualification;
7471         vmcs12->guest_physical_address = fault->address;
7472 }
7473
7474 /* Callbacks for nested_ept_init_mmu_context: */
7475
7476 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7477 {
7478         /* return the page table to be shadowed - in our case, EPT12 */
7479         return get_vmcs12(vcpu)->ept_pointer;
7480 }
7481
7482 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7483 {
7484         int r = kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7485                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7486
7487         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7488         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7489         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7490
7491         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7492
7493         return r;
7494 }
7495
7496 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7497 {
7498         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7499 }
7500
7501 /*
7502  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7503  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7504  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7505  * guest in a way that will both be appropriate to L1's requests, and our
7506  * needs. In addition to modifying the active vmcs (which is vmcs02), this
7507  * function also has additional necessary side-effects, like setting various
7508  * vcpu->arch fields.
7509  */
7510 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7511 {
7512         struct vcpu_vmx *vmx = to_vmx(vcpu);
7513         u32 exec_control;
7514
7515         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7516         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7517         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7518         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7519         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7520         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7521         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7522         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7523         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7524         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7525         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7526         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7527         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7528         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7529         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7530         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7531         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7532         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7533         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7534         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7535         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7536         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7537         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7538         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7539         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7540         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7541         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7542         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7543         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7544         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7545         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7546         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7547         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7548         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7549         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7550         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7551
7552         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7553         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7554                 vmcs12->vm_entry_intr_info_field);
7555         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7556                 vmcs12->vm_entry_exception_error_code);
7557         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7558                 vmcs12->vm_entry_instruction_len);
7559         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7560                 vmcs12->guest_interruptibility_info);
7561         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7562         kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7563         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7564         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7565                 vmcs12->guest_pending_dbg_exceptions);
7566         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7567         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7568
7569         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7570
7571         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7572                 (vmcs_config.pin_based_exec_ctrl |
7573                  vmcs12->pin_based_vm_exec_control));
7574
7575         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7576                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7577                              vmcs12->vmx_preemption_timer_value);
7578
7579         /*
7580          * Whether page-faults are trapped is determined by a combination of
7581          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7582          * If enable_ept, L0 doesn't care about page faults and we should
7583          * set all of these to L1's desires. However, if !enable_ept, L0 does
7584          * care about (at least some) page faults, and because it is not easy
7585          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7586          * to exit on each and every L2 page fault. This is done by setting
7587          * MASK=MATCH=0 and (see below) EB.PF=1.
7588          * Note that below we don't need special code to set EB.PF beyond the
7589          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7590          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7591          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7592          *
7593          * A problem with this approach (when !enable_ept) is that L1 may be
7594          * injected with more page faults than it asked for. This could have
7595          * caused problems, but in practice existing hypervisors don't care.
7596          * To fix this, we will need to emulate the PFEC checking (on the L1
7597          * page tables), using walk_addr(), when injecting PFs to L1.
7598          */
7599         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7600                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7601         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7602                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7603
7604         if (cpu_has_secondary_exec_ctrls()) {
7605                 u32 exec_control = vmx_secondary_exec_control(vmx);
7606                 if (!vmx->rdtscp_enabled)
7607                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7608                 /* Take the following fields only from vmcs12 */
7609                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7610                 if (nested_cpu_has(vmcs12,
7611                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7612                         exec_control |= vmcs12->secondary_vm_exec_control;
7613
7614                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7615                         /*
7616                          * Translate L1 physical address to host physical
7617                          * address for vmcs02. Keep the page pinned, so this
7618                          * physical address remains valid. We keep a reference
7619                          * to it so we can release it later.
7620                          */
7621                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7622                                 nested_release_page(vmx->nested.apic_access_page);
7623                         vmx->nested.apic_access_page =
7624                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7625                         /*
7626                          * If translation failed, no matter: This feature asks
7627                          * to exit when accessing the given address, and if it
7628                          * can never be accessed, this feature won't do
7629                          * anything anyway.
7630                          */
7631                         if (!vmx->nested.apic_access_page)
7632                                 exec_control &=
7633                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7634                         else
7635                                 vmcs_write64(APIC_ACCESS_ADDR,
7636                                   page_to_phys(vmx->nested.apic_access_page));
7637                 }
7638
7639                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7640         }
7641
7642
7643         /*
7644          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7645          * Some constant fields are set here by vmx_set_constant_host_state().
7646          * Other fields are different per CPU, and will be set later when
7647          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7648          */
7649         vmx_set_constant_host_state(vmx);
7650
7651         /*
7652          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7653          * entry, but only if the current (host) sp changed from the value
7654          * we wrote last (vmx->host_rsp). This cache is no longer relevant
7655          * if we switch vmcs, and rather than hold a separate cache per vmcs,
7656          * here we just force the write to happen on entry.
7657          */
7658         vmx->host_rsp = 0;
7659
7660         exec_control = vmx_exec_control(vmx); /* L0's desires */
7661         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7662         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7663         exec_control &= ~CPU_BASED_TPR_SHADOW;
7664         exec_control |= vmcs12->cpu_based_vm_exec_control;
7665         /*
7666          * Merging of IO and MSR bitmaps not currently supported.
7667          * Rather, exit every time.
7668          */
7669         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7670         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7671         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7672
7673         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7674
7675         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7676          * bitwise-or of what L1 wants to trap for L2, and what we want to
7677          * trap. Note that CR0.TS also needs updating - we do this later.
7678          */
7679         update_exception_bitmap(vcpu);
7680         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7681         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7682
7683         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7684          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7685          * bits are further modified by vmx_set_efer() below.
7686          */
7687         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
7688
7689         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7690          * emulated by vmx_set_efer(), below.
7691          */
7692         vmcs_write32(VM_ENTRY_CONTROLS,
7693                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7694                         ~VM_ENTRY_IA32E_MODE) |
7695                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7696
7697         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7698                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7699                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7700         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7701                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7702
7703
7704         set_cr4_guest_host_mask(vmx);
7705
7706         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7707                 vmcs_write64(TSC_OFFSET,
7708                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7709         else
7710                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7711
7712         if (enable_vpid) {
7713                 /*
7714                  * Trivially support vpid by letting L2s share their parent
7715                  * L1's vpid. TODO: move to a more elaborate solution, giving
7716                  * each L2 its own vpid and exposing the vpid feature to L1.
7717                  */
7718                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7719                 vmx_flush_tlb(vcpu);
7720         }
7721
7722         if (nested_cpu_has_ept(vmcs12)) {
7723                 kvm_mmu_unload(vcpu);
7724                 nested_ept_init_mmu_context(vcpu);
7725         }
7726
7727         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7728                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7729         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7730                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7731         else
7732                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7733         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7734         vmx_set_efer(vcpu, vcpu->arch.efer);
7735
7736         /*
7737          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7738          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7739          * The CR0_READ_SHADOW is what L2 should have expected to read given
7740          * the specifications by L1; It's not enough to take
7741          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7742          * have more bits than L1 expected.
7743          */
7744         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7745         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7746
7747         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7748         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7749
7750         /* shadow page tables on either EPT or shadow page tables */
7751         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7752         kvm_mmu_reset_context(vcpu);
7753
7754         /*
7755          * L1 may access the L2's PDPTR, so save them to construct vmcs12
7756          */
7757         if (enable_ept) {
7758                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7759                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7760                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7761                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7762         }
7763
7764         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7765         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7766 }
7767
7768 /*
7769  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7770  * for running an L2 nested guest.
7771  */
7772 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7773 {
7774         struct vmcs12 *vmcs12;
7775         struct vcpu_vmx *vmx = to_vmx(vcpu);
7776         int cpu;
7777         struct loaded_vmcs *vmcs02;
7778         bool ia32e;
7779
7780         if (!nested_vmx_check_permission(vcpu) ||
7781             !nested_vmx_check_vmcs12(vcpu))
7782                 return 1;
7783
7784         skip_emulated_instruction(vcpu);
7785         vmcs12 = get_vmcs12(vcpu);
7786
7787         if (enable_shadow_vmcs)
7788                 copy_shadow_to_vmcs12(vmx);
7789
7790         /*
7791          * The nested entry process starts with enforcing various prerequisites
7792          * on vmcs12 as required by the Intel SDM, and act appropriately when
7793          * they fail: As the SDM explains, some conditions should cause the
7794          * instruction to fail, while others will cause the instruction to seem
7795          * to succeed, but return an EXIT_REASON_INVALID_STATE.
7796          * To speed up the normal (success) code path, we should avoid checking
7797          * for misconfigurations which will anyway be caught by the processor
7798          * when using the merged vmcs02.
7799          */
7800         if (vmcs12->launch_state == launch) {
7801                 nested_vmx_failValid(vcpu,
7802                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7803                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7804                 return 1;
7805         }
7806
7807         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7808                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7809                 return 1;
7810         }
7811
7812         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7813                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7814                 /*TODO: Also verify bits beyond physical address width are 0*/
7815                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7816                 return 1;
7817         }
7818
7819         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7820                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7821                 /*TODO: Also verify bits beyond physical address width are 0*/
7822                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7823                 return 1;
7824         }
7825
7826         if (vmcs12->vm_entry_msr_load_count > 0 ||
7827             vmcs12->vm_exit_msr_load_count > 0 ||
7828             vmcs12->vm_exit_msr_store_count > 0) {
7829                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7830                                     __func__);
7831                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7832                 return 1;
7833         }
7834
7835         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7836               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7837             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7838               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7839             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7840               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7841             !vmx_control_verify(vmcs12->vm_exit_controls,
7842               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7843             !vmx_control_verify(vmcs12->vm_entry_controls,
7844               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7845         {
7846                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7847                 return 1;
7848         }
7849
7850         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7851             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7852                 nested_vmx_failValid(vcpu,
7853                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7854                 return 1;
7855         }
7856
7857         if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7858             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7859                 nested_vmx_entry_failure(vcpu, vmcs12,
7860                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7861                 return 1;
7862         }
7863         if (vmcs12->vmcs_link_pointer != -1ull) {
7864                 nested_vmx_entry_failure(vcpu, vmcs12,
7865                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7866                 return 1;
7867         }
7868
7869         /*
7870          * If the load IA32_EFER VM-entry control is 1, the following checks
7871          * are performed on the field for the IA32_EFER MSR:
7872          * - Bits reserved in the IA32_EFER MSR must be 0.
7873          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
7874          *   the IA-32e mode guest VM-exit control. It must also be identical
7875          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
7876          *   CR0.PG) is 1.
7877          */
7878         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
7879                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
7880                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
7881                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
7882                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
7883                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
7884                         nested_vmx_entry_failure(vcpu, vmcs12,
7885                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7886                         return 1;
7887                 }
7888         }
7889
7890         /*
7891          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
7892          * IA32_EFER MSR must be 0 in the field for that register. In addition,
7893          * the values of the LMA and LME bits in the field must each be that of
7894          * the host address-space size VM-exit control.
7895          */
7896         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
7897                 ia32e = (vmcs12->vm_exit_controls &
7898                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
7899                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
7900                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
7901                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
7902                         nested_vmx_entry_failure(vcpu, vmcs12,
7903                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7904                         return 1;
7905                 }
7906         }
7907
7908         /*
7909          * We're finally done with prerequisite checking, and can start with
7910          * the nested entry.
7911          */
7912
7913         vmcs02 = nested_get_current_vmcs02(vmx);
7914         if (!vmcs02)
7915                 return -ENOMEM;
7916
7917         enter_guest_mode(vcpu);
7918
7919         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7920
7921         cpu = get_cpu();
7922         vmx->loaded_vmcs = vmcs02;
7923         vmx_vcpu_put(vcpu);
7924         vmx_vcpu_load(vcpu, cpu);
7925         vcpu->cpu = cpu;
7926         put_cpu();
7927
7928         vmx_segment_cache_clear(vmx);
7929
7930         vmcs12->launch_state = 1;
7931
7932         prepare_vmcs02(vcpu, vmcs12);
7933
7934         /*
7935          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7936          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7937          * returned as far as L1 is concerned. It will only return (and set
7938          * the success flag) when L2 exits (see nested_vmx_vmexit()).
7939          */
7940         return 1;
7941 }
7942
7943 /*
7944  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7945  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7946  * This function returns the new value we should put in vmcs12.guest_cr0.
7947  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7948  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7949  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7950  *     didn't trap the bit, because if L1 did, so would L0).
7951  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7952  *     been modified by L2, and L1 knows it. So just leave the old value of
7953  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7954  *     isn't relevant, because if L0 traps this bit it can set it to anything.
7955  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7956  *     changed these bits, and therefore they need to be updated, but L0
7957  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7958  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7959  */
7960 static inline unsigned long
7961 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7962 {
7963         return
7964         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7965         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7966         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7967                         vcpu->arch.cr0_guest_owned_bits));
7968 }
7969
7970 static inline unsigned long
7971 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7972 {
7973         return
7974         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7975         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7976         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7977                         vcpu->arch.cr4_guest_owned_bits));
7978 }
7979
7980 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
7981                                        struct vmcs12 *vmcs12)
7982 {
7983         u32 idt_vectoring;
7984         unsigned int nr;
7985
7986         if (vcpu->arch.exception.pending) {
7987                 nr = vcpu->arch.exception.nr;
7988                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7989
7990                 if (kvm_exception_is_soft(nr)) {
7991                         vmcs12->vm_exit_instruction_len =
7992                                 vcpu->arch.event_exit_inst_len;
7993                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
7994                 } else
7995                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
7996
7997                 if (vcpu->arch.exception.has_error_code) {
7998                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
7999                         vmcs12->idt_vectoring_error_code =
8000                                 vcpu->arch.exception.error_code;
8001                 }
8002
8003                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8004         } else if (vcpu->arch.nmi_pending) {
8005                 vmcs12->idt_vectoring_info_field =
8006                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8007         } else if (vcpu->arch.interrupt.pending) {
8008                 nr = vcpu->arch.interrupt.nr;
8009                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8010
8011                 if (vcpu->arch.interrupt.soft) {
8012                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
8013                         vmcs12->vm_entry_instruction_len =
8014                                 vcpu->arch.event_exit_inst_len;
8015                 } else
8016                         idt_vectoring |= INTR_TYPE_EXT_INTR;
8017
8018                 vmcs12->idt_vectoring_info_field = idt_vectoring;
8019         }
8020 }
8021
8022 /*
8023  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8024  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8025  * and this function updates it to reflect the changes to the guest state while
8026  * L2 was running (and perhaps made some exits which were handled directly by L0
8027  * without going back to L1), and to reflect the exit reason.
8028  * Note that we do not have to copy here all VMCS fields, just those that
8029  * could have changed by the L2 guest or the exit - i.e., the guest-state and
8030  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8031  * which already writes to vmcs12 directly.
8032  */
8033 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8034 {
8035         /* update guest state fields: */
8036         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8037         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8038
8039         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8040         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8041         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8042         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8043
8044         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8045         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8046         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8047         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8048         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8049         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8050         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8051         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8052         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8053         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8054         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8055         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8056         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8057         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8058         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8059         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8060         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8061         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8062         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8063         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8064         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8065         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8066         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8067         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8068         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8069         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8070         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8071         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8072         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8073         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8074         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8075         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8076         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8077         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8078         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8079         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8080
8081         vmcs12->guest_interruptibility_info =
8082                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8083         vmcs12->guest_pending_dbg_exceptions =
8084                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8085
8086         /*
8087          * In some cases (usually, nested EPT), L2 is allowed to change its
8088          * own CR3 without exiting. If it has changed it, we must keep it.
8089          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8090          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8091          *
8092          * Additionally, restore L2's PDPTR to vmcs12.
8093          */
8094         if (enable_ept) {
8095                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8096                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8097                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8098                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8099                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8100         }
8101
8102         vmcs12->vm_entry_controls =
8103                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8104                 (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
8105
8106         /* TODO: These cannot have changed unless we have MSR bitmaps and
8107          * the relevant bit asks not to trap the change */
8108         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8109         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8110                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8111         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8112         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8113         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8114
8115         /* update exit information fields: */
8116
8117         vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason;
8118         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8119
8120         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8121         if ((vmcs12->vm_exit_intr_info &
8122              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8123             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8124                 vmcs12->vm_exit_intr_error_code =
8125                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8126         vmcs12->idt_vectoring_info_field = 0;
8127         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8128         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8129
8130         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8131                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8132                  * instead of reading the real value. */
8133                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8134
8135                 /*
8136                  * Transfer the event that L0 or L1 may wanted to inject into
8137                  * L2 to IDT_VECTORING_INFO_FIELD.
8138                  */
8139                 vmcs12_save_pending_event(vcpu, vmcs12);
8140         }
8141
8142         /*
8143          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8144          * preserved above and would only end up incorrectly in L1.
8145          */
8146         vcpu->arch.nmi_injected = false;
8147         kvm_clear_exception_queue(vcpu);
8148         kvm_clear_interrupt_queue(vcpu);
8149 }
8150
8151 /*
8152  * A part of what we need to when the nested L2 guest exits and we want to
8153  * run its L1 parent, is to reset L1's guest state to the host state specified
8154  * in vmcs12.
8155  * This function is to be called not only on normal nested exit, but also on
8156  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8157  * Failures During or After Loading Guest State").
8158  * This function should be called when the active VMCS is L1's (vmcs01).
8159  */
8160 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8161                                    struct vmcs12 *vmcs12)
8162 {
8163         struct kvm_segment seg;
8164
8165         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8166                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8167         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8168                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8169         else
8170                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8171         vmx_set_efer(vcpu, vcpu->arch.efer);
8172
8173         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8174         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8175         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8176         /*
8177          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8178          * actually changed, because it depends on the current state of
8179          * fpu_active (which may have changed).
8180          * Note that vmx_set_cr0 refers to efer set above.
8181          */
8182         kvm_set_cr0(vcpu, vmcs12->host_cr0);
8183         /*
8184          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8185          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8186          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8187          */
8188         update_exception_bitmap(vcpu);
8189         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8190         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8191
8192         /*
8193          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8194          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8195          */
8196         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8197         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8198
8199         if (nested_cpu_has_ept(vmcs12))
8200                 nested_ept_uninit_mmu_context(vcpu);
8201
8202         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8203         kvm_mmu_reset_context(vcpu);
8204
8205         if (enable_vpid) {
8206                 /*
8207                  * Trivially support vpid by letting L2s share their parent
8208                  * L1's vpid. TODO: move to a more elaborate solution, giving
8209                  * each L2 its own vpid and exposing the vpid feature to L1.
8210                  */
8211                 vmx_flush_tlb(vcpu);
8212         }
8213
8214
8215         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8216         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8217         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8218         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8219         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8220
8221         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8222                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8223                 vcpu->arch.pat = vmcs12->host_ia32_pat;
8224         }
8225         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8226                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8227                         vmcs12->host_ia32_perf_global_ctrl);
8228
8229         /* Set L1 segment info according to Intel SDM
8230             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8231         seg = (struct kvm_segment) {
8232                 .base = 0,
8233                 .limit = 0xFFFFFFFF,
8234                 .selector = vmcs12->host_cs_selector,
8235                 .type = 11,
8236                 .present = 1,
8237                 .s = 1,
8238                 .g = 1
8239         };
8240         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8241                 seg.l = 1;
8242         else
8243                 seg.db = 1;
8244         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8245         seg = (struct kvm_segment) {
8246                 .base = 0,
8247                 .limit = 0xFFFFFFFF,
8248                 .type = 3,
8249                 .present = 1,
8250                 .s = 1,
8251                 .db = 1,
8252                 .g = 1
8253         };
8254         seg.selector = vmcs12->host_ds_selector;
8255         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8256         seg.selector = vmcs12->host_es_selector;
8257         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8258         seg.selector = vmcs12->host_ss_selector;
8259         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8260         seg.selector = vmcs12->host_fs_selector;
8261         seg.base = vmcs12->host_fs_base;
8262         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8263         seg.selector = vmcs12->host_gs_selector;
8264         seg.base = vmcs12->host_gs_base;
8265         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8266         seg = (struct kvm_segment) {
8267                 .base = vmcs12->host_tr_base,
8268                 .limit = 0x67,
8269                 .selector = vmcs12->host_tr_selector,
8270                 .type = 11,
8271                 .present = 1
8272         };
8273         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8274
8275         kvm_set_dr(vcpu, 7, 0x400);
8276         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8277 }
8278
8279 /*
8280  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8281  * and modify vmcs12 to make it see what it would expect to see there if
8282  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8283  */
8284 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8285 {
8286         struct vcpu_vmx *vmx = to_vmx(vcpu);
8287         int cpu;
8288         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8289
8290         /* trying to cancel vmlaunch/vmresume is a bug */
8291         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8292
8293         leave_guest_mode(vcpu);
8294         prepare_vmcs12(vcpu, vmcs12);
8295
8296         cpu = get_cpu();
8297         vmx->loaded_vmcs = &vmx->vmcs01;
8298         vmx_vcpu_put(vcpu);
8299         vmx_vcpu_load(vcpu, cpu);
8300         vcpu->cpu = cpu;
8301         put_cpu();
8302
8303         vmx_segment_cache_clear(vmx);
8304
8305         /* if no vmcs02 cache requested, remove the one we used */
8306         if (VMCS02_POOL_SIZE == 0)
8307                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8308
8309         load_vmcs12_host_state(vcpu, vmcs12);
8310
8311         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8312         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8313
8314         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8315         vmx->host_rsp = 0;
8316
8317         /* Unpin physical memory we referred to in vmcs02 */
8318         if (vmx->nested.apic_access_page) {
8319                 nested_release_page(vmx->nested.apic_access_page);
8320                 vmx->nested.apic_access_page = 0;
8321         }
8322
8323         /*
8324          * Exiting from L2 to L1, we're now back to L1 which thinks it just
8325          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8326          * success or failure flag accordingly.
8327          */
8328         if (unlikely(vmx->fail)) {
8329                 vmx->fail = 0;
8330                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8331         } else
8332                 nested_vmx_succeed(vcpu);
8333         if (enable_shadow_vmcs)
8334                 vmx->nested.sync_shadow_vmcs = true;
8335 }
8336
8337 /*
8338  * L1's failure to enter L2 is a subset of a normal exit, as explained in
8339  * 23.7 "VM-entry failures during or after loading guest state" (this also
8340  * lists the acceptable exit-reason and exit-qualification parameters).
8341  * It should only be called before L2 actually succeeded to run, and when
8342  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8343  */
8344 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8345                         struct vmcs12 *vmcs12,
8346                         u32 reason, unsigned long qualification)
8347 {
8348         load_vmcs12_host_state(vcpu, vmcs12);
8349         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8350         vmcs12->exit_qualification = qualification;
8351         nested_vmx_succeed(vcpu);
8352         if (enable_shadow_vmcs)
8353                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8354 }
8355
8356 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8357                                struct x86_instruction_info *info,
8358                                enum x86_intercept_stage stage)
8359 {
8360         return X86EMUL_CONTINUE;
8361 }
8362
8363 static struct kvm_x86_ops vmx_x86_ops = {
8364         .cpu_has_kvm_support = cpu_has_kvm_support,
8365         .disabled_by_bios = vmx_disabled_by_bios,
8366         .hardware_setup = hardware_setup,
8367         .hardware_unsetup = hardware_unsetup,
8368         .check_processor_compatibility = vmx_check_processor_compat,
8369         .hardware_enable = hardware_enable,
8370         .hardware_disable = hardware_disable,
8371         .cpu_has_accelerated_tpr = report_flexpriority,
8372
8373         .vcpu_create = vmx_create_vcpu,
8374         .vcpu_free = vmx_free_vcpu,
8375         .vcpu_reset = vmx_vcpu_reset,
8376
8377         .prepare_guest_switch = vmx_save_host_state,
8378         .vcpu_load = vmx_vcpu_load,
8379         .vcpu_put = vmx_vcpu_put,
8380
8381         .update_db_bp_intercept = update_exception_bitmap,
8382         .get_msr = vmx_get_msr,
8383         .set_msr = vmx_set_msr,
8384         .get_segment_base = vmx_get_segment_base,
8385         .get_segment = vmx_get_segment,
8386         .set_segment = vmx_set_segment,
8387         .get_cpl = vmx_get_cpl,
8388         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8389         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8390         .decache_cr3 = vmx_decache_cr3,
8391         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8392         .set_cr0 = vmx_set_cr0,
8393         .set_cr3 = vmx_set_cr3,
8394         .set_cr4 = vmx_set_cr4,
8395         .set_efer = vmx_set_efer,
8396         .get_idt = vmx_get_idt,
8397         .set_idt = vmx_set_idt,
8398         .get_gdt = vmx_get_gdt,
8399         .set_gdt = vmx_set_gdt,
8400         .set_dr7 = vmx_set_dr7,
8401         .cache_reg = vmx_cache_reg,
8402         .get_rflags = vmx_get_rflags,
8403         .set_rflags = vmx_set_rflags,
8404         .fpu_activate = vmx_fpu_activate,
8405         .fpu_deactivate = vmx_fpu_deactivate,
8406
8407         .tlb_flush = vmx_flush_tlb,
8408
8409         .run = vmx_vcpu_run,
8410         .handle_exit = vmx_handle_exit,
8411         .skip_emulated_instruction = skip_emulated_instruction,
8412         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8413         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8414         .patch_hypercall = vmx_patch_hypercall,
8415         .set_irq = vmx_inject_irq,
8416         .set_nmi = vmx_inject_nmi,
8417         .queue_exception = vmx_queue_exception,
8418         .cancel_injection = vmx_cancel_injection,
8419         .interrupt_allowed = vmx_interrupt_allowed,
8420         .nmi_allowed = vmx_nmi_allowed,
8421         .get_nmi_mask = vmx_get_nmi_mask,
8422         .set_nmi_mask = vmx_set_nmi_mask,
8423         .enable_nmi_window = enable_nmi_window,
8424         .enable_irq_window = enable_irq_window,
8425         .update_cr8_intercept = update_cr8_intercept,
8426         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8427         .vm_has_apicv = vmx_vm_has_apicv,
8428         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8429         .hwapic_irr_update = vmx_hwapic_irr_update,
8430         .hwapic_isr_update = vmx_hwapic_isr_update,
8431         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8432         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8433
8434         .set_tss_addr = vmx_set_tss_addr,
8435         .get_tdp_level = get_ept_level,
8436         .get_mt_mask = vmx_get_mt_mask,
8437
8438         .get_exit_info = vmx_get_exit_info,
8439
8440         .get_lpage_level = vmx_get_lpage_level,
8441
8442         .cpuid_update = vmx_cpuid_update,
8443
8444         .rdtscp_supported = vmx_rdtscp_supported,
8445         .invpcid_supported = vmx_invpcid_supported,
8446
8447         .set_supported_cpuid = vmx_set_supported_cpuid,
8448
8449         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8450
8451         .set_tsc_khz = vmx_set_tsc_khz,
8452         .read_tsc_offset = vmx_read_tsc_offset,
8453         .write_tsc_offset = vmx_write_tsc_offset,
8454         .adjust_tsc_offset = vmx_adjust_tsc_offset,
8455         .compute_tsc_offset = vmx_compute_tsc_offset,
8456         .read_l1_tsc = vmx_read_l1_tsc,
8457
8458         .set_tdp_cr3 = vmx_set_cr3,
8459
8460         .check_intercept = vmx_check_intercept,
8461         .handle_external_intr = vmx_handle_external_intr,
8462 };
8463
8464 static int __init vmx_init(void)
8465 {
8466         int r, i, msr;
8467
8468         rdmsrl_safe(MSR_EFER, &host_efer);
8469
8470         for (i = 0; i < NR_VMX_MSR; ++i)
8471                 kvm_define_shared_msr(i, vmx_msr_index[i]);
8472
8473         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8474         if (!vmx_io_bitmap_a)
8475                 return -ENOMEM;
8476
8477         r = -ENOMEM;
8478
8479         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8480         if (!vmx_io_bitmap_b)
8481                 goto out;
8482
8483         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8484         if (!vmx_msr_bitmap_legacy)
8485                 goto out1;
8486
8487         vmx_msr_bitmap_legacy_x2apic =
8488                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8489         if (!vmx_msr_bitmap_legacy_x2apic)
8490                 goto out2;
8491
8492         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8493         if (!vmx_msr_bitmap_longmode)
8494                 goto out3;
8495
8496         vmx_msr_bitmap_longmode_x2apic =
8497                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8498         if (!vmx_msr_bitmap_longmode_x2apic)
8499                 goto out4;
8500         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8501         if (!vmx_vmread_bitmap)
8502                 goto out5;
8503
8504         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8505         if (!vmx_vmwrite_bitmap)
8506                 goto out6;
8507
8508         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8509         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8510         /* shadowed read/write fields */
8511         for (i = 0; i < max_shadow_read_write_fields; i++) {
8512                 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8513                 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8514         }
8515         /* shadowed read only fields */
8516         for (i = 0; i < max_shadow_read_only_fields; i++)
8517                 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8518
8519         /*
8520          * Allow direct access to the PC debug port (it is often used for I/O
8521          * delays, but the vmexits simply slow things down).
8522          */
8523         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8524         clear_bit(0x80, vmx_io_bitmap_a);
8525
8526         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8527
8528         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8529         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8530
8531         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8532
8533         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8534                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8535         if (r)
8536                 goto out7;
8537
8538 #ifdef CONFIG_KEXEC
8539         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8540                            crash_vmclear_local_loaded_vmcss);
8541 #endif
8542
8543         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8544         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8545         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8546         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8547         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8548         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8549         memcpy(vmx_msr_bitmap_legacy_x2apic,
8550                         vmx_msr_bitmap_legacy, PAGE_SIZE);
8551         memcpy(vmx_msr_bitmap_longmode_x2apic,
8552                         vmx_msr_bitmap_longmode, PAGE_SIZE);
8553
8554         if (enable_apicv) {
8555                 for (msr = 0x800; msr <= 0x8ff; msr++)
8556                         vmx_disable_intercept_msr_read_x2apic(msr);
8557
8558                 /* According SDM, in x2apic mode, the whole id reg is used.
8559                  * But in KVM, it only use the highest eight bits. Need to
8560                  * intercept it */
8561                 vmx_enable_intercept_msr_read_x2apic(0x802);
8562                 /* TMCCT */
8563                 vmx_enable_intercept_msr_read_x2apic(0x839);
8564                 /* TPR */
8565                 vmx_disable_intercept_msr_write_x2apic(0x808);
8566                 /* EOI */
8567                 vmx_disable_intercept_msr_write_x2apic(0x80b);
8568                 /* SELF-IPI */
8569                 vmx_disable_intercept_msr_write_x2apic(0x83f);
8570         }
8571
8572         if (enable_ept) {
8573                 kvm_mmu_set_mask_ptes(0ull,
8574                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8575                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8576                         0ull, VMX_EPT_EXECUTABLE_MASK);
8577                 ept_set_mmio_spte_mask();
8578                 kvm_enable_tdp();
8579         } else
8580                 kvm_disable_tdp();
8581
8582         return 0;
8583
8584 out7:
8585         free_page((unsigned long)vmx_vmwrite_bitmap);
8586 out6:
8587         free_page((unsigned long)vmx_vmread_bitmap);
8588 out5:
8589         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8590 out4:
8591         free_page((unsigned long)vmx_msr_bitmap_longmode);
8592 out3:
8593         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8594 out2:
8595         free_page((unsigned long)vmx_msr_bitmap_legacy);
8596 out1:
8597         free_page((unsigned long)vmx_io_bitmap_b);
8598 out:
8599         free_page((unsigned long)vmx_io_bitmap_a);
8600         return r;
8601 }
8602
8603 static void __exit vmx_exit(void)
8604 {
8605         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8606         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8607         free_page((unsigned long)vmx_msr_bitmap_legacy);
8608         free_page((unsigned long)vmx_msr_bitmap_longmode);
8609         free_page((unsigned long)vmx_io_bitmap_b);
8610         free_page((unsigned long)vmx_io_bitmap_a);
8611         free_page((unsigned long)vmx_vmwrite_bitmap);
8612         free_page((unsigned long)vmx_vmread_bitmap);
8613
8614 #ifdef CONFIG_KEXEC
8615         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8616         synchronize_rcu();
8617 #endif
8618
8619         kvm_exit();
8620 }
8621
8622 module_init(vmx_init)
8623 module_exit(vmx_exit)