]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/vmx.c
nEPT: MMU context for nested EPT
[~andy/linux] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
36
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
46
47 #include "trace.h"
48
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51         ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
52
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
55
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57         X86_FEATURE_MATCH(X86_FEATURE_VMX),
58         {}
59 };
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
64
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
67
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
70
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73                         enable_unrestricted_guest, bool, S_IRUGO);
74
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
80
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
83
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
86
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
89
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
92 /*
93  * If nested=1, nested virtualization is supported, i.e., guests may use
94  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95  * use VMX instructions.
96  */
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
99
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON                                            \
103         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS                                      \
105         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
106          | X86_CR4_OSXMMEXCPT)
107
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
113 /*
114  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115  * ple_gap:    upper bound on the amount of time between two successive
116  *             executions of PAUSE in a loop. Also indicate if ple enabled.
117  *             According to test, this time is usually smaller than 128 cycles.
118  * ple_window: upper bound on the amount of time a guest is allowed to execute
119  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
120  *             less than 2^12 cycles
121  * Time is measured based on a counter that runs at the same rate as the TSC,
122  * refer SDM volume 3b section 21.6.13 & 22.1.3.
123  */
124 #define KVM_VMX_DEFAULT_PLE_GAP    128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
128
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
131
132 extern const ulong vmx_return;
133
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
136
137 struct vmcs {
138         u32 revision_id;
139         u32 abort;
140         char data[0];
141 };
142
143 /*
144  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146  * loaded on this CPU (so we can clear them if the CPU goes down).
147  */
148 struct loaded_vmcs {
149         struct vmcs *vmcs;
150         int cpu;
151         int launched;
152         struct list_head loaded_vmcss_on_cpu_link;
153 };
154
155 struct shared_msr_entry {
156         unsigned index;
157         u64 data;
158         u64 mask;
159 };
160
161 /*
162  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167  * More than one of these structures may exist, if L1 runs multiple L2 guests.
168  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169  * underlying hardware which will be used to run L2.
170  * This structure is packed to ensure that its layout is identical across
171  * machines (necessary for live migration).
172  * If there are changes in this struct, VMCS12_REVISION must be changed.
173  */
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176         /* According to the Intel spec, a VMCS region must start with the
177          * following two fields. Then follow implementation-specific data.
178          */
179         u32 revision_id;
180         u32 abort;
181
182         u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183         u32 padding[7]; /* room for future expansion */
184
185         u64 io_bitmap_a;
186         u64 io_bitmap_b;
187         u64 msr_bitmap;
188         u64 vm_exit_msr_store_addr;
189         u64 vm_exit_msr_load_addr;
190         u64 vm_entry_msr_load_addr;
191         u64 tsc_offset;
192         u64 virtual_apic_page_addr;
193         u64 apic_access_addr;
194         u64 ept_pointer;
195         u64 guest_physical_address;
196         u64 vmcs_link_pointer;
197         u64 guest_ia32_debugctl;
198         u64 guest_ia32_pat;
199         u64 guest_ia32_efer;
200         u64 guest_ia32_perf_global_ctrl;
201         u64 guest_pdptr0;
202         u64 guest_pdptr1;
203         u64 guest_pdptr2;
204         u64 guest_pdptr3;
205         u64 host_ia32_pat;
206         u64 host_ia32_efer;
207         u64 host_ia32_perf_global_ctrl;
208         u64 padding64[8]; /* room for future expansion */
209         /*
210          * To allow migration of L1 (complete with its L2 guests) between
211          * machines of different natural widths (32 or 64 bit), we cannot have
212          * unsigned long fields with no explict size. We use u64 (aliased
213          * natural_width) instead. Luckily, x86 is little-endian.
214          */
215         natural_width cr0_guest_host_mask;
216         natural_width cr4_guest_host_mask;
217         natural_width cr0_read_shadow;
218         natural_width cr4_read_shadow;
219         natural_width cr3_target_value0;
220         natural_width cr3_target_value1;
221         natural_width cr3_target_value2;
222         natural_width cr3_target_value3;
223         natural_width exit_qualification;
224         natural_width guest_linear_address;
225         natural_width guest_cr0;
226         natural_width guest_cr3;
227         natural_width guest_cr4;
228         natural_width guest_es_base;
229         natural_width guest_cs_base;
230         natural_width guest_ss_base;
231         natural_width guest_ds_base;
232         natural_width guest_fs_base;
233         natural_width guest_gs_base;
234         natural_width guest_ldtr_base;
235         natural_width guest_tr_base;
236         natural_width guest_gdtr_base;
237         natural_width guest_idtr_base;
238         natural_width guest_dr7;
239         natural_width guest_rsp;
240         natural_width guest_rip;
241         natural_width guest_rflags;
242         natural_width guest_pending_dbg_exceptions;
243         natural_width guest_sysenter_esp;
244         natural_width guest_sysenter_eip;
245         natural_width host_cr0;
246         natural_width host_cr3;
247         natural_width host_cr4;
248         natural_width host_fs_base;
249         natural_width host_gs_base;
250         natural_width host_tr_base;
251         natural_width host_gdtr_base;
252         natural_width host_idtr_base;
253         natural_width host_ia32_sysenter_esp;
254         natural_width host_ia32_sysenter_eip;
255         natural_width host_rsp;
256         natural_width host_rip;
257         natural_width paddingl[8]; /* room for future expansion */
258         u32 pin_based_vm_exec_control;
259         u32 cpu_based_vm_exec_control;
260         u32 exception_bitmap;
261         u32 page_fault_error_code_mask;
262         u32 page_fault_error_code_match;
263         u32 cr3_target_count;
264         u32 vm_exit_controls;
265         u32 vm_exit_msr_store_count;
266         u32 vm_exit_msr_load_count;
267         u32 vm_entry_controls;
268         u32 vm_entry_msr_load_count;
269         u32 vm_entry_intr_info_field;
270         u32 vm_entry_exception_error_code;
271         u32 vm_entry_instruction_len;
272         u32 tpr_threshold;
273         u32 secondary_vm_exec_control;
274         u32 vm_instruction_error;
275         u32 vm_exit_reason;
276         u32 vm_exit_intr_info;
277         u32 vm_exit_intr_error_code;
278         u32 idt_vectoring_info_field;
279         u32 idt_vectoring_error_code;
280         u32 vm_exit_instruction_len;
281         u32 vmx_instruction_info;
282         u32 guest_es_limit;
283         u32 guest_cs_limit;
284         u32 guest_ss_limit;
285         u32 guest_ds_limit;
286         u32 guest_fs_limit;
287         u32 guest_gs_limit;
288         u32 guest_ldtr_limit;
289         u32 guest_tr_limit;
290         u32 guest_gdtr_limit;
291         u32 guest_idtr_limit;
292         u32 guest_es_ar_bytes;
293         u32 guest_cs_ar_bytes;
294         u32 guest_ss_ar_bytes;
295         u32 guest_ds_ar_bytes;
296         u32 guest_fs_ar_bytes;
297         u32 guest_gs_ar_bytes;
298         u32 guest_ldtr_ar_bytes;
299         u32 guest_tr_ar_bytes;
300         u32 guest_interruptibility_info;
301         u32 guest_activity_state;
302         u32 guest_sysenter_cs;
303         u32 host_ia32_sysenter_cs;
304         u32 vmx_preemption_timer_value;
305         u32 padding32[7]; /* room for future expansion */
306         u16 virtual_processor_id;
307         u16 guest_es_selector;
308         u16 guest_cs_selector;
309         u16 guest_ss_selector;
310         u16 guest_ds_selector;
311         u16 guest_fs_selector;
312         u16 guest_gs_selector;
313         u16 guest_ldtr_selector;
314         u16 guest_tr_selector;
315         u16 host_es_selector;
316         u16 host_cs_selector;
317         u16 host_ss_selector;
318         u16 host_ds_selector;
319         u16 host_fs_selector;
320         u16 host_gs_selector;
321         u16 host_tr_selector;
322 };
323
324 /*
325  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328  */
329 #define VMCS12_REVISION 0x11e57ed0
330
331 /*
332  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334  * current implementation, 4K are reserved to avoid future complications.
335  */
336 #define VMCS12_SIZE 0x1000
337
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340         struct list_head list;
341         gpa_t vmptr;
342         struct loaded_vmcs vmcs02;
343 };
344
345 /*
346  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348  */
349 struct nested_vmx {
350         /* Has the level1 guest done vmxon? */
351         bool vmxon;
352
353         /* The guest-physical address of the current VMCS L1 keeps for L2 */
354         gpa_t current_vmptr;
355         /* The host-usable pointer to the above */
356         struct page *current_vmcs12_page;
357         struct vmcs12 *current_vmcs12;
358         struct vmcs *current_shadow_vmcs;
359         /*
360          * Indicates if the shadow vmcs must be updated with the
361          * data hold by vmcs12
362          */
363         bool sync_shadow_vmcs;
364
365         /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366         struct list_head vmcs02_pool;
367         int vmcs02_num;
368         u64 vmcs01_tsc_offset;
369         /* L2 must run next, and mustn't decide to exit to L1. */
370         bool nested_run_pending;
371         /*
372          * Guest pages referred to in vmcs02 with host-physical pointers, so
373          * we must keep them pinned while L2 runs.
374          */
375         struct page *apic_access_page;
376         u64 msr_ia32_feature_control;
377 };
378
379 #define POSTED_INTR_ON  0
380 /* Posted-Interrupt Descriptor */
381 struct pi_desc {
382         u32 pir[8];     /* Posted interrupt requested */
383         u32 control;    /* bit 0 of control is outstanding notification bit */
384         u32 rsvd[7];
385 } __aligned(64);
386
387 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
388 {
389         return test_and_set_bit(POSTED_INTR_ON,
390                         (unsigned long *)&pi_desc->control);
391 }
392
393 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
394 {
395         return test_and_clear_bit(POSTED_INTR_ON,
396                         (unsigned long *)&pi_desc->control);
397 }
398
399 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
400 {
401         return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
402 }
403
404 struct vcpu_vmx {
405         struct kvm_vcpu       vcpu;
406         unsigned long         host_rsp;
407         u8                    fail;
408         u8                    cpl;
409         bool                  nmi_known_unmasked;
410         u32                   exit_intr_info;
411         u32                   idt_vectoring_info;
412         ulong                 rflags;
413         struct shared_msr_entry *guest_msrs;
414         int                   nmsrs;
415         int                   save_nmsrs;
416         unsigned long         host_idt_base;
417 #ifdef CONFIG_X86_64
418         u64                   msr_host_kernel_gs_base;
419         u64                   msr_guest_kernel_gs_base;
420 #endif
421         /*
422          * loaded_vmcs points to the VMCS currently used in this vcpu. For a
423          * non-nested (L1) guest, it always points to vmcs01. For a nested
424          * guest (L2), it points to a different VMCS.
425          */
426         struct loaded_vmcs    vmcs01;
427         struct loaded_vmcs   *loaded_vmcs;
428         bool                  __launched; /* temporary, used in vmx_vcpu_run */
429         struct msr_autoload {
430                 unsigned nr;
431                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
432                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
433         } msr_autoload;
434         struct {
435                 int           loaded;
436                 u16           fs_sel, gs_sel, ldt_sel;
437 #ifdef CONFIG_X86_64
438                 u16           ds_sel, es_sel;
439 #endif
440                 int           gs_ldt_reload_needed;
441                 int           fs_reload_needed;
442         } host_state;
443         struct {
444                 int vm86_active;
445                 ulong save_rflags;
446                 struct kvm_segment segs[8];
447         } rmode;
448         struct {
449                 u32 bitmask; /* 4 bits per segment (1 bit per field) */
450                 struct kvm_save_segment {
451                         u16 selector;
452                         unsigned long base;
453                         u32 limit;
454                         u32 ar;
455                 } seg[8];
456         } segment_cache;
457         int vpid;
458         bool emulation_required;
459
460         /* Support for vnmi-less CPUs */
461         int soft_vnmi_blocked;
462         ktime_t entry_time;
463         s64 vnmi_blocked_time;
464         u32 exit_reason;
465
466         bool rdtscp_enabled;
467
468         /* Posted interrupt descriptor */
469         struct pi_desc pi_desc;
470
471         /* Support for a guest hypervisor (nested VMX) */
472         struct nested_vmx nested;
473 };
474
475 enum segment_cache_field {
476         SEG_FIELD_SEL = 0,
477         SEG_FIELD_BASE = 1,
478         SEG_FIELD_LIMIT = 2,
479         SEG_FIELD_AR = 3,
480
481         SEG_FIELD_NR = 4
482 };
483
484 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
485 {
486         return container_of(vcpu, struct vcpu_vmx, vcpu);
487 }
488
489 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
490 #define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
491 #define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
492                                 [number##_HIGH] = VMCS12_OFFSET(name)+4
493
494
495 static const unsigned long shadow_read_only_fields[] = {
496         /*
497          * We do NOT shadow fields that are modified when L0
498          * traps and emulates any vmx instruction (e.g. VMPTRLD,
499          * VMXON...) executed by L1.
500          * For example, VM_INSTRUCTION_ERROR is read
501          * by L1 if a vmx instruction fails (part of the error path).
502          * Note the code assumes this logic. If for some reason
503          * we start shadowing these fields then we need to
504          * force a shadow sync when L0 emulates vmx instructions
505          * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
506          * by nested_vmx_failValid)
507          */
508         VM_EXIT_REASON,
509         VM_EXIT_INTR_INFO,
510         VM_EXIT_INSTRUCTION_LEN,
511         IDT_VECTORING_INFO_FIELD,
512         IDT_VECTORING_ERROR_CODE,
513         VM_EXIT_INTR_ERROR_CODE,
514         EXIT_QUALIFICATION,
515         GUEST_LINEAR_ADDRESS,
516         GUEST_PHYSICAL_ADDRESS
517 };
518 static const int max_shadow_read_only_fields =
519         ARRAY_SIZE(shadow_read_only_fields);
520
521 static const unsigned long shadow_read_write_fields[] = {
522         GUEST_RIP,
523         GUEST_RSP,
524         GUEST_CR0,
525         GUEST_CR3,
526         GUEST_CR4,
527         GUEST_INTERRUPTIBILITY_INFO,
528         GUEST_RFLAGS,
529         GUEST_CS_SELECTOR,
530         GUEST_CS_AR_BYTES,
531         GUEST_CS_LIMIT,
532         GUEST_CS_BASE,
533         GUEST_ES_BASE,
534         CR0_GUEST_HOST_MASK,
535         CR0_READ_SHADOW,
536         CR4_READ_SHADOW,
537         TSC_OFFSET,
538         EXCEPTION_BITMAP,
539         CPU_BASED_VM_EXEC_CONTROL,
540         VM_ENTRY_EXCEPTION_ERROR_CODE,
541         VM_ENTRY_INTR_INFO_FIELD,
542         VM_ENTRY_INSTRUCTION_LEN,
543         VM_ENTRY_EXCEPTION_ERROR_CODE,
544         HOST_FS_BASE,
545         HOST_GS_BASE,
546         HOST_FS_SELECTOR,
547         HOST_GS_SELECTOR
548 };
549 static const int max_shadow_read_write_fields =
550         ARRAY_SIZE(shadow_read_write_fields);
551
552 static const unsigned short vmcs_field_to_offset_table[] = {
553         FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
554         FIELD(GUEST_ES_SELECTOR, guest_es_selector),
555         FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
556         FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
557         FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
558         FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
559         FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
560         FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
561         FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
562         FIELD(HOST_ES_SELECTOR, host_es_selector),
563         FIELD(HOST_CS_SELECTOR, host_cs_selector),
564         FIELD(HOST_SS_SELECTOR, host_ss_selector),
565         FIELD(HOST_DS_SELECTOR, host_ds_selector),
566         FIELD(HOST_FS_SELECTOR, host_fs_selector),
567         FIELD(HOST_GS_SELECTOR, host_gs_selector),
568         FIELD(HOST_TR_SELECTOR, host_tr_selector),
569         FIELD64(IO_BITMAP_A, io_bitmap_a),
570         FIELD64(IO_BITMAP_B, io_bitmap_b),
571         FIELD64(MSR_BITMAP, msr_bitmap),
572         FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
573         FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
574         FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
575         FIELD64(TSC_OFFSET, tsc_offset),
576         FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
577         FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
578         FIELD64(EPT_POINTER, ept_pointer),
579         FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
580         FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
581         FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
582         FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
583         FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
584         FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
585         FIELD64(GUEST_PDPTR0, guest_pdptr0),
586         FIELD64(GUEST_PDPTR1, guest_pdptr1),
587         FIELD64(GUEST_PDPTR2, guest_pdptr2),
588         FIELD64(GUEST_PDPTR3, guest_pdptr3),
589         FIELD64(HOST_IA32_PAT, host_ia32_pat),
590         FIELD64(HOST_IA32_EFER, host_ia32_efer),
591         FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
592         FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
593         FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
594         FIELD(EXCEPTION_BITMAP, exception_bitmap),
595         FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
596         FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
597         FIELD(CR3_TARGET_COUNT, cr3_target_count),
598         FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
599         FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
600         FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
601         FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
602         FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
603         FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
604         FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
605         FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
606         FIELD(TPR_THRESHOLD, tpr_threshold),
607         FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
608         FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
609         FIELD(VM_EXIT_REASON, vm_exit_reason),
610         FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
611         FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
612         FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
613         FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
614         FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
615         FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
616         FIELD(GUEST_ES_LIMIT, guest_es_limit),
617         FIELD(GUEST_CS_LIMIT, guest_cs_limit),
618         FIELD(GUEST_SS_LIMIT, guest_ss_limit),
619         FIELD(GUEST_DS_LIMIT, guest_ds_limit),
620         FIELD(GUEST_FS_LIMIT, guest_fs_limit),
621         FIELD(GUEST_GS_LIMIT, guest_gs_limit),
622         FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
623         FIELD(GUEST_TR_LIMIT, guest_tr_limit),
624         FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
625         FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
626         FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
627         FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
628         FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
629         FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
630         FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
631         FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
632         FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
633         FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
634         FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
635         FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
636         FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
637         FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
638         FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
639         FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
640         FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
641         FIELD(CR0_READ_SHADOW, cr0_read_shadow),
642         FIELD(CR4_READ_SHADOW, cr4_read_shadow),
643         FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
644         FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
645         FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
646         FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
647         FIELD(EXIT_QUALIFICATION, exit_qualification),
648         FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
649         FIELD(GUEST_CR0, guest_cr0),
650         FIELD(GUEST_CR3, guest_cr3),
651         FIELD(GUEST_CR4, guest_cr4),
652         FIELD(GUEST_ES_BASE, guest_es_base),
653         FIELD(GUEST_CS_BASE, guest_cs_base),
654         FIELD(GUEST_SS_BASE, guest_ss_base),
655         FIELD(GUEST_DS_BASE, guest_ds_base),
656         FIELD(GUEST_FS_BASE, guest_fs_base),
657         FIELD(GUEST_GS_BASE, guest_gs_base),
658         FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
659         FIELD(GUEST_TR_BASE, guest_tr_base),
660         FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
661         FIELD(GUEST_IDTR_BASE, guest_idtr_base),
662         FIELD(GUEST_DR7, guest_dr7),
663         FIELD(GUEST_RSP, guest_rsp),
664         FIELD(GUEST_RIP, guest_rip),
665         FIELD(GUEST_RFLAGS, guest_rflags),
666         FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
667         FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
668         FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
669         FIELD(HOST_CR0, host_cr0),
670         FIELD(HOST_CR3, host_cr3),
671         FIELD(HOST_CR4, host_cr4),
672         FIELD(HOST_FS_BASE, host_fs_base),
673         FIELD(HOST_GS_BASE, host_gs_base),
674         FIELD(HOST_TR_BASE, host_tr_base),
675         FIELD(HOST_GDTR_BASE, host_gdtr_base),
676         FIELD(HOST_IDTR_BASE, host_idtr_base),
677         FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
678         FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
679         FIELD(HOST_RSP, host_rsp),
680         FIELD(HOST_RIP, host_rip),
681 };
682 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
683
684 static inline short vmcs_field_to_offset(unsigned long field)
685 {
686         if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
687                 return -1;
688         return vmcs_field_to_offset_table[field];
689 }
690
691 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
692 {
693         return to_vmx(vcpu)->nested.current_vmcs12;
694 }
695
696 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
697 {
698         struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
699         if (is_error_page(page))
700                 return NULL;
701
702         return page;
703 }
704
705 static void nested_release_page(struct page *page)
706 {
707         kvm_release_page_dirty(page);
708 }
709
710 static void nested_release_page_clean(struct page *page)
711 {
712         kvm_release_page_clean(page);
713 }
714
715 static u64 construct_eptp(unsigned long root_hpa);
716 static void kvm_cpu_vmxon(u64 addr);
717 static void kvm_cpu_vmxoff(void);
718 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
719 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
720 static void vmx_set_segment(struct kvm_vcpu *vcpu,
721                             struct kvm_segment *var, int seg);
722 static void vmx_get_segment(struct kvm_vcpu *vcpu,
723                             struct kvm_segment *var, int seg);
724 static bool guest_state_valid(struct kvm_vcpu *vcpu);
725 static u32 vmx_segment_access_rights(struct kvm_segment *var);
726 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
727 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
728 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
729
730 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
731 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
732 /*
733  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
734  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
735  */
736 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
737 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
738
739 static unsigned long *vmx_io_bitmap_a;
740 static unsigned long *vmx_io_bitmap_b;
741 static unsigned long *vmx_msr_bitmap_legacy;
742 static unsigned long *vmx_msr_bitmap_longmode;
743 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
744 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
745 static unsigned long *vmx_vmread_bitmap;
746 static unsigned long *vmx_vmwrite_bitmap;
747
748 static bool cpu_has_load_ia32_efer;
749 static bool cpu_has_load_perf_global_ctrl;
750
751 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
752 static DEFINE_SPINLOCK(vmx_vpid_lock);
753
754 static struct vmcs_config {
755         int size;
756         int order;
757         u32 revision_id;
758         u32 pin_based_exec_ctrl;
759         u32 cpu_based_exec_ctrl;
760         u32 cpu_based_2nd_exec_ctrl;
761         u32 vmexit_ctrl;
762         u32 vmentry_ctrl;
763 } vmcs_config;
764
765 static struct vmx_capability {
766         u32 ept;
767         u32 vpid;
768 } vmx_capability;
769
770 #define VMX_SEGMENT_FIELD(seg)                                  \
771         [VCPU_SREG_##seg] = {                                   \
772                 .selector = GUEST_##seg##_SELECTOR,             \
773                 .base = GUEST_##seg##_BASE,                     \
774                 .limit = GUEST_##seg##_LIMIT,                   \
775                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
776         }
777
778 static const struct kvm_vmx_segment_field {
779         unsigned selector;
780         unsigned base;
781         unsigned limit;
782         unsigned ar_bytes;
783 } kvm_vmx_segment_fields[] = {
784         VMX_SEGMENT_FIELD(CS),
785         VMX_SEGMENT_FIELD(DS),
786         VMX_SEGMENT_FIELD(ES),
787         VMX_SEGMENT_FIELD(FS),
788         VMX_SEGMENT_FIELD(GS),
789         VMX_SEGMENT_FIELD(SS),
790         VMX_SEGMENT_FIELD(TR),
791         VMX_SEGMENT_FIELD(LDTR),
792 };
793
794 static u64 host_efer;
795
796 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
797
798 /*
799  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
800  * away by decrementing the array size.
801  */
802 static const u32 vmx_msr_index[] = {
803 #ifdef CONFIG_X86_64
804         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
805 #endif
806         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
807 };
808 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
809
810 static inline bool is_page_fault(u32 intr_info)
811 {
812         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
813                              INTR_INFO_VALID_MASK)) ==
814                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
815 }
816
817 static inline bool is_no_device(u32 intr_info)
818 {
819         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
820                              INTR_INFO_VALID_MASK)) ==
821                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
822 }
823
824 static inline bool is_invalid_opcode(u32 intr_info)
825 {
826         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
827                              INTR_INFO_VALID_MASK)) ==
828                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
829 }
830
831 static inline bool is_external_interrupt(u32 intr_info)
832 {
833         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
834                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
835 }
836
837 static inline bool is_machine_check(u32 intr_info)
838 {
839         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
840                              INTR_INFO_VALID_MASK)) ==
841                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
842 }
843
844 static inline bool cpu_has_vmx_msr_bitmap(void)
845 {
846         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
847 }
848
849 static inline bool cpu_has_vmx_tpr_shadow(void)
850 {
851         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
852 }
853
854 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
855 {
856         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
857 }
858
859 static inline bool cpu_has_secondary_exec_ctrls(void)
860 {
861         return vmcs_config.cpu_based_exec_ctrl &
862                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
863 }
864
865 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
866 {
867         return vmcs_config.cpu_based_2nd_exec_ctrl &
868                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
869 }
870
871 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
872 {
873         return vmcs_config.cpu_based_2nd_exec_ctrl &
874                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
875 }
876
877 static inline bool cpu_has_vmx_apic_register_virt(void)
878 {
879         return vmcs_config.cpu_based_2nd_exec_ctrl &
880                 SECONDARY_EXEC_APIC_REGISTER_VIRT;
881 }
882
883 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
884 {
885         return vmcs_config.cpu_based_2nd_exec_ctrl &
886                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
887 }
888
889 static inline bool cpu_has_vmx_posted_intr(void)
890 {
891         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
892 }
893
894 static inline bool cpu_has_vmx_apicv(void)
895 {
896         return cpu_has_vmx_apic_register_virt() &&
897                 cpu_has_vmx_virtual_intr_delivery() &&
898                 cpu_has_vmx_posted_intr();
899 }
900
901 static inline bool cpu_has_vmx_flexpriority(void)
902 {
903         return cpu_has_vmx_tpr_shadow() &&
904                 cpu_has_vmx_virtualize_apic_accesses();
905 }
906
907 static inline bool cpu_has_vmx_ept_execute_only(void)
908 {
909         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
910 }
911
912 static inline bool cpu_has_vmx_eptp_uncacheable(void)
913 {
914         return vmx_capability.ept & VMX_EPTP_UC_BIT;
915 }
916
917 static inline bool cpu_has_vmx_eptp_writeback(void)
918 {
919         return vmx_capability.ept & VMX_EPTP_WB_BIT;
920 }
921
922 static inline bool cpu_has_vmx_ept_2m_page(void)
923 {
924         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
925 }
926
927 static inline bool cpu_has_vmx_ept_1g_page(void)
928 {
929         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
930 }
931
932 static inline bool cpu_has_vmx_ept_4levels(void)
933 {
934         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
935 }
936
937 static inline bool cpu_has_vmx_ept_ad_bits(void)
938 {
939         return vmx_capability.ept & VMX_EPT_AD_BIT;
940 }
941
942 static inline bool cpu_has_vmx_invept_context(void)
943 {
944         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
945 }
946
947 static inline bool cpu_has_vmx_invept_global(void)
948 {
949         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
950 }
951
952 static inline bool cpu_has_vmx_invvpid_single(void)
953 {
954         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
955 }
956
957 static inline bool cpu_has_vmx_invvpid_global(void)
958 {
959         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
960 }
961
962 static inline bool cpu_has_vmx_ept(void)
963 {
964         return vmcs_config.cpu_based_2nd_exec_ctrl &
965                 SECONDARY_EXEC_ENABLE_EPT;
966 }
967
968 static inline bool cpu_has_vmx_unrestricted_guest(void)
969 {
970         return vmcs_config.cpu_based_2nd_exec_ctrl &
971                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
972 }
973
974 static inline bool cpu_has_vmx_ple(void)
975 {
976         return vmcs_config.cpu_based_2nd_exec_ctrl &
977                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
978 }
979
980 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
981 {
982         return flexpriority_enabled && irqchip_in_kernel(kvm);
983 }
984
985 static inline bool cpu_has_vmx_vpid(void)
986 {
987         return vmcs_config.cpu_based_2nd_exec_ctrl &
988                 SECONDARY_EXEC_ENABLE_VPID;
989 }
990
991 static inline bool cpu_has_vmx_rdtscp(void)
992 {
993         return vmcs_config.cpu_based_2nd_exec_ctrl &
994                 SECONDARY_EXEC_RDTSCP;
995 }
996
997 static inline bool cpu_has_vmx_invpcid(void)
998 {
999         return vmcs_config.cpu_based_2nd_exec_ctrl &
1000                 SECONDARY_EXEC_ENABLE_INVPCID;
1001 }
1002
1003 static inline bool cpu_has_virtual_nmis(void)
1004 {
1005         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1006 }
1007
1008 static inline bool cpu_has_vmx_wbinvd_exit(void)
1009 {
1010         return vmcs_config.cpu_based_2nd_exec_ctrl &
1011                 SECONDARY_EXEC_WBINVD_EXITING;
1012 }
1013
1014 static inline bool cpu_has_vmx_shadow_vmcs(void)
1015 {
1016         u64 vmx_msr;
1017         rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1018         /* check if the cpu supports writing r/o exit information fields */
1019         if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1020                 return false;
1021
1022         return vmcs_config.cpu_based_2nd_exec_ctrl &
1023                 SECONDARY_EXEC_SHADOW_VMCS;
1024 }
1025
1026 static inline bool report_flexpriority(void)
1027 {
1028         return flexpriority_enabled;
1029 }
1030
1031 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1032 {
1033         return vmcs12->cpu_based_vm_exec_control & bit;
1034 }
1035
1036 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1037 {
1038         return (vmcs12->cpu_based_vm_exec_control &
1039                         CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1040                 (vmcs12->secondary_vm_exec_control & bit);
1041 }
1042
1043 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
1044         struct kvm_vcpu *vcpu)
1045 {
1046         return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1047 }
1048
1049 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1050 {
1051         return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1052 }
1053
1054 static inline bool is_exception(u32 intr_info)
1055 {
1056         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1057                 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1058 }
1059
1060 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1061 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1062                         struct vmcs12 *vmcs12,
1063                         u32 reason, unsigned long qualification);
1064
1065 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1066 {
1067         int i;
1068
1069         for (i = 0; i < vmx->nmsrs; ++i)
1070                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1071                         return i;
1072         return -1;
1073 }
1074
1075 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1076 {
1077     struct {
1078         u64 vpid : 16;
1079         u64 rsvd : 48;
1080         u64 gva;
1081     } operand = { vpid, 0, gva };
1082
1083     asm volatile (__ex(ASM_VMX_INVVPID)
1084                   /* CF==1 or ZF==1 --> rc = -1 */
1085                   "; ja 1f ; ud2 ; 1:"
1086                   : : "a"(&operand), "c"(ext) : "cc", "memory");
1087 }
1088
1089 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1090 {
1091         struct {
1092                 u64 eptp, gpa;
1093         } operand = {eptp, gpa};
1094
1095         asm volatile (__ex(ASM_VMX_INVEPT)
1096                         /* CF==1 or ZF==1 --> rc = -1 */
1097                         "; ja 1f ; ud2 ; 1:\n"
1098                         : : "a" (&operand), "c" (ext) : "cc", "memory");
1099 }
1100
1101 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1102 {
1103         int i;
1104
1105         i = __find_msr_index(vmx, msr);
1106         if (i >= 0)
1107                 return &vmx->guest_msrs[i];
1108         return NULL;
1109 }
1110
1111 static void vmcs_clear(struct vmcs *vmcs)
1112 {
1113         u64 phys_addr = __pa(vmcs);
1114         u8 error;
1115
1116         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1117                       : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1118                       : "cc", "memory");
1119         if (error)
1120                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1121                        vmcs, phys_addr);
1122 }
1123
1124 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1125 {
1126         vmcs_clear(loaded_vmcs->vmcs);
1127         loaded_vmcs->cpu = -1;
1128         loaded_vmcs->launched = 0;
1129 }
1130
1131 static void vmcs_load(struct vmcs *vmcs)
1132 {
1133         u64 phys_addr = __pa(vmcs);
1134         u8 error;
1135
1136         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1137                         : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1138                         : "cc", "memory");
1139         if (error)
1140                 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1141                        vmcs, phys_addr);
1142 }
1143
1144 #ifdef CONFIG_KEXEC
1145 /*
1146  * This bitmap is used to indicate whether the vmclear
1147  * operation is enabled on all cpus. All disabled by
1148  * default.
1149  */
1150 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1151
1152 static inline void crash_enable_local_vmclear(int cpu)
1153 {
1154         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1155 }
1156
1157 static inline void crash_disable_local_vmclear(int cpu)
1158 {
1159         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1160 }
1161
1162 static inline int crash_local_vmclear_enabled(int cpu)
1163 {
1164         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1165 }
1166
1167 static void crash_vmclear_local_loaded_vmcss(void)
1168 {
1169         int cpu = raw_smp_processor_id();
1170         struct loaded_vmcs *v;
1171
1172         if (!crash_local_vmclear_enabled(cpu))
1173                 return;
1174
1175         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1176                             loaded_vmcss_on_cpu_link)
1177                 vmcs_clear(v->vmcs);
1178 }
1179 #else
1180 static inline void crash_enable_local_vmclear(int cpu) { }
1181 static inline void crash_disable_local_vmclear(int cpu) { }
1182 #endif /* CONFIG_KEXEC */
1183
1184 static void __loaded_vmcs_clear(void *arg)
1185 {
1186         struct loaded_vmcs *loaded_vmcs = arg;
1187         int cpu = raw_smp_processor_id();
1188
1189         if (loaded_vmcs->cpu != cpu)
1190                 return; /* vcpu migration can race with cpu offline */
1191         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1192                 per_cpu(current_vmcs, cpu) = NULL;
1193         crash_disable_local_vmclear(cpu);
1194         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1195
1196         /*
1197          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1198          * is before setting loaded_vmcs->vcpu to -1 which is done in
1199          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1200          * then adds the vmcs into percpu list before it is deleted.
1201          */
1202         smp_wmb();
1203
1204         loaded_vmcs_init(loaded_vmcs);
1205         crash_enable_local_vmclear(cpu);
1206 }
1207
1208 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1209 {
1210         int cpu = loaded_vmcs->cpu;
1211
1212         if (cpu != -1)
1213                 smp_call_function_single(cpu,
1214                          __loaded_vmcs_clear, loaded_vmcs, 1);
1215 }
1216
1217 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1218 {
1219         if (vmx->vpid == 0)
1220                 return;
1221
1222         if (cpu_has_vmx_invvpid_single())
1223                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1224 }
1225
1226 static inline void vpid_sync_vcpu_global(void)
1227 {
1228         if (cpu_has_vmx_invvpid_global())
1229                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1230 }
1231
1232 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1233 {
1234         if (cpu_has_vmx_invvpid_single())
1235                 vpid_sync_vcpu_single(vmx);
1236         else
1237                 vpid_sync_vcpu_global();
1238 }
1239
1240 static inline void ept_sync_global(void)
1241 {
1242         if (cpu_has_vmx_invept_global())
1243                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1244 }
1245
1246 static inline void ept_sync_context(u64 eptp)
1247 {
1248         if (enable_ept) {
1249                 if (cpu_has_vmx_invept_context())
1250                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1251                 else
1252                         ept_sync_global();
1253         }
1254 }
1255
1256 static __always_inline unsigned long vmcs_readl(unsigned long field)
1257 {
1258         unsigned long value;
1259
1260         asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1261                       : "=a"(value) : "d"(field) : "cc");
1262         return value;
1263 }
1264
1265 static __always_inline u16 vmcs_read16(unsigned long field)
1266 {
1267         return vmcs_readl(field);
1268 }
1269
1270 static __always_inline u32 vmcs_read32(unsigned long field)
1271 {
1272         return vmcs_readl(field);
1273 }
1274
1275 static __always_inline u64 vmcs_read64(unsigned long field)
1276 {
1277 #ifdef CONFIG_X86_64
1278         return vmcs_readl(field);
1279 #else
1280         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1281 #endif
1282 }
1283
1284 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1285 {
1286         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1287                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1288         dump_stack();
1289 }
1290
1291 static void vmcs_writel(unsigned long field, unsigned long value)
1292 {
1293         u8 error;
1294
1295         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1296                        : "=q"(error) : "a"(value), "d"(field) : "cc");
1297         if (unlikely(error))
1298                 vmwrite_error(field, value);
1299 }
1300
1301 static void vmcs_write16(unsigned long field, u16 value)
1302 {
1303         vmcs_writel(field, value);
1304 }
1305
1306 static void vmcs_write32(unsigned long field, u32 value)
1307 {
1308         vmcs_writel(field, value);
1309 }
1310
1311 static void vmcs_write64(unsigned long field, u64 value)
1312 {
1313         vmcs_writel(field, value);
1314 #ifndef CONFIG_X86_64
1315         asm volatile ("");
1316         vmcs_writel(field+1, value >> 32);
1317 #endif
1318 }
1319
1320 static void vmcs_clear_bits(unsigned long field, u32 mask)
1321 {
1322         vmcs_writel(field, vmcs_readl(field) & ~mask);
1323 }
1324
1325 static void vmcs_set_bits(unsigned long field, u32 mask)
1326 {
1327         vmcs_writel(field, vmcs_readl(field) | mask);
1328 }
1329
1330 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1331 {
1332         vmx->segment_cache.bitmask = 0;
1333 }
1334
1335 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1336                                        unsigned field)
1337 {
1338         bool ret;
1339         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1340
1341         if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1342                 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1343                 vmx->segment_cache.bitmask = 0;
1344         }
1345         ret = vmx->segment_cache.bitmask & mask;
1346         vmx->segment_cache.bitmask |= mask;
1347         return ret;
1348 }
1349
1350 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1351 {
1352         u16 *p = &vmx->segment_cache.seg[seg].selector;
1353
1354         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1355                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1356         return *p;
1357 }
1358
1359 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1360 {
1361         ulong *p = &vmx->segment_cache.seg[seg].base;
1362
1363         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1364                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1365         return *p;
1366 }
1367
1368 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1369 {
1370         u32 *p = &vmx->segment_cache.seg[seg].limit;
1371
1372         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1373                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1374         return *p;
1375 }
1376
1377 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1378 {
1379         u32 *p = &vmx->segment_cache.seg[seg].ar;
1380
1381         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1382                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1383         return *p;
1384 }
1385
1386 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1387 {
1388         u32 eb;
1389
1390         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1391              (1u << NM_VECTOR) | (1u << DB_VECTOR);
1392         if ((vcpu->guest_debug &
1393              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1394             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1395                 eb |= 1u << BP_VECTOR;
1396         if (to_vmx(vcpu)->rmode.vm86_active)
1397                 eb = ~0;
1398         if (enable_ept)
1399                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1400         if (vcpu->fpu_active)
1401                 eb &= ~(1u << NM_VECTOR);
1402
1403         /* When we are running a nested L2 guest and L1 specified for it a
1404          * certain exception bitmap, we must trap the same exceptions and pass
1405          * them to L1. When running L2, we will only handle the exceptions
1406          * specified above if L1 did not want them.
1407          */
1408         if (is_guest_mode(vcpu))
1409                 eb |= get_vmcs12(vcpu)->exception_bitmap;
1410
1411         vmcs_write32(EXCEPTION_BITMAP, eb);
1412 }
1413
1414 static void clear_atomic_switch_msr_special(unsigned long entry,
1415                 unsigned long exit)
1416 {
1417         vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1418         vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1419 }
1420
1421 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1422 {
1423         unsigned i;
1424         struct msr_autoload *m = &vmx->msr_autoload;
1425
1426         switch (msr) {
1427         case MSR_EFER:
1428                 if (cpu_has_load_ia32_efer) {
1429                         clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1430                                         VM_EXIT_LOAD_IA32_EFER);
1431                         return;
1432                 }
1433                 break;
1434         case MSR_CORE_PERF_GLOBAL_CTRL:
1435                 if (cpu_has_load_perf_global_ctrl) {
1436                         clear_atomic_switch_msr_special(
1437                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1438                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1439                         return;
1440                 }
1441                 break;
1442         }
1443
1444         for (i = 0; i < m->nr; ++i)
1445                 if (m->guest[i].index == msr)
1446                         break;
1447
1448         if (i == m->nr)
1449                 return;
1450         --m->nr;
1451         m->guest[i] = m->guest[m->nr];
1452         m->host[i] = m->host[m->nr];
1453         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1454         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1455 }
1456
1457 static void add_atomic_switch_msr_special(unsigned long entry,
1458                 unsigned long exit, unsigned long guest_val_vmcs,
1459                 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1460 {
1461         vmcs_write64(guest_val_vmcs, guest_val);
1462         vmcs_write64(host_val_vmcs, host_val);
1463         vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1464         vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1465 }
1466
1467 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1468                                   u64 guest_val, u64 host_val)
1469 {
1470         unsigned i;
1471         struct msr_autoload *m = &vmx->msr_autoload;
1472
1473         switch (msr) {
1474         case MSR_EFER:
1475                 if (cpu_has_load_ia32_efer) {
1476                         add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1477                                         VM_EXIT_LOAD_IA32_EFER,
1478                                         GUEST_IA32_EFER,
1479                                         HOST_IA32_EFER,
1480                                         guest_val, host_val);
1481                         return;
1482                 }
1483                 break;
1484         case MSR_CORE_PERF_GLOBAL_CTRL:
1485                 if (cpu_has_load_perf_global_ctrl) {
1486                         add_atomic_switch_msr_special(
1487                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1488                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1489                                         GUEST_IA32_PERF_GLOBAL_CTRL,
1490                                         HOST_IA32_PERF_GLOBAL_CTRL,
1491                                         guest_val, host_val);
1492                         return;
1493                 }
1494                 break;
1495         }
1496
1497         for (i = 0; i < m->nr; ++i)
1498                 if (m->guest[i].index == msr)
1499                         break;
1500
1501         if (i == NR_AUTOLOAD_MSRS) {
1502                 printk_once(KERN_WARNING"Not enough mst switch entries. "
1503                                 "Can't add msr %x\n", msr);
1504                 return;
1505         } else if (i == m->nr) {
1506                 ++m->nr;
1507                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1508                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1509         }
1510
1511         m->guest[i].index = msr;
1512         m->guest[i].value = guest_val;
1513         m->host[i].index = msr;
1514         m->host[i].value = host_val;
1515 }
1516
1517 static void reload_tss(void)
1518 {
1519         /*
1520          * VT restores TR but not its size.  Useless.
1521          */
1522         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1523         struct desc_struct *descs;
1524
1525         descs = (void *)gdt->address;
1526         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1527         load_TR_desc();
1528 }
1529
1530 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1531 {
1532         u64 guest_efer;
1533         u64 ignore_bits;
1534
1535         guest_efer = vmx->vcpu.arch.efer;
1536
1537         /*
1538          * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1539          * outside long mode
1540          */
1541         ignore_bits = EFER_NX | EFER_SCE;
1542 #ifdef CONFIG_X86_64
1543         ignore_bits |= EFER_LMA | EFER_LME;
1544         /* SCE is meaningful only in long mode on Intel */
1545         if (guest_efer & EFER_LMA)
1546                 ignore_bits &= ~(u64)EFER_SCE;
1547 #endif
1548         guest_efer &= ~ignore_bits;
1549         guest_efer |= host_efer & ignore_bits;
1550         vmx->guest_msrs[efer_offset].data = guest_efer;
1551         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1552
1553         clear_atomic_switch_msr(vmx, MSR_EFER);
1554         /* On ept, can't emulate nx, and must switch nx atomically */
1555         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1556                 guest_efer = vmx->vcpu.arch.efer;
1557                 if (!(guest_efer & EFER_LMA))
1558                         guest_efer &= ~EFER_LME;
1559                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1560                 return false;
1561         }
1562
1563         return true;
1564 }
1565
1566 static unsigned long segment_base(u16 selector)
1567 {
1568         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1569         struct desc_struct *d;
1570         unsigned long table_base;
1571         unsigned long v;
1572
1573         if (!(selector & ~3))
1574                 return 0;
1575
1576         table_base = gdt->address;
1577
1578         if (selector & 4) {           /* from ldt */
1579                 u16 ldt_selector = kvm_read_ldt();
1580
1581                 if (!(ldt_selector & ~3))
1582                         return 0;
1583
1584                 table_base = segment_base(ldt_selector);
1585         }
1586         d = (struct desc_struct *)(table_base + (selector & ~7));
1587         v = get_desc_base(d);
1588 #ifdef CONFIG_X86_64
1589        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1590                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1591 #endif
1592         return v;
1593 }
1594
1595 static inline unsigned long kvm_read_tr_base(void)
1596 {
1597         u16 tr;
1598         asm("str %0" : "=g"(tr));
1599         return segment_base(tr);
1600 }
1601
1602 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1603 {
1604         struct vcpu_vmx *vmx = to_vmx(vcpu);
1605         int i;
1606
1607         if (vmx->host_state.loaded)
1608                 return;
1609
1610         vmx->host_state.loaded = 1;
1611         /*
1612          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1613          * allow segment selectors with cpl > 0 or ti == 1.
1614          */
1615         vmx->host_state.ldt_sel = kvm_read_ldt();
1616         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1617         savesegment(fs, vmx->host_state.fs_sel);
1618         if (!(vmx->host_state.fs_sel & 7)) {
1619                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1620                 vmx->host_state.fs_reload_needed = 0;
1621         } else {
1622                 vmcs_write16(HOST_FS_SELECTOR, 0);
1623                 vmx->host_state.fs_reload_needed = 1;
1624         }
1625         savesegment(gs, vmx->host_state.gs_sel);
1626         if (!(vmx->host_state.gs_sel & 7))
1627                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1628         else {
1629                 vmcs_write16(HOST_GS_SELECTOR, 0);
1630                 vmx->host_state.gs_ldt_reload_needed = 1;
1631         }
1632
1633 #ifdef CONFIG_X86_64
1634         savesegment(ds, vmx->host_state.ds_sel);
1635         savesegment(es, vmx->host_state.es_sel);
1636 #endif
1637
1638 #ifdef CONFIG_X86_64
1639         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1640         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1641 #else
1642         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1643         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1644 #endif
1645
1646 #ifdef CONFIG_X86_64
1647         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1648         if (is_long_mode(&vmx->vcpu))
1649                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1650 #endif
1651         for (i = 0; i < vmx->save_nmsrs; ++i)
1652                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1653                                    vmx->guest_msrs[i].data,
1654                                    vmx->guest_msrs[i].mask);
1655 }
1656
1657 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1658 {
1659         if (!vmx->host_state.loaded)
1660                 return;
1661
1662         ++vmx->vcpu.stat.host_state_reload;
1663         vmx->host_state.loaded = 0;
1664 #ifdef CONFIG_X86_64
1665         if (is_long_mode(&vmx->vcpu))
1666                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1667 #endif
1668         if (vmx->host_state.gs_ldt_reload_needed) {
1669                 kvm_load_ldt(vmx->host_state.ldt_sel);
1670 #ifdef CONFIG_X86_64
1671                 load_gs_index(vmx->host_state.gs_sel);
1672 #else
1673                 loadsegment(gs, vmx->host_state.gs_sel);
1674 #endif
1675         }
1676         if (vmx->host_state.fs_reload_needed)
1677                 loadsegment(fs, vmx->host_state.fs_sel);
1678 #ifdef CONFIG_X86_64
1679         if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1680                 loadsegment(ds, vmx->host_state.ds_sel);
1681                 loadsegment(es, vmx->host_state.es_sel);
1682         }
1683 #endif
1684         reload_tss();
1685 #ifdef CONFIG_X86_64
1686         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1687 #endif
1688         /*
1689          * If the FPU is not active (through the host task or
1690          * the guest vcpu), then restore the cr0.TS bit.
1691          */
1692         if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1693                 stts();
1694         load_gdt(&__get_cpu_var(host_gdt));
1695 }
1696
1697 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1698 {
1699         preempt_disable();
1700         __vmx_load_host_state(vmx);
1701         preempt_enable();
1702 }
1703
1704 /*
1705  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1706  * vcpu mutex is already taken.
1707  */
1708 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1709 {
1710         struct vcpu_vmx *vmx = to_vmx(vcpu);
1711         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1712
1713         if (!vmm_exclusive)
1714                 kvm_cpu_vmxon(phys_addr);
1715         else if (vmx->loaded_vmcs->cpu != cpu)
1716                 loaded_vmcs_clear(vmx->loaded_vmcs);
1717
1718         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1719                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1720                 vmcs_load(vmx->loaded_vmcs->vmcs);
1721         }
1722
1723         if (vmx->loaded_vmcs->cpu != cpu) {
1724                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1725                 unsigned long sysenter_esp;
1726
1727                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1728                 local_irq_disable();
1729                 crash_disable_local_vmclear(cpu);
1730
1731                 /*
1732                  * Read loaded_vmcs->cpu should be before fetching
1733                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1734                  * See the comments in __loaded_vmcs_clear().
1735                  */
1736                 smp_rmb();
1737
1738                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1739                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1740                 crash_enable_local_vmclear(cpu);
1741                 local_irq_enable();
1742
1743                 /*
1744                  * Linux uses per-cpu TSS and GDT, so set these when switching
1745                  * processors.
1746                  */
1747                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1748                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1749
1750                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1751                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1752                 vmx->loaded_vmcs->cpu = cpu;
1753         }
1754 }
1755
1756 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1757 {
1758         __vmx_load_host_state(to_vmx(vcpu));
1759         if (!vmm_exclusive) {
1760                 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1761                 vcpu->cpu = -1;
1762                 kvm_cpu_vmxoff();
1763         }
1764 }
1765
1766 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1767 {
1768         ulong cr0;
1769
1770         if (vcpu->fpu_active)
1771                 return;
1772         vcpu->fpu_active = 1;
1773         cr0 = vmcs_readl(GUEST_CR0);
1774         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1775         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1776         vmcs_writel(GUEST_CR0, cr0);
1777         update_exception_bitmap(vcpu);
1778         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1779         if (is_guest_mode(vcpu))
1780                 vcpu->arch.cr0_guest_owned_bits &=
1781                         ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1782         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1783 }
1784
1785 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1786
1787 /*
1788  * Return the cr0 value that a nested guest would read. This is a combination
1789  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1790  * its hypervisor (cr0_read_shadow).
1791  */
1792 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1793 {
1794         return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1795                 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1796 }
1797 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1798 {
1799         return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1800                 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1801 }
1802
1803 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1804 {
1805         /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1806          * set this *before* calling this function.
1807          */
1808         vmx_decache_cr0_guest_bits(vcpu);
1809         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1810         update_exception_bitmap(vcpu);
1811         vcpu->arch.cr0_guest_owned_bits = 0;
1812         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1813         if (is_guest_mode(vcpu)) {
1814                 /*
1815                  * L1's specified read shadow might not contain the TS bit,
1816                  * so now that we turned on shadowing of this bit, we need to
1817                  * set this bit of the shadow. Like in nested_vmx_run we need
1818                  * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1819                  * up-to-date here because we just decached cr0.TS (and we'll
1820                  * only update vmcs12->guest_cr0 on nested exit).
1821                  */
1822                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1823                 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1824                         (vcpu->arch.cr0 & X86_CR0_TS);
1825                 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1826         } else
1827                 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1828 }
1829
1830 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1831 {
1832         unsigned long rflags, save_rflags;
1833
1834         if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1835                 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1836                 rflags = vmcs_readl(GUEST_RFLAGS);
1837                 if (to_vmx(vcpu)->rmode.vm86_active) {
1838                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1839                         save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1840                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1841                 }
1842                 to_vmx(vcpu)->rflags = rflags;
1843         }
1844         return to_vmx(vcpu)->rflags;
1845 }
1846
1847 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1848 {
1849         __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1850         to_vmx(vcpu)->rflags = rflags;
1851         if (to_vmx(vcpu)->rmode.vm86_active) {
1852                 to_vmx(vcpu)->rmode.save_rflags = rflags;
1853                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1854         }
1855         vmcs_writel(GUEST_RFLAGS, rflags);
1856 }
1857
1858 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1859 {
1860         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1861         int ret = 0;
1862
1863         if (interruptibility & GUEST_INTR_STATE_STI)
1864                 ret |= KVM_X86_SHADOW_INT_STI;
1865         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1866                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1867
1868         return ret & mask;
1869 }
1870
1871 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1872 {
1873         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1874         u32 interruptibility = interruptibility_old;
1875
1876         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1877
1878         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1879                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1880         else if (mask & KVM_X86_SHADOW_INT_STI)
1881                 interruptibility |= GUEST_INTR_STATE_STI;
1882
1883         if ((interruptibility != interruptibility_old))
1884                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1885 }
1886
1887 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1888 {
1889         unsigned long rip;
1890
1891         rip = kvm_rip_read(vcpu);
1892         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1893         kvm_rip_write(vcpu, rip);
1894
1895         /* skipping an emulated instruction also counts */
1896         vmx_set_interrupt_shadow(vcpu, 0);
1897 }
1898
1899 /*
1900  * KVM wants to inject page-faults which it got to the guest. This function
1901  * checks whether in a nested guest, we need to inject them to L1 or L2.
1902  * This function assumes it is called with the exit reason in vmcs02 being
1903  * a #PF exception (this is the only case in which KVM injects a #PF when L2
1904  * is running).
1905  */
1906 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1907 {
1908         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1909
1910         /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1911         if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1912                 return 0;
1913
1914         nested_vmx_vmexit(vcpu);
1915         return 1;
1916 }
1917
1918 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1919                                 bool has_error_code, u32 error_code,
1920                                 bool reinject)
1921 {
1922         struct vcpu_vmx *vmx = to_vmx(vcpu);
1923         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1924
1925         if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1926             !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
1927                 return;
1928
1929         if (has_error_code) {
1930                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1931                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1932         }
1933
1934         if (vmx->rmode.vm86_active) {
1935                 int inc_eip = 0;
1936                 if (kvm_exception_is_soft(nr))
1937                         inc_eip = vcpu->arch.event_exit_inst_len;
1938                 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1939                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1940                 return;
1941         }
1942
1943         if (kvm_exception_is_soft(nr)) {
1944                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1945                              vmx->vcpu.arch.event_exit_inst_len);
1946                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1947         } else
1948                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1949
1950         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1951 }
1952
1953 static bool vmx_rdtscp_supported(void)
1954 {
1955         return cpu_has_vmx_rdtscp();
1956 }
1957
1958 static bool vmx_invpcid_supported(void)
1959 {
1960         return cpu_has_vmx_invpcid() && enable_ept;
1961 }
1962
1963 /*
1964  * Swap MSR entry in host/guest MSR entry array.
1965  */
1966 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1967 {
1968         struct shared_msr_entry tmp;
1969
1970         tmp = vmx->guest_msrs[to];
1971         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1972         vmx->guest_msrs[from] = tmp;
1973 }
1974
1975 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1976 {
1977         unsigned long *msr_bitmap;
1978
1979         if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1980                 if (is_long_mode(vcpu))
1981                         msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1982                 else
1983                         msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1984         } else {
1985                 if (is_long_mode(vcpu))
1986                         msr_bitmap = vmx_msr_bitmap_longmode;
1987                 else
1988                         msr_bitmap = vmx_msr_bitmap_legacy;
1989         }
1990
1991         vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1992 }
1993
1994 /*
1995  * Set up the vmcs to automatically save and restore system
1996  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1997  * mode, as fiddling with msrs is very expensive.
1998  */
1999 static void setup_msrs(struct vcpu_vmx *vmx)
2000 {
2001         int save_nmsrs, index;
2002
2003         save_nmsrs = 0;
2004 #ifdef CONFIG_X86_64
2005         if (is_long_mode(&vmx->vcpu)) {
2006                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2007                 if (index >= 0)
2008                         move_msr_up(vmx, index, save_nmsrs++);
2009                 index = __find_msr_index(vmx, MSR_LSTAR);
2010                 if (index >= 0)
2011                         move_msr_up(vmx, index, save_nmsrs++);
2012                 index = __find_msr_index(vmx, MSR_CSTAR);
2013                 if (index >= 0)
2014                         move_msr_up(vmx, index, save_nmsrs++);
2015                 index = __find_msr_index(vmx, MSR_TSC_AUX);
2016                 if (index >= 0 && vmx->rdtscp_enabled)
2017                         move_msr_up(vmx, index, save_nmsrs++);
2018                 /*
2019                  * MSR_STAR is only needed on long mode guests, and only
2020                  * if efer.sce is enabled.
2021                  */
2022                 index = __find_msr_index(vmx, MSR_STAR);
2023                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2024                         move_msr_up(vmx, index, save_nmsrs++);
2025         }
2026 #endif
2027         index = __find_msr_index(vmx, MSR_EFER);
2028         if (index >= 0 && update_transition_efer(vmx, index))
2029                 move_msr_up(vmx, index, save_nmsrs++);
2030
2031         vmx->save_nmsrs = save_nmsrs;
2032
2033         if (cpu_has_vmx_msr_bitmap())
2034                 vmx_set_msr_bitmap(&vmx->vcpu);
2035 }
2036
2037 /*
2038  * reads and returns guest's timestamp counter "register"
2039  * guest_tsc = host_tsc + tsc_offset    -- 21.3
2040  */
2041 static u64 guest_read_tsc(void)
2042 {
2043         u64 host_tsc, tsc_offset;
2044
2045         rdtscll(host_tsc);
2046         tsc_offset = vmcs_read64(TSC_OFFSET);
2047         return host_tsc + tsc_offset;
2048 }
2049
2050 /*
2051  * Like guest_read_tsc, but always returns L1's notion of the timestamp
2052  * counter, even if a nested guest (L2) is currently running.
2053  */
2054 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2055 {
2056         u64 tsc_offset;
2057
2058         tsc_offset = is_guest_mode(vcpu) ?
2059                 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2060                 vmcs_read64(TSC_OFFSET);
2061         return host_tsc + tsc_offset;
2062 }
2063
2064 /*
2065  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2066  * software catchup for faster rates on slower CPUs.
2067  */
2068 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2069 {
2070         if (!scale)
2071                 return;
2072
2073         if (user_tsc_khz > tsc_khz) {
2074                 vcpu->arch.tsc_catchup = 1;
2075                 vcpu->arch.tsc_always_catchup = 1;
2076         } else
2077                 WARN(1, "user requested TSC rate below hardware speed\n");
2078 }
2079
2080 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2081 {
2082         return vmcs_read64(TSC_OFFSET);
2083 }
2084
2085 /*
2086  * writes 'offset' into guest's timestamp counter offset register
2087  */
2088 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2089 {
2090         if (is_guest_mode(vcpu)) {
2091                 /*
2092                  * We're here if L1 chose not to trap WRMSR to TSC. According
2093                  * to the spec, this should set L1's TSC; The offset that L1
2094                  * set for L2 remains unchanged, and still needs to be added
2095                  * to the newly set TSC to get L2's TSC.
2096                  */
2097                 struct vmcs12 *vmcs12;
2098                 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2099                 /* recalculate vmcs02.TSC_OFFSET: */
2100                 vmcs12 = get_vmcs12(vcpu);
2101                 vmcs_write64(TSC_OFFSET, offset +
2102                         (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2103                          vmcs12->tsc_offset : 0));
2104         } else {
2105                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2106                                            vmcs_read64(TSC_OFFSET), offset);
2107                 vmcs_write64(TSC_OFFSET, offset);
2108         }
2109 }
2110
2111 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2112 {
2113         u64 offset = vmcs_read64(TSC_OFFSET);
2114
2115         vmcs_write64(TSC_OFFSET, offset + adjustment);
2116         if (is_guest_mode(vcpu)) {
2117                 /* Even when running L2, the adjustment needs to apply to L1 */
2118                 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2119         } else
2120                 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2121                                            offset + adjustment);
2122 }
2123
2124 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2125 {
2126         return target_tsc - native_read_tsc();
2127 }
2128
2129 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2130 {
2131         struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2132         return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2133 }
2134
2135 /*
2136  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2137  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2138  * all guests if the "nested" module option is off, and can also be disabled
2139  * for a single guest by disabling its VMX cpuid bit.
2140  */
2141 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2142 {
2143         return nested && guest_cpuid_has_vmx(vcpu);
2144 }
2145
2146 /*
2147  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2148  * returned for the various VMX controls MSRs when nested VMX is enabled.
2149  * The same values should also be used to verify that vmcs12 control fields are
2150  * valid during nested entry from L1 to L2.
2151  * Each of these control msrs has a low and high 32-bit half: A low bit is on
2152  * if the corresponding bit in the (32-bit) control field *must* be on, and a
2153  * bit in the high half is on if the corresponding bit in the control field
2154  * may be on. See also vmx_control_verify().
2155  * TODO: allow these variables to be modified (downgraded) by module options
2156  * or other means.
2157  */
2158 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2159 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2160 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2161 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2162 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2163 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2164 static __init void nested_vmx_setup_ctls_msrs(void)
2165 {
2166         /*
2167          * Note that as a general rule, the high half of the MSRs (bits in
2168          * the control fields which may be 1) should be initialized by the
2169          * intersection of the underlying hardware's MSR (i.e., features which
2170          * can be supported) and the list of features we want to expose -
2171          * because they are known to be properly supported in our code.
2172          * Also, usually, the low half of the MSRs (bits which must be 1) can
2173          * be set to 0, meaning that L1 may turn off any of these bits. The
2174          * reason is that if one of these bits is necessary, it will appear
2175          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2176          * fields of vmcs01 and vmcs02, will turn these bits off - and
2177          * nested_vmx_exit_handled() will not pass related exits to L1.
2178          * These rules have exceptions below.
2179          */
2180
2181         /* pin-based controls */
2182         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2183               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2184         /*
2185          * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2186          * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2187          */
2188         nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2189         nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2190                 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2191                 PIN_BASED_VMX_PREEMPTION_TIMER;
2192         nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2193
2194         /*
2195          * Exit controls
2196          * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2197          * 17 must be 1.
2198          */
2199         nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2200         /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2201 #ifdef CONFIG_X86_64
2202         nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2203 #else
2204         nested_vmx_exit_ctls_high = 0;
2205 #endif
2206         nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2207                                       VM_EXIT_LOAD_IA32_EFER);
2208
2209         /* entry controls */
2210         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2211                 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2212         /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2213         nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2214         nested_vmx_entry_ctls_high &=
2215                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2216         nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2217                                        VM_ENTRY_LOAD_IA32_EFER);
2218         /* cpu-based controls */
2219         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2220                 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2221         nested_vmx_procbased_ctls_low = 0;
2222         nested_vmx_procbased_ctls_high &=
2223                 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2224                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2225                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2226                 CPU_BASED_CR3_STORE_EXITING |
2227 #ifdef CONFIG_X86_64
2228                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2229 #endif
2230                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2231                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2232                 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2233                 CPU_BASED_PAUSE_EXITING |
2234                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2235         /*
2236          * We can allow some features even when not supported by the
2237          * hardware. For example, L1 can specify an MSR bitmap - and we
2238          * can use it to avoid exits to L1 - even when L0 runs L2
2239          * without MSR bitmaps.
2240          */
2241         nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2242
2243         /* secondary cpu-based controls */
2244         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2245                 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2246         nested_vmx_secondary_ctls_low = 0;
2247         nested_vmx_secondary_ctls_high &=
2248                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2249                 SECONDARY_EXEC_WBINVD_EXITING;
2250
2251         /* miscellaneous data */
2252         rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2253         nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2254                 VMX_MISC_SAVE_EFER_LMA;
2255         nested_vmx_misc_high = 0;
2256 }
2257
2258 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2259 {
2260         /*
2261          * Bits 0 in high must be 0, and bits 1 in low must be 1.
2262          */
2263         return ((control & high) | low) == control;
2264 }
2265
2266 static inline u64 vmx_control_msr(u32 low, u32 high)
2267 {
2268         return low | ((u64)high << 32);
2269 }
2270
2271 /*
2272  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2273  * also let it use VMX-specific MSRs.
2274  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2275  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2276  * like all other MSRs).
2277  */
2278 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2279 {
2280         if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2281                      msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2282                 /*
2283                  * According to the spec, processors which do not support VMX
2284                  * should throw a #GP(0) when VMX capability MSRs are read.
2285                  */
2286                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2287                 return 1;
2288         }
2289
2290         switch (msr_index) {
2291         case MSR_IA32_FEATURE_CONTROL:
2292                 if (nested_vmx_allowed(vcpu)) {
2293                         *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2294                         break;
2295                 }
2296                 return 0;
2297         case MSR_IA32_VMX_BASIC:
2298                 /*
2299                  * This MSR reports some information about VMX support. We
2300                  * should return information about the VMX we emulate for the
2301                  * guest, and the VMCS structure we give it - not about the
2302                  * VMX support of the underlying hardware.
2303                  */
2304                 *pdata = VMCS12_REVISION |
2305                            ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2306                            (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2307                 break;
2308         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2309         case MSR_IA32_VMX_PINBASED_CTLS:
2310                 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2311                                         nested_vmx_pinbased_ctls_high);
2312                 break;
2313         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2314         case MSR_IA32_VMX_PROCBASED_CTLS:
2315                 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2316                                         nested_vmx_procbased_ctls_high);
2317                 break;
2318         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2319         case MSR_IA32_VMX_EXIT_CTLS:
2320                 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2321                                         nested_vmx_exit_ctls_high);
2322                 break;
2323         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2324         case MSR_IA32_VMX_ENTRY_CTLS:
2325                 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2326                                         nested_vmx_entry_ctls_high);
2327                 break;
2328         case MSR_IA32_VMX_MISC:
2329                 *pdata = vmx_control_msr(nested_vmx_misc_low,
2330                                          nested_vmx_misc_high);
2331                 break;
2332         /*
2333          * These MSRs specify bits which the guest must keep fixed (on or off)
2334          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2335          * We picked the standard core2 setting.
2336          */
2337 #define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2338 #define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2339         case MSR_IA32_VMX_CR0_FIXED0:
2340                 *pdata = VMXON_CR0_ALWAYSON;
2341                 break;
2342         case MSR_IA32_VMX_CR0_FIXED1:
2343                 *pdata = -1ULL;
2344                 break;
2345         case MSR_IA32_VMX_CR4_FIXED0:
2346                 *pdata = VMXON_CR4_ALWAYSON;
2347                 break;
2348         case MSR_IA32_VMX_CR4_FIXED1:
2349                 *pdata = -1ULL;
2350                 break;
2351         case MSR_IA32_VMX_VMCS_ENUM:
2352                 *pdata = 0x1f;
2353                 break;
2354         case MSR_IA32_VMX_PROCBASED_CTLS2:
2355                 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2356                                         nested_vmx_secondary_ctls_high);
2357                 break;
2358         case MSR_IA32_VMX_EPT_VPID_CAP:
2359                 /* Currently, no nested ept or nested vpid */
2360                 *pdata = 0;
2361                 break;
2362         default:
2363                 return 0;
2364         }
2365
2366         return 1;
2367 }
2368
2369 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2370 {
2371         u32 msr_index = msr_info->index;
2372         u64 data = msr_info->data;
2373         bool host_initialized = msr_info->host_initiated;
2374
2375         if (!nested_vmx_allowed(vcpu))
2376                 return 0;
2377
2378         if (msr_index == MSR_IA32_FEATURE_CONTROL) {
2379                 if (!host_initialized &&
2380                                 to_vmx(vcpu)->nested.msr_ia32_feature_control
2381                                 & FEATURE_CONTROL_LOCKED)
2382                         return 0;
2383                 to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
2384                 return 1;
2385         }
2386
2387         /*
2388          * No need to treat VMX capability MSRs specially: If we don't handle
2389          * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2390          */
2391         return 0;
2392 }
2393
2394 /*
2395  * Reads an msr value (of 'msr_index') into 'pdata'.
2396  * Returns 0 on success, non-0 otherwise.
2397  * Assumes vcpu_load() was already called.
2398  */
2399 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2400 {
2401         u64 data;
2402         struct shared_msr_entry *msr;
2403
2404         if (!pdata) {
2405                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2406                 return -EINVAL;
2407         }
2408
2409         switch (msr_index) {
2410 #ifdef CONFIG_X86_64
2411         case MSR_FS_BASE:
2412                 data = vmcs_readl(GUEST_FS_BASE);
2413                 break;
2414         case MSR_GS_BASE:
2415                 data = vmcs_readl(GUEST_GS_BASE);
2416                 break;
2417         case MSR_KERNEL_GS_BASE:
2418                 vmx_load_host_state(to_vmx(vcpu));
2419                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2420                 break;
2421 #endif
2422         case MSR_EFER:
2423                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2424         case MSR_IA32_TSC:
2425                 data = guest_read_tsc();
2426                 break;
2427         case MSR_IA32_SYSENTER_CS:
2428                 data = vmcs_read32(GUEST_SYSENTER_CS);
2429                 break;
2430         case MSR_IA32_SYSENTER_EIP:
2431                 data = vmcs_readl(GUEST_SYSENTER_EIP);
2432                 break;
2433         case MSR_IA32_SYSENTER_ESP:
2434                 data = vmcs_readl(GUEST_SYSENTER_ESP);
2435                 break;
2436         case MSR_TSC_AUX:
2437                 if (!to_vmx(vcpu)->rdtscp_enabled)
2438                         return 1;
2439                 /* Otherwise falls through */
2440         default:
2441                 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2442                         return 0;
2443                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2444                 if (msr) {
2445                         data = msr->data;
2446                         break;
2447                 }
2448                 return kvm_get_msr_common(vcpu, msr_index, pdata);
2449         }
2450
2451         *pdata = data;
2452         return 0;
2453 }
2454
2455 /*
2456  * Writes msr value into into the appropriate "register".
2457  * Returns 0 on success, non-0 otherwise.
2458  * Assumes vcpu_load() was already called.
2459  */
2460 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2461 {
2462         struct vcpu_vmx *vmx = to_vmx(vcpu);
2463         struct shared_msr_entry *msr;
2464         int ret = 0;
2465         u32 msr_index = msr_info->index;
2466         u64 data = msr_info->data;
2467
2468         switch (msr_index) {
2469         case MSR_EFER:
2470                 ret = kvm_set_msr_common(vcpu, msr_info);
2471                 break;
2472 #ifdef CONFIG_X86_64
2473         case MSR_FS_BASE:
2474                 vmx_segment_cache_clear(vmx);
2475                 vmcs_writel(GUEST_FS_BASE, data);
2476                 break;
2477         case MSR_GS_BASE:
2478                 vmx_segment_cache_clear(vmx);
2479                 vmcs_writel(GUEST_GS_BASE, data);
2480                 break;
2481         case MSR_KERNEL_GS_BASE:
2482                 vmx_load_host_state(vmx);
2483                 vmx->msr_guest_kernel_gs_base = data;
2484                 break;
2485 #endif
2486         case MSR_IA32_SYSENTER_CS:
2487                 vmcs_write32(GUEST_SYSENTER_CS, data);
2488                 break;
2489         case MSR_IA32_SYSENTER_EIP:
2490                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2491                 break;
2492         case MSR_IA32_SYSENTER_ESP:
2493                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2494                 break;
2495         case MSR_IA32_TSC:
2496                 kvm_write_tsc(vcpu, msr_info);
2497                 break;
2498         case MSR_IA32_CR_PAT:
2499                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2500                         vmcs_write64(GUEST_IA32_PAT, data);
2501                         vcpu->arch.pat = data;
2502                         break;
2503                 }
2504                 ret = kvm_set_msr_common(vcpu, msr_info);
2505                 break;
2506         case MSR_IA32_TSC_ADJUST:
2507                 ret = kvm_set_msr_common(vcpu, msr_info);
2508                 break;
2509         case MSR_TSC_AUX:
2510                 if (!vmx->rdtscp_enabled)
2511                         return 1;
2512                 /* Check reserved bit, higher 32 bits should be zero */
2513                 if ((data >> 32) != 0)
2514                         return 1;
2515                 /* Otherwise falls through */
2516         default:
2517                 if (vmx_set_vmx_msr(vcpu, msr_info))
2518                         break;
2519                 msr = find_msr_entry(vmx, msr_index);
2520                 if (msr) {
2521                         msr->data = data;
2522                         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2523                                 preempt_disable();
2524                                 kvm_set_shared_msr(msr->index, msr->data,
2525                                                    msr->mask);
2526                                 preempt_enable();
2527                         }
2528                         break;
2529                 }
2530                 ret = kvm_set_msr_common(vcpu, msr_info);
2531         }
2532
2533         return ret;
2534 }
2535
2536 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2537 {
2538         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2539         switch (reg) {
2540         case VCPU_REGS_RSP:
2541                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2542                 break;
2543         case VCPU_REGS_RIP:
2544                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2545                 break;
2546         case VCPU_EXREG_PDPTR:
2547                 if (enable_ept)
2548                         ept_save_pdptrs(vcpu);
2549                 break;
2550         default:
2551                 break;
2552         }
2553 }
2554
2555 static __init int cpu_has_kvm_support(void)
2556 {
2557         return cpu_has_vmx();
2558 }
2559
2560 static __init int vmx_disabled_by_bios(void)
2561 {
2562         u64 msr;
2563
2564         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2565         if (msr & FEATURE_CONTROL_LOCKED) {
2566                 /* launched w/ TXT and VMX disabled */
2567                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2568                         && tboot_enabled())
2569                         return 1;
2570                 /* launched w/o TXT and VMX only enabled w/ TXT */
2571                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2572                         && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2573                         && !tboot_enabled()) {
2574                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2575                                 "activate TXT before enabling KVM\n");
2576                         return 1;
2577                 }
2578                 /* launched w/o TXT and VMX disabled */
2579                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2580                         && !tboot_enabled())
2581                         return 1;
2582         }
2583
2584         return 0;
2585 }
2586
2587 static void kvm_cpu_vmxon(u64 addr)
2588 {
2589         asm volatile (ASM_VMX_VMXON_RAX
2590                         : : "a"(&addr), "m"(addr)
2591                         : "memory", "cc");
2592 }
2593
2594 static int hardware_enable(void *garbage)
2595 {
2596         int cpu = raw_smp_processor_id();
2597         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2598         u64 old, test_bits;
2599
2600         if (read_cr4() & X86_CR4_VMXE)
2601                 return -EBUSY;
2602
2603         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2604
2605         /*
2606          * Now we can enable the vmclear operation in kdump
2607          * since the loaded_vmcss_on_cpu list on this cpu
2608          * has been initialized.
2609          *
2610          * Though the cpu is not in VMX operation now, there
2611          * is no problem to enable the vmclear operation
2612          * for the loaded_vmcss_on_cpu list is empty!
2613          */
2614         crash_enable_local_vmclear(cpu);
2615
2616         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2617
2618         test_bits = FEATURE_CONTROL_LOCKED;
2619         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2620         if (tboot_enabled())
2621                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2622
2623         if ((old & test_bits) != test_bits) {
2624                 /* enable and lock */
2625                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2626         }
2627         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2628
2629         if (vmm_exclusive) {
2630                 kvm_cpu_vmxon(phys_addr);
2631                 ept_sync_global();
2632         }
2633
2634         native_store_gdt(&__get_cpu_var(host_gdt));
2635
2636         return 0;
2637 }
2638
2639 static void vmclear_local_loaded_vmcss(void)
2640 {
2641         int cpu = raw_smp_processor_id();
2642         struct loaded_vmcs *v, *n;
2643
2644         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2645                                  loaded_vmcss_on_cpu_link)
2646                 __loaded_vmcs_clear(v);
2647 }
2648
2649
2650 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2651  * tricks.
2652  */
2653 static void kvm_cpu_vmxoff(void)
2654 {
2655         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2656 }
2657
2658 static void hardware_disable(void *garbage)
2659 {
2660         if (vmm_exclusive) {
2661                 vmclear_local_loaded_vmcss();
2662                 kvm_cpu_vmxoff();
2663         }
2664         write_cr4(read_cr4() & ~X86_CR4_VMXE);
2665 }
2666
2667 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2668                                       u32 msr, u32 *result)
2669 {
2670         u32 vmx_msr_low, vmx_msr_high;
2671         u32 ctl = ctl_min | ctl_opt;
2672
2673         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2674
2675         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2676         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2677
2678         /* Ensure minimum (required) set of control bits are supported. */
2679         if (ctl_min & ~ctl)
2680                 return -EIO;
2681
2682         *result = ctl;
2683         return 0;
2684 }
2685
2686 static __init bool allow_1_setting(u32 msr, u32 ctl)
2687 {
2688         u32 vmx_msr_low, vmx_msr_high;
2689
2690         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2691         return vmx_msr_high & ctl;
2692 }
2693
2694 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2695 {
2696         u32 vmx_msr_low, vmx_msr_high;
2697         u32 min, opt, min2, opt2;
2698         u32 _pin_based_exec_control = 0;
2699         u32 _cpu_based_exec_control = 0;
2700         u32 _cpu_based_2nd_exec_control = 0;
2701         u32 _vmexit_control = 0;
2702         u32 _vmentry_control = 0;
2703
2704         min = CPU_BASED_HLT_EXITING |
2705 #ifdef CONFIG_X86_64
2706               CPU_BASED_CR8_LOAD_EXITING |
2707               CPU_BASED_CR8_STORE_EXITING |
2708 #endif
2709               CPU_BASED_CR3_LOAD_EXITING |
2710               CPU_BASED_CR3_STORE_EXITING |
2711               CPU_BASED_USE_IO_BITMAPS |
2712               CPU_BASED_MOV_DR_EXITING |
2713               CPU_BASED_USE_TSC_OFFSETING |
2714               CPU_BASED_MWAIT_EXITING |
2715               CPU_BASED_MONITOR_EXITING |
2716               CPU_BASED_INVLPG_EXITING |
2717               CPU_BASED_RDPMC_EXITING;
2718
2719         opt = CPU_BASED_TPR_SHADOW |
2720               CPU_BASED_USE_MSR_BITMAPS |
2721               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2722         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2723                                 &_cpu_based_exec_control) < 0)
2724                 return -EIO;
2725 #ifdef CONFIG_X86_64
2726         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2727                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2728                                            ~CPU_BASED_CR8_STORE_EXITING;
2729 #endif
2730         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2731                 min2 = 0;
2732                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2733                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2734                         SECONDARY_EXEC_WBINVD_EXITING |
2735                         SECONDARY_EXEC_ENABLE_VPID |
2736                         SECONDARY_EXEC_ENABLE_EPT |
2737                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2738                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2739                         SECONDARY_EXEC_RDTSCP |
2740                         SECONDARY_EXEC_ENABLE_INVPCID |
2741                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2742                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2743                         SECONDARY_EXEC_SHADOW_VMCS;
2744                 if (adjust_vmx_controls(min2, opt2,
2745                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2746                                         &_cpu_based_2nd_exec_control) < 0)
2747                         return -EIO;
2748         }
2749 #ifndef CONFIG_X86_64
2750         if (!(_cpu_based_2nd_exec_control &
2751                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2752                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2753 #endif
2754
2755         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2756                 _cpu_based_2nd_exec_control &= ~(
2757                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2758                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2759                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2760
2761         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2762                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2763                    enabled */
2764                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2765                                              CPU_BASED_CR3_STORE_EXITING |
2766                                              CPU_BASED_INVLPG_EXITING);
2767                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2768                       vmx_capability.ept, vmx_capability.vpid);
2769         }
2770
2771         min = 0;
2772 #ifdef CONFIG_X86_64
2773         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2774 #endif
2775         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2776                 VM_EXIT_ACK_INTR_ON_EXIT;
2777         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2778                                 &_vmexit_control) < 0)
2779                 return -EIO;
2780
2781         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2782         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2783         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2784                                 &_pin_based_exec_control) < 0)
2785                 return -EIO;
2786
2787         if (!(_cpu_based_2nd_exec_control &
2788                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2789                 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2790                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2791
2792         min = 0;
2793         opt = VM_ENTRY_LOAD_IA32_PAT;
2794         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2795                                 &_vmentry_control) < 0)
2796                 return -EIO;
2797
2798         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2799
2800         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2801         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2802                 return -EIO;
2803
2804 #ifdef CONFIG_X86_64
2805         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2806         if (vmx_msr_high & (1u<<16))
2807                 return -EIO;
2808 #endif
2809
2810         /* Require Write-Back (WB) memory type for VMCS accesses. */
2811         if (((vmx_msr_high >> 18) & 15) != 6)
2812                 return -EIO;
2813
2814         vmcs_conf->size = vmx_msr_high & 0x1fff;
2815         vmcs_conf->order = get_order(vmcs_config.size);
2816         vmcs_conf->revision_id = vmx_msr_low;
2817
2818         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2819         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2820         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2821         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2822         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2823
2824         cpu_has_load_ia32_efer =
2825                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2826                                 VM_ENTRY_LOAD_IA32_EFER)
2827                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2828                                    VM_EXIT_LOAD_IA32_EFER);
2829
2830         cpu_has_load_perf_global_ctrl =
2831                 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2832                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2833                 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2834                                    VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2835
2836         /*
2837          * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2838          * but due to arrata below it can't be used. Workaround is to use
2839          * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2840          *
2841          * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2842          *
2843          * AAK155             (model 26)
2844          * AAP115             (model 30)
2845          * AAT100             (model 37)
2846          * BC86,AAY89,BD102   (model 44)
2847          * BA97               (model 46)
2848          *
2849          */
2850         if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2851                 switch (boot_cpu_data.x86_model) {
2852                 case 26:
2853                 case 30:
2854                 case 37:
2855                 case 44:
2856                 case 46:
2857                         cpu_has_load_perf_global_ctrl = false;
2858                         printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2859                                         "does not work properly. Using workaround\n");
2860                         break;
2861                 default:
2862                         break;
2863                 }
2864         }
2865
2866         return 0;
2867 }
2868
2869 static struct vmcs *alloc_vmcs_cpu(int cpu)
2870 {
2871         int node = cpu_to_node(cpu);
2872         struct page *pages;
2873         struct vmcs *vmcs;
2874
2875         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2876         if (!pages)
2877                 return NULL;
2878         vmcs = page_address(pages);
2879         memset(vmcs, 0, vmcs_config.size);
2880         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2881         return vmcs;
2882 }
2883
2884 static struct vmcs *alloc_vmcs(void)
2885 {
2886         return alloc_vmcs_cpu(raw_smp_processor_id());
2887 }
2888
2889 static void free_vmcs(struct vmcs *vmcs)
2890 {
2891         free_pages((unsigned long)vmcs, vmcs_config.order);
2892 }
2893
2894 /*
2895  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2896  */
2897 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2898 {
2899         if (!loaded_vmcs->vmcs)
2900                 return;
2901         loaded_vmcs_clear(loaded_vmcs);
2902         free_vmcs(loaded_vmcs->vmcs);
2903         loaded_vmcs->vmcs = NULL;
2904 }
2905
2906 static void free_kvm_area(void)
2907 {
2908         int cpu;
2909
2910         for_each_possible_cpu(cpu) {
2911                 free_vmcs(per_cpu(vmxarea, cpu));
2912                 per_cpu(vmxarea, cpu) = NULL;
2913         }
2914 }
2915
2916 static __init int alloc_kvm_area(void)
2917 {
2918         int cpu;
2919
2920         for_each_possible_cpu(cpu) {
2921                 struct vmcs *vmcs;
2922
2923                 vmcs = alloc_vmcs_cpu(cpu);
2924                 if (!vmcs) {
2925                         free_kvm_area();
2926                         return -ENOMEM;
2927                 }
2928
2929                 per_cpu(vmxarea, cpu) = vmcs;
2930         }
2931         return 0;
2932 }
2933
2934 static __init int hardware_setup(void)
2935 {
2936         if (setup_vmcs_config(&vmcs_config) < 0)
2937                 return -EIO;
2938
2939         if (boot_cpu_has(X86_FEATURE_NX))
2940                 kvm_enable_efer_bits(EFER_NX);
2941
2942         if (!cpu_has_vmx_vpid())
2943                 enable_vpid = 0;
2944         if (!cpu_has_vmx_shadow_vmcs())
2945                 enable_shadow_vmcs = 0;
2946
2947         if (!cpu_has_vmx_ept() ||
2948             !cpu_has_vmx_ept_4levels()) {
2949                 enable_ept = 0;
2950                 enable_unrestricted_guest = 0;
2951                 enable_ept_ad_bits = 0;
2952         }
2953
2954         if (!cpu_has_vmx_ept_ad_bits())
2955                 enable_ept_ad_bits = 0;
2956
2957         if (!cpu_has_vmx_unrestricted_guest())
2958                 enable_unrestricted_guest = 0;
2959
2960         if (!cpu_has_vmx_flexpriority())
2961                 flexpriority_enabled = 0;
2962
2963         if (!cpu_has_vmx_tpr_shadow())
2964                 kvm_x86_ops->update_cr8_intercept = NULL;
2965
2966         if (enable_ept && !cpu_has_vmx_ept_2m_page())
2967                 kvm_disable_largepages();
2968
2969         if (!cpu_has_vmx_ple())
2970                 ple_gap = 0;
2971
2972         if (!cpu_has_vmx_apicv())
2973                 enable_apicv = 0;
2974
2975         if (enable_apicv)
2976                 kvm_x86_ops->update_cr8_intercept = NULL;
2977         else {
2978                 kvm_x86_ops->hwapic_irr_update = NULL;
2979                 kvm_x86_ops->deliver_posted_interrupt = NULL;
2980                 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
2981         }
2982
2983         if (nested)
2984                 nested_vmx_setup_ctls_msrs();
2985
2986         return alloc_kvm_area();
2987 }
2988
2989 static __exit void hardware_unsetup(void)
2990 {
2991         free_kvm_area();
2992 }
2993
2994 static bool emulation_required(struct kvm_vcpu *vcpu)
2995 {
2996         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2997 }
2998
2999 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3000                 struct kvm_segment *save)
3001 {
3002         if (!emulate_invalid_guest_state) {
3003                 /*
3004                  * CS and SS RPL should be equal during guest entry according
3005                  * to VMX spec, but in reality it is not always so. Since vcpu
3006                  * is in the middle of the transition from real mode to
3007                  * protected mode it is safe to assume that RPL 0 is a good
3008                  * default value.
3009                  */
3010                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3011                         save->selector &= ~SELECTOR_RPL_MASK;
3012                 save->dpl = save->selector & SELECTOR_RPL_MASK;
3013                 save->s = 1;
3014         }
3015         vmx_set_segment(vcpu, save, seg);
3016 }
3017
3018 static void enter_pmode(struct kvm_vcpu *vcpu)
3019 {
3020         unsigned long flags;
3021         struct vcpu_vmx *vmx = to_vmx(vcpu);
3022
3023         /*
3024          * Update real mode segment cache. It may be not up-to-date if sement
3025          * register was written while vcpu was in a guest mode.
3026          */
3027         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3028         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3029         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3030         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3031         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3032         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3033
3034         vmx->rmode.vm86_active = 0;
3035
3036         vmx_segment_cache_clear(vmx);
3037
3038         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3039
3040         flags = vmcs_readl(GUEST_RFLAGS);
3041         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3042         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3043         vmcs_writel(GUEST_RFLAGS, flags);
3044
3045         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3046                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3047
3048         update_exception_bitmap(vcpu);
3049
3050         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3051         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3052         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3053         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3054         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3055         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3056
3057         /* CPL is always 0 when CPU enters protected mode */
3058         __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3059         vmx->cpl = 0;
3060 }
3061
3062 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3063 {
3064         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3065         struct kvm_segment var = *save;
3066
3067         var.dpl = 0x3;
3068         if (seg == VCPU_SREG_CS)
3069                 var.type = 0x3;
3070
3071         if (!emulate_invalid_guest_state) {
3072                 var.selector = var.base >> 4;
3073                 var.base = var.base & 0xffff0;
3074                 var.limit = 0xffff;
3075                 var.g = 0;
3076                 var.db = 0;
3077                 var.present = 1;
3078                 var.s = 1;
3079                 var.l = 0;
3080                 var.unusable = 0;
3081                 var.type = 0x3;
3082                 var.avl = 0;
3083                 if (save->base & 0xf)
3084                         printk_once(KERN_WARNING "kvm: segment base is not "
3085                                         "paragraph aligned when entering "
3086                                         "protected mode (seg=%d)", seg);
3087         }
3088
3089         vmcs_write16(sf->selector, var.selector);
3090         vmcs_write32(sf->base, var.base);
3091         vmcs_write32(sf->limit, var.limit);
3092         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3093 }
3094
3095 static void enter_rmode(struct kvm_vcpu *vcpu)
3096 {
3097         unsigned long flags;
3098         struct vcpu_vmx *vmx = to_vmx(vcpu);
3099
3100         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3101         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3102         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3103         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3104         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3105         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3106         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3107
3108         vmx->rmode.vm86_active = 1;
3109
3110         /*
3111          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3112          * vcpu. Warn the user that an update is overdue.
3113          */
3114         if (!vcpu->kvm->arch.tss_addr)
3115                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3116                              "called before entering vcpu\n");
3117
3118         vmx_segment_cache_clear(vmx);
3119
3120         vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3121         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3122         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3123
3124         flags = vmcs_readl(GUEST_RFLAGS);
3125         vmx->rmode.save_rflags = flags;
3126
3127         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3128
3129         vmcs_writel(GUEST_RFLAGS, flags);
3130         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3131         update_exception_bitmap(vcpu);
3132
3133         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3134         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3135         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3136         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3137         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3138         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3139
3140         kvm_mmu_reset_context(vcpu);
3141 }
3142
3143 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3144 {
3145         struct vcpu_vmx *vmx = to_vmx(vcpu);
3146         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3147
3148         if (!msr)
3149                 return;
3150
3151         /*
3152          * Force kernel_gs_base reloading before EFER changes, as control
3153          * of this msr depends on is_long_mode().
3154          */
3155         vmx_load_host_state(to_vmx(vcpu));
3156         vcpu->arch.efer = efer;
3157         if (efer & EFER_LMA) {
3158                 vmcs_write32(VM_ENTRY_CONTROLS,
3159                              vmcs_read32(VM_ENTRY_CONTROLS) |
3160                              VM_ENTRY_IA32E_MODE);
3161                 msr->data = efer;
3162         } else {
3163                 vmcs_write32(VM_ENTRY_CONTROLS,
3164                              vmcs_read32(VM_ENTRY_CONTROLS) &
3165                              ~VM_ENTRY_IA32E_MODE);
3166
3167                 msr->data = efer & ~EFER_LME;
3168         }
3169         setup_msrs(vmx);
3170 }
3171
3172 #ifdef CONFIG_X86_64
3173
3174 static void enter_lmode(struct kvm_vcpu *vcpu)
3175 {
3176         u32 guest_tr_ar;
3177
3178         vmx_segment_cache_clear(to_vmx(vcpu));
3179
3180         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3181         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3182                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3183                                      __func__);
3184                 vmcs_write32(GUEST_TR_AR_BYTES,
3185                              (guest_tr_ar & ~AR_TYPE_MASK)
3186                              | AR_TYPE_BUSY_64_TSS);
3187         }
3188         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3189 }
3190
3191 static void exit_lmode(struct kvm_vcpu *vcpu)
3192 {
3193         vmcs_write32(VM_ENTRY_CONTROLS,
3194                      vmcs_read32(VM_ENTRY_CONTROLS)
3195                      & ~VM_ENTRY_IA32E_MODE);
3196         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3197 }
3198
3199 #endif
3200
3201 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3202 {
3203         vpid_sync_context(to_vmx(vcpu));
3204         if (enable_ept) {
3205                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3206                         return;
3207                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3208         }
3209 }
3210
3211 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3212 {
3213         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3214
3215         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3216         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3217 }
3218
3219 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3220 {
3221         if (enable_ept && is_paging(vcpu))
3222                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3223         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3224 }
3225
3226 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3227 {
3228         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3229
3230         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3231         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3232 }
3233
3234 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3235 {
3236         if (!test_bit(VCPU_EXREG_PDPTR,
3237                       (unsigned long *)&vcpu->arch.regs_dirty))
3238                 return;
3239
3240         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3241                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3242                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3243                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3244                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
3245         }
3246 }
3247
3248 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3249 {
3250         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3251                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3252                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3253                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3254                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3255         }
3256
3257         __set_bit(VCPU_EXREG_PDPTR,
3258                   (unsigned long *)&vcpu->arch.regs_avail);
3259         __set_bit(VCPU_EXREG_PDPTR,
3260                   (unsigned long *)&vcpu->arch.regs_dirty);
3261 }
3262
3263 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3264
3265 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3266                                         unsigned long cr0,
3267                                         struct kvm_vcpu *vcpu)
3268 {
3269         if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3270                 vmx_decache_cr3(vcpu);
3271         if (!(cr0 & X86_CR0_PG)) {
3272                 /* From paging/starting to nonpaging */
3273                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3274                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3275                              (CPU_BASED_CR3_LOAD_EXITING |
3276                               CPU_BASED_CR3_STORE_EXITING));
3277                 vcpu->arch.cr0 = cr0;
3278                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3279         } else if (!is_paging(vcpu)) {
3280                 /* From nonpaging to paging */
3281                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3282                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3283                              ~(CPU_BASED_CR3_LOAD_EXITING |
3284                                CPU_BASED_CR3_STORE_EXITING));
3285                 vcpu->arch.cr0 = cr0;
3286                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3287         }
3288
3289         if (!(cr0 & X86_CR0_WP))
3290                 *hw_cr0 &= ~X86_CR0_WP;
3291 }
3292
3293 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3294 {
3295         struct vcpu_vmx *vmx = to_vmx(vcpu);
3296         unsigned long hw_cr0;
3297
3298         hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3299         if (enable_unrestricted_guest)
3300                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3301         else {
3302                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3303
3304                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3305                         enter_pmode(vcpu);
3306
3307                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3308                         enter_rmode(vcpu);
3309         }
3310
3311 #ifdef CONFIG_X86_64
3312         if (vcpu->arch.efer & EFER_LME) {
3313                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3314                         enter_lmode(vcpu);
3315                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3316                         exit_lmode(vcpu);
3317         }
3318 #endif
3319
3320         if (enable_ept)
3321                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3322
3323         if (!vcpu->fpu_active)
3324                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3325
3326         vmcs_writel(CR0_READ_SHADOW, cr0);
3327         vmcs_writel(GUEST_CR0, hw_cr0);
3328         vcpu->arch.cr0 = cr0;
3329
3330         /* depends on vcpu->arch.cr0 to be set to a new value */
3331         vmx->emulation_required = emulation_required(vcpu);
3332 }
3333
3334 static u64 construct_eptp(unsigned long root_hpa)
3335 {
3336         u64 eptp;
3337
3338         /* TODO write the value reading from MSR */
3339         eptp = VMX_EPT_DEFAULT_MT |
3340                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3341         if (enable_ept_ad_bits)
3342                 eptp |= VMX_EPT_AD_ENABLE_BIT;
3343         eptp |= (root_hpa & PAGE_MASK);
3344
3345         return eptp;
3346 }
3347
3348 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3349 {
3350         unsigned long guest_cr3;
3351         u64 eptp;
3352
3353         guest_cr3 = cr3;
3354         if (enable_ept) {
3355                 eptp = construct_eptp(cr3);
3356                 vmcs_write64(EPT_POINTER, eptp);
3357                 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3358                         vcpu->kvm->arch.ept_identity_map_addr;
3359                 ept_load_pdptrs(vcpu);
3360         }
3361
3362         vmx_flush_tlb(vcpu);
3363         vmcs_writel(GUEST_CR3, guest_cr3);
3364 }
3365
3366 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3367 {
3368         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3369                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3370
3371         if (cr4 & X86_CR4_VMXE) {
3372                 /*
3373                  * To use VMXON (and later other VMX instructions), a guest
3374                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3375                  * So basically the check on whether to allow nested VMX
3376                  * is here.
3377                  */
3378                 if (!nested_vmx_allowed(vcpu))
3379                         return 1;
3380         }
3381         if (to_vmx(vcpu)->nested.vmxon &&
3382             ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3383                 return 1;
3384
3385         vcpu->arch.cr4 = cr4;
3386         if (enable_ept) {
3387                 if (!is_paging(vcpu)) {
3388                         hw_cr4 &= ~X86_CR4_PAE;
3389                         hw_cr4 |= X86_CR4_PSE;
3390                         /*
3391                          * SMEP is disabled if CPU is in non-paging mode in
3392                          * hardware. However KVM always uses paging mode to
3393                          * emulate guest non-paging mode with TDP.
3394                          * To emulate this behavior, SMEP needs to be manually
3395                          * disabled when guest switches to non-paging mode.
3396                          */
3397                         hw_cr4 &= ~X86_CR4_SMEP;
3398                 } else if (!(cr4 & X86_CR4_PAE)) {
3399                         hw_cr4 &= ~X86_CR4_PAE;
3400                 }
3401         }
3402
3403         vmcs_writel(CR4_READ_SHADOW, cr4);
3404         vmcs_writel(GUEST_CR4, hw_cr4);
3405         return 0;
3406 }
3407
3408 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3409                             struct kvm_segment *var, int seg)
3410 {
3411         struct vcpu_vmx *vmx = to_vmx(vcpu);
3412         u32 ar;
3413
3414         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3415                 *var = vmx->rmode.segs[seg];
3416                 if (seg == VCPU_SREG_TR
3417                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3418                         return;
3419                 var->base = vmx_read_guest_seg_base(vmx, seg);
3420                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3421                 return;
3422         }
3423         var->base = vmx_read_guest_seg_base(vmx, seg);
3424         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3425         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3426         ar = vmx_read_guest_seg_ar(vmx, seg);
3427         var->unusable = (ar >> 16) & 1;
3428         var->type = ar & 15;
3429         var->s = (ar >> 4) & 1;
3430         var->dpl = (ar >> 5) & 3;
3431         /*
3432          * Some userspaces do not preserve unusable property. Since usable
3433          * segment has to be present according to VMX spec we can use present
3434          * property to amend userspace bug by making unusable segment always
3435          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3436          * segment as unusable.
3437          */
3438         var->present = !var->unusable;
3439         var->avl = (ar >> 12) & 1;
3440         var->l = (ar >> 13) & 1;
3441         var->db = (ar >> 14) & 1;
3442         var->g = (ar >> 15) & 1;
3443 }
3444
3445 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3446 {
3447         struct kvm_segment s;
3448
3449         if (to_vmx(vcpu)->rmode.vm86_active) {
3450                 vmx_get_segment(vcpu, &s, seg);
3451                 return s.base;
3452         }
3453         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3454 }
3455
3456 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3457 {
3458         struct vcpu_vmx *vmx = to_vmx(vcpu);
3459
3460         if (!is_protmode(vcpu))
3461                 return 0;
3462
3463         if (!is_long_mode(vcpu)
3464             && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3465                 return 3;
3466
3467         if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3468                 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3469                 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3470         }
3471
3472         return vmx->cpl;
3473 }
3474
3475
3476 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3477 {
3478         u32 ar;
3479
3480         if (var->unusable || !var->present)
3481                 ar = 1 << 16;
3482         else {
3483                 ar = var->type & 15;
3484                 ar |= (var->s & 1) << 4;
3485                 ar |= (var->dpl & 3) << 5;
3486                 ar |= (var->present & 1) << 7;
3487                 ar |= (var->avl & 1) << 12;
3488                 ar |= (var->l & 1) << 13;
3489                 ar |= (var->db & 1) << 14;
3490                 ar |= (var->g & 1) << 15;
3491         }
3492
3493         return ar;
3494 }
3495
3496 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3497                             struct kvm_segment *var, int seg)
3498 {
3499         struct vcpu_vmx *vmx = to_vmx(vcpu);
3500         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3501
3502         vmx_segment_cache_clear(vmx);
3503         if (seg == VCPU_SREG_CS)
3504                 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3505
3506         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3507                 vmx->rmode.segs[seg] = *var;
3508                 if (seg == VCPU_SREG_TR)
3509                         vmcs_write16(sf->selector, var->selector);
3510                 else if (var->s)
3511                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3512                 goto out;
3513         }
3514
3515         vmcs_writel(sf->base, var->base);
3516         vmcs_write32(sf->limit, var->limit);
3517         vmcs_write16(sf->selector, var->selector);
3518
3519         /*
3520          *   Fix the "Accessed" bit in AR field of segment registers for older
3521          * qemu binaries.
3522          *   IA32 arch specifies that at the time of processor reset the
3523          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3524          * is setting it to 0 in the userland code. This causes invalid guest
3525          * state vmexit when "unrestricted guest" mode is turned on.
3526          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3527          * tree. Newer qemu binaries with that qemu fix would not need this
3528          * kvm hack.
3529          */
3530         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3531                 var->type |= 0x1; /* Accessed */
3532
3533         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3534
3535 out:
3536         vmx->emulation_required |= emulation_required(vcpu);
3537 }
3538
3539 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3540 {
3541         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3542
3543         *db = (ar >> 14) & 1;
3544         *l = (ar >> 13) & 1;
3545 }
3546
3547 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3548 {
3549         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3550         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3551 }
3552
3553 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3554 {
3555         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3556         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3557 }
3558
3559 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3560 {
3561         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3562         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3563 }
3564
3565 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3566 {
3567         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3568         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3569 }
3570
3571 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3572 {
3573         struct kvm_segment var;
3574         u32 ar;
3575
3576         vmx_get_segment(vcpu, &var, seg);
3577         var.dpl = 0x3;
3578         if (seg == VCPU_SREG_CS)
3579                 var.type = 0x3;
3580         ar = vmx_segment_access_rights(&var);
3581
3582         if (var.base != (var.selector << 4))
3583                 return false;
3584         if (var.limit != 0xffff)
3585                 return false;
3586         if (ar != 0xf3)
3587                 return false;
3588
3589         return true;
3590 }
3591
3592 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3593 {
3594         struct kvm_segment cs;
3595         unsigned int cs_rpl;
3596
3597         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3598         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3599
3600         if (cs.unusable)
3601                 return false;
3602         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3603                 return false;
3604         if (!cs.s)
3605                 return false;
3606         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3607                 if (cs.dpl > cs_rpl)
3608                         return false;
3609         } else {
3610                 if (cs.dpl != cs_rpl)
3611                         return false;
3612         }
3613         if (!cs.present)
3614                 return false;
3615
3616         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3617         return true;
3618 }
3619
3620 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3621 {
3622         struct kvm_segment ss;
3623         unsigned int ss_rpl;
3624
3625         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3626         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3627
3628         if (ss.unusable)
3629                 return true;
3630         if (ss.type != 3 && ss.type != 7)
3631                 return false;
3632         if (!ss.s)
3633                 return false;
3634         if (ss.dpl != ss_rpl) /* DPL != RPL */
3635                 return false;
3636         if (!ss.present)
3637                 return false;
3638
3639         return true;
3640 }
3641
3642 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3643 {
3644         struct kvm_segment var;
3645         unsigned int rpl;
3646
3647         vmx_get_segment(vcpu, &var, seg);
3648         rpl = var.selector & SELECTOR_RPL_MASK;
3649
3650         if (var.unusable)
3651                 return true;
3652         if (!var.s)
3653                 return false;
3654         if (!var.present)
3655                 return false;
3656         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3657                 if (var.dpl < rpl) /* DPL < RPL */
3658                         return false;
3659         }
3660
3661         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3662          * rights flags
3663          */
3664         return true;
3665 }
3666
3667 static bool tr_valid(struct kvm_vcpu *vcpu)
3668 {
3669         struct kvm_segment tr;
3670
3671         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3672
3673         if (tr.unusable)
3674                 return false;
3675         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3676                 return false;
3677         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3678                 return false;
3679         if (!tr.present)
3680                 return false;
3681
3682         return true;
3683 }
3684
3685 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3686 {
3687         struct kvm_segment ldtr;
3688
3689         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3690
3691         if (ldtr.unusable)
3692                 return true;
3693         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3694                 return false;
3695         if (ldtr.type != 2)
3696                 return false;
3697         if (!ldtr.present)
3698                 return false;
3699
3700         return true;
3701 }
3702
3703 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3704 {
3705         struct kvm_segment cs, ss;
3706
3707         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3708         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3709
3710         return ((cs.selector & SELECTOR_RPL_MASK) ==
3711                  (ss.selector & SELECTOR_RPL_MASK));
3712 }
3713
3714 /*
3715  * Check if guest state is valid. Returns true if valid, false if
3716  * not.
3717  * We assume that registers are always usable
3718  */
3719 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3720 {
3721         if (enable_unrestricted_guest)
3722                 return true;
3723
3724         /* real mode guest state checks */
3725         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3726                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3727                         return false;
3728                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3729                         return false;
3730                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3731                         return false;
3732                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3733                         return false;
3734                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3735                         return false;
3736                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3737                         return false;
3738         } else {
3739         /* protected mode guest state checks */
3740                 if (!cs_ss_rpl_check(vcpu))
3741                         return false;
3742                 if (!code_segment_valid(vcpu))
3743                         return false;
3744                 if (!stack_segment_valid(vcpu))
3745                         return false;
3746                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3747                         return false;
3748                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3749                         return false;
3750                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3751                         return false;
3752                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3753                         return false;
3754                 if (!tr_valid(vcpu))
3755                         return false;
3756                 if (!ldtr_valid(vcpu))
3757                         return false;
3758         }
3759         /* TODO:
3760          * - Add checks on RIP
3761          * - Add checks on RFLAGS
3762          */
3763
3764         return true;
3765 }
3766
3767 static int init_rmode_tss(struct kvm *kvm)
3768 {
3769         gfn_t fn;
3770         u16 data = 0;
3771         int r, idx, ret = 0;
3772
3773         idx = srcu_read_lock(&kvm->srcu);
3774         fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3775         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3776         if (r < 0)
3777                 goto out;
3778         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3779         r = kvm_write_guest_page(kvm, fn++, &data,
3780                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3781         if (r < 0)
3782                 goto out;
3783         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3784         if (r < 0)
3785                 goto out;
3786         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3787         if (r < 0)
3788                 goto out;
3789         data = ~0;
3790         r = kvm_write_guest_page(kvm, fn, &data,
3791                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3792                                  sizeof(u8));
3793         if (r < 0)
3794                 goto out;
3795
3796         ret = 1;
3797 out:
3798         srcu_read_unlock(&kvm->srcu, idx);
3799         return ret;
3800 }
3801
3802 static int init_rmode_identity_map(struct kvm *kvm)
3803 {
3804         int i, idx, r, ret;
3805         pfn_t identity_map_pfn;
3806         u32 tmp;
3807
3808         if (!enable_ept)
3809                 return 1;
3810         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3811                 printk(KERN_ERR "EPT: identity-mapping pagetable "
3812                         "haven't been allocated!\n");
3813                 return 0;
3814         }
3815         if (likely(kvm->arch.ept_identity_pagetable_done))
3816                 return 1;
3817         ret = 0;
3818         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3819         idx = srcu_read_lock(&kvm->srcu);
3820         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3821         if (r < 0)
3822                 goto out;
3823         /* Set up identity-mapping pagetable for EPT in real mode */
3824         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3825                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3826                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3827                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3828                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3829                 if (r < 0)
3830                         goto out;
3831         }
3832         kvm->arch.ept_identity_pagetable_done = true;
3833         ret = 1;
3834 out:
3835         srcu_read_unlock(&kvm->srcu, idx);
3836         return ret;
3837 }
3838
3839 static void seg_setup(int seg)
3840 {
3841         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3842         unsigned int ar;
3843
3844         vmcs_write16(sf->selector, 0);
3845         vmcs_writel(sf->base, 0);
3846         vmcs_write32(sf->limit, 0xffff);
3847         ar = 0x93;
3848         if (seg == VCPU_SREG_CS)
3849                 ar |= 0x08; /* code segment */
3850
3851         vmcs_write32(sf->ar_bytes, ar);
3852 }
3853
3854 static int alloc_apic_access_page(struct kvm *kvm)
3855 {
3856         struct page *page;
3857         struct kvm_userspace_memory_region kvm_userspace_mem;
3858         int r = 0;
3859
3860         mutex_lock(&kvm->slots_lock);
3861         if (kvm->arch.apic_access_page)
3862                 goto out;
3863         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3864         kvm_userspace_mem.flags = 0;
3865         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3866         kvm_userspace_mem.memory_size = PAGE_SIZE;
3867         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3868         if (r)
3869                 goto out;
3870
3871         page = gfn_to_page(kvm, 0xfee00);
3872         if (is_error_page(page)) {
3873                 r = -EFAULT;
3874                 goto out;
3875         }
3876
3877         kvm->arch.apic_access_page = page;
3878 out:
3879         mutex_unlock(&kvm->slots_lock);
3880         return r;
3881 }
3882
3883 static int alloc_identity_pagetable(struct kvm *kvm)
3884 {
3885         struct page *page;
3886         struct kvm_userspace_memory_region kvm_userspace_mem;
3887         int r = 0;
3888
3889         mutex_lock(&kvm->slots_lock);
3890         if (kvm->arch.ept_identity_pagetable)
3891                 goto out;
3892         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3893         kvm_userspace_mem.flags = 0;
3894         kvm_userspace_mem.guest_phys_addr =
3895                 kvm->arch.ept_identity_map_addr;
3896         kvm_userspace_mem.memory_size = PAGE_SIZE;
3897         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3898         if (r)
3899                 goto out;
3900
3901         page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3902         if (is_error_page(page)) {
3903                 r = -EFAULT;
3904                 goto out;
3905         }
3906
3907         kvm->arch.ept_identity_pagetable = page;
3908 out:
3909         mutex_unlock(&kvm->slots_lock);
3910         return r;
3911 }
3912
3913 static void allocate_vpid(struct vcpu_vmx *vmx)
3914 {
3915         int vpid;
3916
3917         vmx->vpid = 0;
3918         if (!enable_vpid)
3919                 return;
3920         spin_lock(&vmx_vpid_lock);
3921         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3922         if (vpid < VMX_NR_VPIDS) {
3923                 vmx->vpid = vpid;
3924                 __set_bit(vpid, vmx_vpid_bitmap);
3925         }
3926         spin_unlock(&vmx_vpid_lock);
3927 }
3928
3929 static void free_vpid(struct vcpu_vmx *vmx)
3930 {
3931         if (!enable_vpid)
3932                 return;
3933         spin_lock(&vmx_vpid_lock);
3934         if (vmx->vpid != 0)
3935                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3936         spin_unlock(&vmx_vpid_lock);
3937 }
3938
3939 #define MSR_TYPE_R      1
3940 #define MSR_TYPE_W      2
3941 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3942                                                 u32 msr, int type)
3943 {
3944         int f = sizeof(unsigned long);
3945
3946         if (!cpu_has_vmx_msr_bitmap())
3947                 return;
3948
3949         /*
3950          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3951          * have the write-low and read-high bitmap offsets the wrong way round.
3952          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3953          */
3954         if (msr <= 0x1fff) {
3955                 if (type & MSR_TYPE_R)
3956                         /* read-low */
3957                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3958
3959                 if (type & MSR_TYPE_W)
3960                         /* write-low */
3961                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3962
3963         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3964                 msr &= 0x1fff;
3965                 if (type & MSR_TYPE_R)
3966                         /* read-high */
3967                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3968
3969                 if (type & MSR_TYPE_W)
3970                         /* write-high */
3971                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3972
3973         }
3974 }
3975
3976 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3977                                                 u32 msr, int type)
3978 {
3979         int f = sizeof(unsigned long);
3980
3981         if (!cpu_has_vmx_msr_bitmap())
3982                 return;
3983
3984         /*
3985          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3986          * have the write-low and read-high bitmap offsets the wrong way round.
3987          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3988          */
3989         if (msr <= 0x1fff) {
3990                 if (type & MSR_TYPE_R)
3991                         /* read-low */
3992                         __set_bit(msr, msr_bitmap + 0x000 / f);
3993
3994                 if (type & MSR_TYPE_W)
3995                         /* write-low */
3996                         __set_bit(msr, msr_bitmap + 0x800 / f);
3997
3998         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3999                 msr &= 0x1fff;
4000                 if (type & MSR_TYPE_R)
4001                         /* read-high */
4002                         __set_bit(msr, msr_bitmap + 0x400 / f);
4003
4004                 if (type & MSR_TYPE_W)
4005                         /* write-high */
4006                         __set_bit(msr, msr_bitmap + 0xc00 / f);
4007
4008         }
4009 }
4010
4011 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4012 {
4013         if (!longmode_only)
4014                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4015                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4016         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4017                                                 msr, MSR_TYPE_R | MSR_TYPE_W);
4018 }
4019
4020 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4021 {
4022         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4023                         msr, MSR_TYPE_R);
4024         __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4025                         msr, MSR_TYPE_R);
4026 }
4027
4028 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4029 {
4030         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4031                         msr, MSR_TYPE_R);
4032         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4033                         msr, MSR_TYPE_R);
4034 }
4035
4036 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4037 {
4038         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4039                         msr, MSR_TYPE_W);
4040         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4041                         msr, MSR_TYPE_W);
4042 }
4043
4044 static int vmx_vm_has_apicv(struct kvm *kvm)
4045 {
4046         return enable_apicv && irqchip_in_kernel(kvm);
4047 }
4048
4049 /*
4050  * Send interrupt to vcpu via posted interrupt way.
4051  * 1. If target vcpu is running(non-root mode), send posted interrupt
4052  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4053  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4054  * interrupt from PIR in next vmentry.
4055  */
4056 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4057 {
4058         struct vcpu_vmx *vmx = to_vmx(vcpu);
4059         int r;
4060
4061         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4062                 return;
4063
4064         r = pi_test_and_set_on(&vmx->pi_desc);
4065         kvm_make_request(KVM_REQ_EVENT, vcpu);
4066 #ifdef CONFIG_SMP
4067         if (!r && (vcpu->mode == IN_GUEST_MODE))
4068                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4069                                 POSTED_INTR_VECTOR);
4070         else
4071 #endif
4072                 kvm_vcpu_kick(vcpu);
4073 }
4074
4075 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4076 {
4077         struct vcpu_vmx *vmx = to_vmx(vcpu);
4078
4079         if (!pi_test_and_clear_on(&vmx->pi_desc))
4080                 return;
4081
4082         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4083 }
4084
4085 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4086 {
4087         return;
4088 }
4089
4090 /*
4091  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4092  * will not change in the lifetime of the guest.
4093  * Note that host-state that does change is set elsewhere. E.g., host-state
4094  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4095  */
4096 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4097 {
4098         u32 low32, high32;
4099         unsigned long tmpl;
4100         struct desc_ptr dt;
4101
4102         vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4103         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4104         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4105
4106         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4107 #ifdef CONFIG_X86_64
4108         /*
4109          * Load null selectors, so we can avoid reloading them in
4110          * __vmx_load_host_state(), in case userspace uses the null selectors
4111          * too (the expected case).
4112          */
4113         vmcs_write16(HOST_DS_SELECTOR, 0);
4114         vmcs_write16(HOST_ES_SELECTOR, 0);
4115 #else
4116         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4117         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4118 #endif
4119         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4120         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4121
4122         native_store_idt(&dt);
4123         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4124         vmx->host_idt_base = dt.address;
4125
4126         vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4127
4128         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4129         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4130         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4131         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4132
4133         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4134                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4135                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4136         }
4137 }
4138
4139 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4140 {
4141         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4142         if (enable_ept)
4143                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4144         if (is_guest_mode(&vmx->vcpu))
4145                 vmx->vcpu.arch.cr4_guest_owned_bits &=
4146                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4147         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4148 }
4149
4150 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4151 {
4152         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4153
4154         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4155                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4156         return pin_based_exec_ctrl;
4157 }
4158
4159 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4160 {
4161         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4162         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4163                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4164 #ifdef CONFIG_X86_64
4165                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4166                                 CPU_BASED_CR8_LOAD_EXITING;
4167 #endif
4168         }
4169         if (!enable_ept)
4170                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4171                                 CPU_BASED_CR3_LOAD_EXITING  |
4172                                 CPU_BASED_INVLPG_EXITING;
4173         return exec_control;
4174 }
4175
4176 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4177 {
4178         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4179         if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4180                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4181         if (vmx->vpid == 0)
4182                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4183         if (!enable_ept) {
4184                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4185                 enable_unrestricted_guest = 0;
4186                 /* Enable INVPCID for non-ept guests may cause performance regression. */
4187                 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4188         }
4189         if (!enable_unrestricted_guest)
4190                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4191         if (!ple_gap)
4192                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4193         if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4194                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4195                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4196         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4197         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4198            (handle_vmptrld).
4199            We can NOT enable shadow_vmcs here because we don't have yet
4200            a current VMCS12
4201         */
4202         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4203         return exec_control;
4204 }
4205
4206 static void ept_set_mmio_spte_mask(void)
4207 {
4208         /*
4209          * EPT Misconfigurations can be generated if the value of bits 2:0
4210          * of an EPT paging-structure entry is 110b (write/execute).
4211          * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4212          * spte.
4213          */
4214         kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4215 }
4216
4217 /*
4218  * Sets up the vmcs for emulated real mode.
4219  */
4220 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4221 {
4222 #ifdef CONFIG_X86_64
4223         unsigned long a;
4224 #endif
4225         int i;
4226
4227         /* I/O */
4228         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4229         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4230
4231         if (enable_shadow_vmcs) {
4232                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4233                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4234         }
4235         if (cpu_has_vmx_msr_bitmap())
4236                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4237
4238         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4239
4240         /* Control */
4241         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4242
4243         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4244
4245         if (cpu_has_secondary_exec_ctrls()) {
4246                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4247                                 vmx_secondary_exec_control(vmx));
4248         }
4249
4250         if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4251                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4252                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4253                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4254                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4255
4256                 vmcs_write16(GUEST_INTR_STATUS, 0);
4257
4258                 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4259                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4260         }
4261
4262         if (ple_gap) {
4263                 vmcs_write32(PLE_GAP, ple_gap);
4264                 vmcs_write32(PLE_WINDOW, ple_window);
4265         }
4266
4267         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4268         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4269         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4270
4271         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4272         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4273         vmx_set_constant_host_state(vmx);
4274 #ifdef CONFIG_X86_64
4275         rdmsrl(MSR_FS_BASE, a);
4276         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4277         rdmsrl(MSR_GS_BASE, a);
4278         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4279 #else
4280         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4281         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4282 #endif
4283
4284         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4285         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4286         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4287         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4288         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4289
4290         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4291                 u32 msr_low, msr_high;
4292                 u64 host_pat;
4293                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4294                 host_pat = msr_low | ((u64) msr_high << 32);
4295                 /* Write the default value follow host pat */
4296                 vmcs_write64(GUEST_IA32_PAT, host_pat);
4297                 /* Keep arch.pat sync with GUEST_IA32_PAT */
4298                 vmx->vcpu.arch.pat = host_pat;
4299         }
4300
4301         for (i = 0; i < NR_VMX_MSR; ++i) {
4302                 u32 index = vmx_msr_index[i];
4303                 u32 data_low, data_high;
4304                 int j = vmx->nmsrs;
4305
4306                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4307                         continue;
4308                 if (wrmsr_safe(index, data_low, data_high) < 0)
4309                         continue;
4310                 vmx->guest_msrs[j].index = i;
4311                 vmx->guest_msrs[j].data = 0;
4312                 vmx->guest_msrs[j].mask = -1ull;
4313                 ++vmx->nmsrs;
4314         }
4315
4316         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4317
4318         /* 22.2.1, 20.8.1 */
4319         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4320
4321         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4322         set_cr4_guest_host_mask(vmx);
4323
4324         return 0;
4325 }
4326
4327 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4328 {
4329         struct vcpu_vmx *vmx = to_vmx(vcpu);
4330         u64 msr;
4331
4332         vmx->rmode.vm86_active = 0;
4333
4334         vmx->soft_vnmi_blocked = 0;
4335
4336         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4337         kvm_set_cr8(&vmx->vcpu, 0);
4338         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4339         if (kvm_vcpu_is_bsp(&vmx->vcpu))
4340                 msr |= MSR_IA32_APICBASE_BSP;
4341         kvm_set_apic_base(&vmx->vcpu, msr);
4342
4343         vmx_segment_cache_clear(vmx);
4344
4345         seg_setup(VCPU_SREG_CS);
4346         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4347         vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4348
4349         seg_setup(VCPU_SREG_DS);
4350         seg_setup(VCPU_SREG_ES);
4351         seg_setup(VCPU_SREG_FS);
4352         seg_setup(VCPU_SREG_GS);
4353         seg_setup(VCPU_SREG_SS);
4354
4355         vmcs_write16(GUEST_TR_SELECTOR, 0);
4356         vmcs_writel(GUEST_TR_BASE, 0);
4357         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4358         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4359
4360         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4361         vmcs_writel(GUEST_LDTR_BASE, 0);
4362         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4363         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4364
4365         vmcs_write32(GUEST_SYSENTER_CS, 0);
4366         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4367         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4368
4369         vmcs_writel(GUEST_RFLAGS, 0x02);
4370         kvm_rip_write(vcpu, 0xfff0);
4371
4372         vmcs_writel(GUEST_GDTR_BASE, 0);
4373         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4374
4375         vmcs_writel(GUEST_IDTR_BASE, 0);
4376         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4377
4378         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4379         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4380         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4381
4382         /* Special registers */
4383         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4384
4385         setup_msrs(vmx);
4386
4387         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4388
4389         if (cpu_has_vmx_tpr_shadow()) {
4390                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4391                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4392                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4393                                      __pa(vmx->vcpu.arch.apic->regs));
4394                 vmcs_write32(TPR_THRESHOLD, 0);
4395         }
4396
4397         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4398                 vmcs_write64(APIC_ACCESS_ADDR,
4399                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4400
4401         if (vmx_vm_has_apicv(vcpu->kvm))
4402                 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4403
4404         if (vmx->vpid != 0)
4405                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4406
4407         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4408         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4409         vmx_set_cr4(&vmx->vcpu, 0);
4410         vmx_set_efer(&vmx->vcpu, 0);
4411         vmx_fpu_activate(&vmx->vcpu);
4412         update_exception_bitmap(&vmx->vcpu);
4413
4414         vpid_sync_context(vmx);
4415 }
4416
4417 /*
4418  * In nested virtualization, check if L1 asked to exit on external interrupts.
4419  * For most existing hypervisors, this will always return true.
4420  */
4421 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4422 {
4423         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4424                 PIN_BASED_EXT_INTR_MASK;
4425 }
4426
4427 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4428 {
4429         return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4430                 PIN_BASED_NMI_EXITING;
4431 }
4432
4433 static int enable_irq_window(struct kvm_vcpu *vcpu)
4434 {
4435         u32 cpu_based_vm_exec_control;
4436
4437         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4438                 /*
4439                  * We get here if vmx_interrupt_allowed() said we can't
4440                  * inject to L1 now because L2 must run. The caller will have
4441                  * to make L2 exit right after entry, so we can inject to L1
4442                  * more promptly.
4443                  */
4444                 return -EBUSY;
4445
4446         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4447         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4448         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4449         return 0;
4450 }
4451
4452 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4453 {
4454         u32 cpu_based_vm_exec_control;
4455
4456         if (!cpu_has_virtual_nmis())
4457                 return enable_irq_window(vcpu);
4458
4459         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4460                 return enable_irq_window(vcpu);
4461
4462         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4463         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4464         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4465         return 0;
4466 }
4467
4468 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4469 {
4470         struct vcpu_vmx *vmx = to_vmx(vcpu);
4471         uint32_t intr;
4472         int irq = vcpu->arch.interrupt.nr;
4473
4474         trace_kvm_inj_virq(irq);
4475
4476         ++vcpu->stat.irq_injections;
4477         if (vmx->rmode.vm86_active) {
4478                 int inc_eip = 0;
4479                 if (vcpu->arch.interrupt.soft)
4480                         inc_eip = vcpu->arch.event_exit_inst_len;
4481                 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4482                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4483                 return;
4484         }
4485         intr = irq | INTR_INFO_VALID_MASK;
4486         if (vcpu->arch.interrupt.soft) {
4487                 intr |= INTR_TYPE_SOFT_INTR;
4488                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4489                              vmx->vcpu.arch.event_exit_inst_len);
4490         } else
4491                 intr |= INTR_TYPE_EXT_INTR;
4492         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4493 }
4494
4495 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4496 {
4497         struct vcpu_vmx *vmx = to_vmx(vcpu);
4498
4499         if (is_guest_mode(vcpu))
4500                 return;
4501
4502         if (!cpu_has_virtual_nmis()) {
4503                 /*
4504                  * Tracking the NMI-blocked state in software is built upon
4505                  * finding the next open IRQ window. This, in turn, depends on
4506                  * well-behaving guests: They have to keep IRQs disabled at
4507                  * least as long as the NMI handler runs. Otherwise we may
4508                  * cause NMI nesting, maybe breaking the guest. But as this is
4509                  * highly unlikely, we can live with the residual risk.
4510                  */
4511                 vmx->soft_vnmi_blocked = 1;
4512                 vmx->vnmi_blocked_time = 0;
4513         }
4514
4515         ++vcpu->stat.nmi_injections;
4516         vmx->nmi_known_unmasked = false;
4517         if (vmx->rmode.vm86_active) {
4518                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4519                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4520                 return;
4521         }
4522         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4523                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4524 }
4525
4526 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4527 {
4528         if (!cpu_has_virtual_nmis())
4529                 return to_vmx(vcpu)->soft_vnmi_blocked;
4530         if (to_vmx(vcpu)->nmi_known_unmasked)
4531                 return false;
4532         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4533 }
4534
4535 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4536 {
4537         struct vcpu_vmx *vmx = to_vmx(vcpu);
4538
4539         if (!cpu_has_virtual_nmis()) {
4540                 if (vmx->soft_vnmi_blocked != masked) {
4541                         vmx->soft_vnmi_blocked = masked;
4542                         vmx->vnmi_blocked_time = 0;
4543                 }
4544         } else {
4545                 vmx->nmi_known_unmasked = !masked;
4546                 if (masked)
4547                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4548                                       GUEST_INTR_STATE_NMI);
4549                 else
4550                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4551                                         GUEST_INTR_STATE_NMI);
4552         }
4553 }
4554
4555 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4556 {
4557         if (is_guest_mode(vcpu)) {
4558                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4559
4560                 if (to_vmx(vcpu)->nested.nested_run_pending)
4561                         return 0;
4562                 if (nested_exit_on_nmi(vcpu)) {
4563                         nested_vmx_vmexit(vcpu);
4564                         vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4565                         vmcs12->vm_exit_intr_info = NMI_VECTOR |
4566                                 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4567                         /*
4568                          * The NMI-triggered VM exit counts as injection:
4569                          * clear this one and block further NMIs.
4570                          */
4571                         vcpu->arch.nmi_pending = 0;
4572                         vmx_set_nmi_mask(vcpu, true);
4573                         return 0;
4574                 }
4575         }
4576
4577         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4578                 return 0;
4579
4580         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4581                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4582                    | GUEST_INTR_STATE_NMI));
4583 }
4584
4585 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4586 {
4587         if (is_guest_mode(vcpu)) {
4588                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4589
4590                 if (to_vmx(vcpu)->nested.nested_run_pending)
4591                         return 0;
4592                 if (nested_exit_on_intr(vcpu)) {
4593                         nested_vmx_vmexit(vcpu);
4594                         vmcs12->vm_exit_reason =
4595                                 EXIT_REASON_EXTERNAL_INTERRUPT;
4596                         vmcs12->vm_exit_intr_info = 0;
4597                         /*
4598                          * fall through to normal code, but now in L1, not L2
4599                          */
4600                 }
4601         }
4602
4603         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4604                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4605                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4606 }
4607
4608 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4609 {
4610         int ret;
4611         struct kvm_userspace_memory_region tss_mem = {
4612                 .slot = TSS_PRIVATE_MEMSLOT,
4613                 .guest_phys_addr = addr,
4614                 .memory_size = PAGE_SIZE * 3,
4615                 .flags = 0,
4616         };
4617
4618         ret = kvm_set_memory_region(kvm, &tss_mem);
4619         if (ret)
4620                 return ret;
4621         kvm->arch.tss_addr = addr;
4622         if (!init_rmode_tss(kvm))
4623                 return  -ENOMEM;
4624
4625         return 0;
4626 }
4627
4628 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4629 {
4630         switch (vec) {
4631         case BP_VECTOR:
4632                 /*
4633                  * Update instruction length as we may reinject the exception
4634                  * from user space while in guest debugging mode.
4635                  */
4636                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4637                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4638                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4639                         return false;
4640                 /* fall through */
4641         case DB_VECTOR:
4642                 if (vcpu->guest_debug &
4643                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4644                         return false;
4645                 /* fall through */
4646         case DE_VECTOR:
4647         case OF_VECTOR:
4648         case BR_VECTOR:
4649         case UD_VECTOR:
4650         case DF_VECTOR:
4651         case SS_VECTOR:
4652         case GP_VECTOR:
4653         case MF_VECTOR:
4654                 return true;
4655         break;
4656         }
4657         return false;
4658 }
4659
4660 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4661                                   int vec, u32 err_code)
4662 {
4663         /*
4664          * Instruction with address size override prefix opcode 0x67
4665          * Cause the #SS fault with 0 error code in VM86 mode.
4666          */
4667         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4668                 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4669                         if (vcpu->arch.halt_request) {
4670                                 vcpu->arch.halt_request = 0;
4671                                 return kvm_emulate_halt(vcpu);
4672                         }
4673                         return 1;
4674                 }
4675                 return 0;
4676         }
4677
4678         /*
4679          * Forward all other exceptions that are valid in real mode.
4680          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4681          *        the required debugging infrastructure rework.
4682          */
4683         kvm_queue_exception(vcpu, vec);
4684         return 1;
4685 }
4686
4687 /*
4688  * Trigger machine check on the host. We assume all the MSRs are already set up
4689  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4690  * We pass a fake environment to the machine check handler because we want
4691  * the guest to be always treated like user space, no matter what context
4692  * it used internally.
4693  */
4694 static void kvm_machine_check(void)
4695 {
4696 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4697         struct pt_regs regs = {
4698                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4699                 .flags = X86_EFLAGS_IF,
4700         };
4701
4702         do_machine_check(&regs, 0);
4703 #endif
4704 }
4705
4706 static int handle_machine_check(struct kvm_vcpu *vcpu)
4707 {
4708         /* already handled by vcpu_run */
4709         return 1;
4710 }
4711
4712 static int handle_exception(struct kvm_vcpu *vcpu)
4713 {
4714         struct vcpu_vmx *vmx = to_vmx(vcpu);
4715         struct kvm_run *kvm_run = vcpu->run;
4716         u32 intr_info, ex_no, error_code;
4717         unsigned long cr2, rip, dr6;
4718         u32 vect_info;
4719         enum emulation_result er;
4720
4721         vect_info = vmx->idt_vectoring_info;
4722         intr_info = vmx->exit_intr_info;
4723
4724         if (is_machine_check(intr_info))
4725                 return handle_machine_check(vcpu);
4726
4727         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4728                 return 1;  /* already handled by vmx_vcpu_run() */
4729
4730         if (is_no_device(intr_info)) {
4731                 vmx_fpu_activate(vcpu);
4732                 return 1;
4733         }
4734
4735         if (is_invalid_opcode(intr_info)) {
4736                 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4737                 if (er != EMULATE_DONE)
4738                         kvm_queue_exception(vcpu, UD_VECTOR);
4739                 return 1;
4740         }
4741
4742         error_code = 0;
4743         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4744                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4745
4746         /*
4747          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4748          * MMIO, it is better to report an internal error.
4749          * See the comments in vmx_handle_exit.
4750          */
4751         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4752             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4753                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4754                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4755                 vcpu->run->internal.ndata = 2;
4756                 vcpu->run->internal.data[0] = vect_info;
4757                 vcpu->run->internal.data[1] = intr_info;
4758                 return 0;
4759         }
4760
4761         if (is_page_fault(intr_info)) {
4762                 /* EPT won't cause page fault directly */
4763                 BUG_ON(enable_ept);
4764                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4765                 trace_kvm_page_fault(cr2, error_code);
4766
4767                 if (kvm_event_needs_reinjection(vcpu))
4768                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
4769                 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4770         }
4771
4772         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4773
4774         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4775                 return handle_rmode_exception(vcpu, ex_no, error_code);
4776
4777         switch (ex_no) {
4778         case DB_VECTOR:
4779                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4780                 if (!(vcpu->guest_debug &
4781                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4782                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4783                         kvm_queue_exception(vcpu, DB_VECTOR);
4784                         return 1;
4785                 }
4786                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4787                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4788                 /* fall through */
4789         case BP_VECTOR:
4790                 /*
4791                  * Update instruction length as we may reinject #BP from
4792                  * user space while in guest debugging mode. Reading it for
4793                  * #DB as well causes no harm, it is not used in that case.
4794                  */
4795                 vmx->vcpu.arch.event_exit_inst_len =
4796                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4797                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4798                 rip = kvm_rip_read(vcpu);
4799                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4800                 kvm_run->debug.arch.exception = ex_no;
4801                 break;
4802         default:
4803                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4804                 kvm_run->ex.exception = ex_no;
4805                 kvm_run->ex.error_code = error_code;
4806                 break;
4807         }
4808         return 0;
4809 }
4810
4811 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4812 {
4813         ++vcpu->stat.irq_exits;
4814         return 1;
4815 }
4816
4817 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4818 {
4819         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4820         return 0;
4821 }
4822
4823 static int handle_io(struct kvm_vcpu *vcpu)
4824 {
4825         unsigned long exit_qualification;
4826         int size, in, string;
4827         unsigned port;
4828
4829         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4830         string = (exit_qualification & 16) != 0;
4831         in = (exit_qualification & 8) != 0;
4832
4833         ++vcpu->stat.io_exits;
4834
4835         if (string || in)
4836                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4837
4838         port = exit_qualification >> 16;
4839         size = (exit_qualification & 7) + 1;
4840         skip_emulated_instruction(vcpu);
4841
4842         return kvm_fast_pio_out(vcpu, size, port);
4843 }
4844
4845 static void
4846 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4847 {
4848         /*
4849          * Patch in the VMCALL instruction:
4850          */
4851         hypercall[0] = 0x0f;
4852         hypercall[1] = 0x01;
4853         hypercall[2] = 0xc1;
4854 }
4855
4856 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4857 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4858 {
4859         if (is_guest_mode(vcpu)) {
4860                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4861                 unsigned long orig_val = val;
4862
4863                 /*
4864                  * We get here when L2 changed cr0 in a way that did not change
4865                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4866                  * but did change L0 shadowed bits. So we first calculate the
4867                  * effective cr0 value that L1 would like to write into the
4868                  * hardware. It consists of the L2-owned bits from the new
4869                  * value combined with the L1-owned bits from L1's guest_cr0.
4870                  */
4871                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4872                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4873
4874                 /* TODO: will have to take unrestricted guest mode into
4875                  * account */
4876                 if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
4877                         return 1;
4878
4879                 if (kvm_set_cr0(vcpu, val))
4880                         return 1;
4881                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4882                 return 0;
4883         } else {
4884                 if (to_vmx(vcpu)->nested.vmxon &&
4885                     ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4886                         return 1;
4887                 return kvm_set_cr0(vcpu, val);
4888         }
4889 }
4890
4891 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4892 {
4893         if (is_guest_mode(vcpu)) {
4894                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4895                 unsigned long orig_val = val;
4896
4897                 /* analogously to handle_set_cr0 */
4898                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4899                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4900                 if (kvm_set_cr4(vcpu, val))
4901                         return 1;
4902                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4903                 return 0;
4904         } else
4905                 return kvm_set_cr4(vcpu, val);
4906 }
4907
4908 /* called to set cr0 as approriate for clts instruction exit. */
4909 static void handle_clts(struct kvm_vcpu *vcpu)
4910 {
4911         if (is_guest_mode(vcpu)) {
4912                 /*
4913                  * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4914                  * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4915                  * just pretend it's off (also in arch.cr0 for fpu_activate).
4916                  */
4917                 vmcs_writel(CR0_READ_SHADOW,
4918                         vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4919                 vcpu->arch.cr0 &= ~X86_CR0_TS;
4920         } else
4921                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4922 }
4923
4924 static int handle_cr(struct kvm_vcpu *vcpu)
4925 {
4926         unsigned long exit_qualification, val;
4927         int cr;
4928         int reg;
4929         int err;
4930
4931         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4932         cr = exit_qualification & 15;
4933         reg = (exit_qualification >> 8) & 15;
4934         switch ((exit_qualification >> 4) & 3) {
4935         case 0: /* mov to cr */
4936                 val = kvm_register_read(vcpu, reg);
4937                 trace_kvm_cr_write(cr, val);
4938                 switch (cr) {
4939                 case 0:
4940                         err = handle_set_cr0(vcpu, val);
4941                         kvm_complete_insn_gp(vcpu, err);
4942                         return 1;
4943                 case 3:
4944                         err = kvm_set_cr3(vcpu, val);
4945                         kvm_complete_insn_gp(vcpu, err);
4946                         return 1;
4947                 case 4:
4948                         err = handle_set_cr4(vcpu, val);
4949                         kvm_complete_insn_gp(vcpu, err);
4950                         return 1;
4951                 case 8: {
4952                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4953                                 u8 cr8 = kvm_register_read(vcpu, reg);
4954                                 err = kvm_set_cr8(vcpu, cr8);
4955                                 kvm_complete_insn_gp(vcpu, err);
4956                                 if (irqchip_in_kernel(vcpu->kvm))
4957                                         return 1;
4958                                 if (cr8_prev <= cr8)
4959                                         return 1;
4960                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4961                                 return 0;
4962                         }
4963                 }
4964                 break;
4965         case 2: /* clts */
4966                 handle_clts(vcpu);
4967                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4968                 skip_emulated_instruction(vcpu);
4969                 vmx_fpu_activate(vcpu);
4970                 return 1;
4971         case 1: /*mov from cr*/
4972                 switch (cr) {
4973                 case 3:
4974                         val = kvm_read_cr3(vcpu);
4975                         kvm_register_write(vcpu, reg, val);
4976                         trace_kvm_cr_read(cr, val);
4977                         skip_emulated_instruction(vcpu);
4978                         return 1;
4979                 case 8:
4980                         val = kvm_get_cr8(vcpu);
4981                         kvm_register_write(vcpu, reg, val);
4982                         trace_kvm_cr_read(cr, val);
4983                         skip_emulated_instruction(vcpu);
4984                         return 1;
4985                 }
4986                 break;
4987         case 3: /* lmsw */
4988                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4989                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4990                 kvm_lmsw(vcpu, val);
4991
4992                 skip_emulated_instruction(vcpu);
4993                 return 1;
4994         default:
4995                 break;
4996         }
4997         vcpu->run->exit_reason = 0;
4998         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4999                (int)(exit_qualification >> 4) & 3, cr);
5000         return 0;
5001 }
5002
5003 static int handle_dr(struct kvm_vcpu *vcpu)
5004 {
5005         unsigned long exit_qualification;
5006         int dr, reg;
5007
5008         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5009         if (!kvm_require_cpl(vcpu, 0))
5010                 return 1;
5011         dr = vmcs_readl(GUEST_DR7);
5012         if (dr & DR7_GD) {
5013                 /*
5014                  * As the vm-exit takes precedence over the debug trap, we
5015                  * need to emulate the latter, either for the host or the
5016                  * guest debugging itself.
5017                  */
5018                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5019                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5020                         vcpu->run->debug.arch.dr7 = dr;
5021                         vcpu->run->debug.arch.pc =
5022                                 vmcs_readl(GUEST_CS_BASE) +
5023                                 vmcs_readl(GUEST_RIP);
5024                         vcpu->run->debug.arch.exception = DB_VECTOR;
5025                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5026                         return 0;
5027                 } else {
5028                         vcpu->arch.dr7 &= ~DR7_GD;
5029                         vcpu->arch.dr6 |= DR6_BD;
5030                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5031                         kvm_queue_exception(vcpu, DB_VECTOR);
5032                         return 1;
5033                 }
5034         }
5035
5036         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5037         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5038         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5039         if (exit_qualification & TYPE_MOV_FROM_DR) {
5040                 unsigned long val;
5041                 if (!kvm_get_dr(vcpu, dr, &val))
5042                         kvm_register_write(vcpu, reg, val);
5043         } else
5044                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
5045         skip_emulated_instruction(vcpu);
5046         return 1;
5047 }
5048
5049 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5050 {
5051         vmcs_writel(GUEST_DR7, val);
5052 }
5053
5054 static int handle_cpuid(struct kvm_vcpu *vcpu)
5055 {
5056         kvm_emulate_cpuid(vcpu);
5057         return 1;
5058 }
5059
5060 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5061 {
5062         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5063         u64 data;
5064
5065         if (vmx_get_msr(vcpu, ecx, &data)) {
5066                 trace_kvm_msr_read_ex(ecx);
5067                 kvm_inject_gp(vcpu, 0);
5068                 return 1;
5069         }
5070
5071         trace_kvm_msr_read(ecx, data);
5072
5073         /* FIXME: handling of bits 32:63 of rax, rdx */
5074         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5075         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5076         skip_emulated_instruction(vcpu);
5077         return 1;
5078 }
5079
5080 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5081 {
5082         struct msr_data msr;
5083         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5084         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5085                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5086
5087         msr.data = data;
5088         msr.index = ecx;
5089         msr.host_initiated = false;
5090         if (vmx_set_msr(vcpu, &msr) != 0) {
5091                 trace_kvm_msr_write_ex(ecx, data);
5092                 kvm_inject_gp(vcpu, 0);
5093                 return 1;
5094         }
5095
5096         trace_kvm_msr_write(ecx, data);
5097         skip_emulated_instruction(vcpu);
5098         return 1;
5099 }
5100
5101 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5102 {
5103         kvm_make_request(KVM_REQ_EVENT, vcpu);
5104         return 1;
5105 }
5106
5107 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5108 {
5109         u32 cpu_based_vm_exec_control;
5110
5111         /* clear pending irq */
5112         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5113         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5114         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5115
5116         kvm_make_request(KVM_REQ_EVENT, vcpu);
5117
5118         ++vcpu->stat.irq_window_exits;
5119
5120         /*
5121          * If the user space waits to inject interrupts, exit as soon as
5122          * possible
5123          */
5124         if (!irqchip_in_kernel(vcpu->kvm) &&
5125             vcpu->run->request_interrupt_window &&
5126             !kvm_cpu_has_interrupt(vcpu)) {
5127                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5128                 return 0;
5129         }
5130         return 1;
5131 }
5132
5133 static int handle_halt(struct kvm_vcpu *vcpu)
5134 {
5135         skip_emulated_instruction(vcpu);
5136         return kvm_emulate_halt(vcpu);
5137 }
5138
5139 static int handle_vmcall(struct kvm_vcpu *vcpu)
5140 {
5141         skip_emulated_instruction(vcpu);
5142         kvm_emulate_hypercall(vcpu);
5143         return 1;
5144 }
5145
5146 static int handle_invd(struct kvm_vcpu *vcpu)
5147 {
5148         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5149 }
5150
5151 static int handle_invlpg(struct kvm_vcpu *vcpu)
5152 {
5153         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5154
5155         kvm_mmu_invlpg(vcpu, exit_qualification);
5156         skip_emulated_instruction(vcpu);
5157         return 1;
5158 }
5159
5160 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5161 {
5162         int err;
5163
5164         err = kvm_rdpmc(vcpu);
5165         kvm_complete_insn_gp(vcpu, err);
5166
5167         return 1;
5168 }
5169
5170 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5171 {
5172         skip_emulated_instruction(vcpu);
5173         kvm_emulate_wbinvd(vcpu);
5174         return 1;
5175 }
5176
5177 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5178 {
5179         u64 new_bv = kvm_read_edx_eax(vcpu);
5180         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5181
5182         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5183                 skip_emulated_instruction(vcpu);
5184         return 1;
5185 }
5186
5187 static int handle_apic_access(struct kvm_vcpu *vcpu)
5188 {
5189         if (likely(fasteoi)) {
5190                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5191                 int access_type, offset;
5192
5193                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5194                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5195                 /*
5196                  * Sane guest uses MOV to write EOI, with written value
5197                  * not cared. So make a short-circuit here by avoiding
5198                  * heavy instruction emulation.
5199                  */
5200                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5201                     (offset == APIC_EOI)) {
5202                         kvm_lapic_set_eoi(vcpu);
5203                         skip_emulated_instruction(vcpu);
5204                         return 1;
5205                 }
5206         }
5207         return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5208 }
5209
5210 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5211 {
5212         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5213         int vector = exit_qualification & 0xff;
5214
5215         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5216         kvm_apic_set_eoi_accelerated(vcpu, vector);
5217         return 1;
5218 }
5219
5220 static int handle_apic_write(struct kvm_vcpu *vcpu)
5221 {
5222         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5223         u32 offset = exit_qualification & 0xfff;
5224
5225         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5226         kvm_apic_write_nodecode(vcpu, offset);
5227         return 1;
5228 }
5229
5230 static int handle_task_switch(struct kvm_vcpu *vcpu)
5231 {
5232         struct vcpu_vmx *vmx = to_vmx(vcpu);
5233         unsigned long exit_qualification;
5234         bool has_error_code = false;
5235         u32 error_code = 0;
5236         u16 tss_selector;
5237         int reason, type, idt_v, idt_index;
5238
5239         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5240         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5241         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5242
5243         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5244
5245         reason = (u32)exit_qualification >> 30;
5246         if (reason == TASK_SWITCH_GATE && idt_v) {
5247                 switch (type) {
5248                 case INTR_TYPE_NMI_INTR:
5249                         vcpu->arch.nmi_injected = false;
5250                         vmx_set_nmi_mask(vcpu, true);
5251                         break;
5252                 case INTR_TYPE_EXT_INTR:
5253                 case INTR_TYPE_SOFT_INTR:
5254                         kvm_clear_interrupt_queue(vcpu);
5255                         break;
5256                 case INTR_TYPE_HARD_EXCEPTION:
5257                         if (vmx->idt_vectoring_info &
5258                             VECTORING_INFO_DELIVER_CODE_MASK) {
5259                                 has_error_code = true;
5260                                 error_code =
5261                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5262                         }
5263                         /* fall through */
5264                 case INTR_TYPE_SOFT_EXCEPTION:
5265                         kvm_clear_exception_queue(vcpu);
5266                         break;
5267                 default:
5268                         break;
5269                 }
5270         }
5271         tss_selector = exit_qualification;
5272
5273         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5274                        type != INTR_TYPE_EXT_INTR &&
5275                        type != INTR_TYPE_NMI_INTR))
5276                 skip_emulated_instruction(vcpu);
5277
5278         if (kvm_task_switch(vcpu, tss_selector,
5279                             type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5280                             has_error_code, error_code) == EMULATE_FAIL) {
5281                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5282                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5283                 vcpu->run->internal.ndata = 0;
5284                 return 0;
5285         }
5286
5287         /* clear all local breakpoint enable flags */
5288         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5289
5290         /*
5291          * TODO: What about debug traps on tss switch?
5292          *       Are we supposed to inject them and update dr6?
5293          */
5294
5295         return 1;
5296 }
5297
5298 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5299 {
5300         unsigned long exit_qualification;
5301         gpa_t gpa;
5302         u32 error_code;
5303         int gla_validity;
5304
5305         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5306
5307         gla_validity = (exit_qualification >> 7) & 0x3;
5308         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5309                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5310                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5311                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5312                         vmcs_readl(GUEST_LINEAR_ADDRESS));
5313                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5314                         (long unsigned int)exit_qualification);
5315                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5316                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5317                 return 0;
5318         }
5319
5320         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5321         trace_kvm_page_fault(gpa, exit_qualification);
5322
5323         /* It is a write fault? */
5324         error_code = exit_qualification & (1U << 1);
5325         /* It is a fetch fault? */
5326         error_code |= (exit_qualification & (1U << 2)) << 2;
5327         /* ept page table is present? */
5328         error_code |= (exit_qualification >> 3) & 0x1;
5329
5330         vcpu->arch.exit_qualification = exit_qualification;
5331
5332         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5333 }
5334
5335 static u64 ept_rsvd_mask(u64 spte, int level)
5336 {
5337         int i;
5338         u64 mask = 0;
5339
5340         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5341                 mask |= (1ULL << i);
5342
5343         if (level > 2)
5344                 /* bits 7:3 reserved */
5345                 mask |= 0xf8;
5346         else if (level == 2) {
5347                 if (spte & (1ULL << 7))
5348                         /* 2MB ref, bits 20:12 reserved */
5349                         mask |= 0x1ff000;
5350                 else
5351                         /* bits 6:3 reserved */
5352                         mask |= 0x78;
5353         }
5354
5355         return mask;
5356 }
5357
5358 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5359                                        int level)
5360 {
5361         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5362
5363         /* 010b (write-only) */
5364         WARN_ON((spte & 0x7) == 0x2);
5365
5366         /* 110b (write/execute) */
5367         WARN_ON((spte & 0x7) == 0x6);
5368
5369         /* 100b (execute-only) and value not supported by logical processor */
5370         if (!cpu_has_vmx_ept_execute_only())
5371                 WARN_ON((spte & 0x7) == 0x4);
5372
5373         /* not 000b */
5374         if ((spte & 0x7)) {
5375                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5376
5377                 if (rsvd_bits != 0) {
5378                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5379                                          __func__, rsvd_bits);
5380                         WARN_ON(1);
5381                 }
5382
5383                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5384                         u64 ept_mem_type = (spte & 0x38) >> 3;
5385
5386                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
5387                             ept_mem_type == 7) {
5388                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5389                                                 __func__, ept_mem_type);
5390                                 WARN_ON(1);
5391                         }
5392                 }
5393         }
5394 }
5395
5396 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5397 {
5398         u64 sptes[4];
5399         int nr_sptes, i, ret;
5400         gpa_t gpa;
5401
5402         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5403
5404         ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5405         if (likely(ret == RET_MMIO_PF_EMULATE))
5406                 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5407                                               EMULATE_DONE;
5408
5409         if (unlikely(ret == RET_MMIO_PF_INVALID))
5410                 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5411
5412         if (unlikely(ret == RET_MMIO_PF_RETRY))
5413                 return 1;
5414
5415         /* It is the real ept misconfig */
5416         printk(KERN_ERR "EPT: Misconfiguration.\n");
5417         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5418
5419         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5420
5421         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5422                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5423
5424         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5425         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5426
5427         return 0;
5428 }
5429
5430 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5431 {
5432         u32 cpu_based_vm_exec_control;
5433
5434         /* clear pending NMI */
5435         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5436         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5437         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5438         ++vcpu->stat.nmi_window_exits;
5439         kvm_make_request(KVM_REQ_EVENT, vcpu);
5440
5441         return 1;
5442 }
5443
5444 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5445 {
5446         struct vcpu_vmx *vmx = to_vmx(vcpu);
5447         enum emulation_result err = EMULATE_DONE;
5448         int ret = 1;
5449         u32 cpu_exec_ctrl;
5450         bool intr_window_requested;
5451         unsigned count = 130;
5452
5453         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5454         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5455
5456         while (!guest_state_valid(vcpu) && count-- != 0) {
5457                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5458                         return handle_interrupt_window(&vmx->vcpu);
5459
5460                 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5461                         return 1;
5462
5463                 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5464
5465                 if (err == EMULATE_USER_EXIT) {
5466                         ret = 0;
5467                         goto out;
5468                 }
5469
5470                 if (err != EMULATE_DONE) {
5471                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5472                         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5473                         vcpu->run->internal.ndata = 0;
5474                         return 0;
5475                 }
5476
5477                 if (vcpu->arch.halt_request) {
5478                         vcpu->arch.halt_request = 0;
5479                         ret = kvm_emulate_halt(vcpu);
5480                         goto out;
5481                 }
5482
5483                 if (signal_pending(current))
5484                         goto out;
5485                 if (need_resched())
5486                         schedule();
5487         }
5488
5489         vmx->emulation_required = emulation_required(vcpu);
5490 out:
5491         return ret;
5492 }
5493
5494 /*
5495  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5496  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5497  */
5498 static int handle_pause(struct kvm_vcpu *vcpu)
5499 {
5500         skip_emulated_instruction(vcpu);
5501         kvm_vcpu_on_spin(vcpu);
5502
5503         return 1;
5504 }
5505
5506 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5507 {
5508         kvm_queue_exception(vcpu, UD_VECTOR);
5509         return 1;
5510 }
5511
5512 /*
5513  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5514  * We could reuse a single VMCS for all the L2 guests, but we also want the
5515  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5516  * allows keeping them loaded on the processor, and in the future will allow
5517  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5518  * every entry if they never change.
5519  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5520  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5521  *
5522  * The following functions allocate and free a vmcs02 in this pool.
5523  */
5524
5525 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5526 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5527 {
5528         struct vmcs02_list *item;
5529         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5530                 if (item->vmptr == vmx->nested.current_vmptr) {
5531                         list_move(&item->list, &vmx->nested.vmcs02_pool);
5532                         return &item->vmcs02;
5533                 }
5534
5535         if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5536                 /* Recycle the least recently used VMCS. */
5537                 item = list_entry(vmx->nested.vmcs02_pool.prev,
5538                         struct vmcs02_list, list);
5539                 item->vmptr = vmx->nested.current_vmptr;
5540                 list_move(&item->list, &vmx->nested.vmcs02_pool);
5541                 return &item->vmcs02;
5542         }
5543
5544         /* Create a new VMCS */
5545         item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5546         if (!item)
5547                 return NULL;
5548         item->vmcs02.vmcs = alloc_vmcs();
5549         if (!item->vmcs02.vmcs) {
5550                 kfree(item);
5551                 return NULL;
5552         }
5553         loaded_vmcs_init(&item->vmcs02);
5554         item->vmptr = vmx->nested.current_vmptr;
5555         list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5556         vmx->nested.vmcs02_num++;
5557         return &item->vmcs02;
5558 }
5559
5560 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5561 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5562 {
5563         struct vmcs02_list *item;
5564         list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5565                 if (item->vmptr == vmptr) {
5566                         free_loaded_vmcs(&item->vmcs02);
5567                         list_del(&item->list);
5568                         kfree(item);
5569                         vmx->nested.vmcs02_num--;
5570                         return;
5571                 }
5572 }
5573
5574 /*
5575  * Free all VMCSs saved for this vcpu, except the one pointed by
5576  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5577  * currently used, if running L2), and vmcs01 when running L2.
5578  */
5579 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5580 {
5581         struct vmcs02_list *item, *n;
5582         list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5583                 if (vmx->loaded_vmcs != &item->vmcs02)
5584                         free_loaded_vmcs(&item->vmcs02);
5585                 list_del(&item->list);
5586                 kfree(item);
5587         }
5588         vmx->nested.vmcs02_num = 0;
5589
5590         if (vmx->loaded_vmcs != &vmx->vmcs01)
5591                 free_loaded_vmcs(&vmx->vmcs01);
5592 }
5593
5594 /*
5595  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5596  * set the success or error code of an emulated VMX instruction, as specified
5597  * by Vol 2B, VMX Instruction Reference, "Conventions".
5598  */
5599 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5600 {
5601         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5602                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5603                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5604 }
5605
5606 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5607 {
5608         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5609                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5610                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5611                         | X86_EFLAGS_CF);
5612 }
5613
5614 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5615                                         u32 vm_instruction_error)
5616 {
5617         if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5618                 /*
5619                  * failValid writes the error number to the current VMCS, which
5620                  * can't be done there isn't a current VMCS.
5621                  */
5622                 nested_vmx_failInvalid(vcpu);
5623                 return;
5624         }
5625         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5626                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5627                             X86_EFLAGS_SF | X86_EFLAGS_OF))
5628                         | X86_EFLAGS_ZF);
5629         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5630         /*
5631          * We don't need to force a shadow sync because
5632          * VM_INSTRUCTION_ERROR is not shadowed
5633          */
5634 }
5635
5636 /*
5637  * Emulate the VMXON instruction.
5638  * Currently, we just remember that VMX is active, and do not save or even
5639  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5640  * do not currently need to store anything in that guest-allocated memory
5641  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5642  * argument is different from the VMXON pointer (which the spec says they do).
5643  */
5644 static int handle_vmon(struct kvm_vcpu *vcpu)
5645 {
5646         struct kvm_segment cs;
5647         struct vcpu_vmx *vmx = to_vmx(vcpu);
5648         struct vmcs *shadow_vmcs;
5649         const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5650                 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5651
5652         /* The Intel VMX Instruction Reference lists a bunch of bits that
5653          * are prerequisite to running VMXON, most notably cr4.VMXE must be
5654          * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5655          * Otherwise, we should fail with #UD. We test these now:
5656          */
5657         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5658             !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5659             (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5660                 kvm_queue_exception(vcpu, UD_VECTOR);
5661                 return 1;
5662         }
5663
5664         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5665         if (is_long_mode(vcpu) && !cs.l) {
5666                 kvm_queue_exception(vcpu, UD_VECTOR);
5667                 return 1;
5668         }
5669
5670         if (vmx_get_cpl(vcpu)) {
5671                 kvm_inject_gp(vcpu, 0);
5672                 return 1;
5673         }
5674         if (vmx->nested.vmxon) {
5675                 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5676                 skip_emulated_instruction(vcpu);
5677                 return 1;
5678         }
5679
5680         if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5681                         != VMXON_NEEDED_FEATURES) {
5682                 kvm_inject_gp(vcpu, 0);
5683                 return 1;
5684         }
5685
5686         if (enable_shadow_vmcs) {
5687                 shadow_vmcs = alloc_vmcs();
5688                 if (!shadow_vmcs)
5689                         return -ENOMEM;
5690                 /* mark vmcs as shadow */
5691                 shadow_vmcs->revision_id |= (1u << 31);
5692                 /* init shadow vmcs */
5693                 vmcs_clear(shadow_vmcs);
5694                 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5695         }
5696
5697         INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5698         vmx->nested.vmcs02_num = 0;
5699
5700         vmx->nested.vmxon = true;
5701
5702         skip_emulated_instruction(vcpu);
5703         nested_vmx_succeed(vcpu);
5704         return 1;
5705 }
5706
5707 /*
5708  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5709  * for running VMX instructions (except VMXON, whose prerequisites are
5710  * slightly different). It also specifies what exception to inject otherwise.
5711  */
5712 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5713 {
5714         struct kvm_segment cs;
5715         struct vcpu_vmx *vmx = to_vmx(vcpu);
5716
5717         if (!vmx->nested.vmxon) {
5718                 kvm_queue_exception(vcpu, UD_VECTOR);
5719                 return 0;
5720         }
5721
5722         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5723         if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5724             (is_long_mode(vcpu) && !cs.l)) {
5725                 kvm_queue_exception(vcpu, UD_VECTOR);
5726                 return 0;
5727         }
5728
5729         if (vmx_get_cpl(vcpu)) {
5730                 kvm_inject_gp(vcpu, 0);
5731                 return 0;
5732         }
5733
5734         return 1;
5735 }
5736
5737 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5738 {
5739         u32 exec_control;
5740         if (enable_shadow_vmcs) {
5741                 if (vmx->nested.current_vmcs12 != NULL) {
5742                         /* copy to memory all shadowed fields in case
5743                            they were modified */
5744                         copy_shadow_to_vmcs12(vmx);
5745                         vmx->nested.sync_shadow_vmcs = false;
5746                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5747                         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5748                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5749                         vmcs_write64(VMCS_LINK_POINTER, -1ull);
5750                 }
5751         }
5752         kunmap(vmx->nested.current_vmcs12_page);
5753         nested_release_page(vmx->nested.current_vmcs12_page);
5754 }
5755
5756 /*
5757  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5758  * just stops using VMX.
5759  */
5760 static void free_nested(struct vcpu_vmx *vmx)
5761 {
5762         if (!vmx->nested.vmxon)
5763                 return;
5764         vmx->nested.vmxon = false;
5765         if (vmx->nested.current_vmptr != -1ull) {
5766                 nested_release_vmcs12(vmx);
5767                 vmx->nested.current_vmptr = -1ull;
5768                 vmx->nested.current_vmcs12 = NULL;
5769         }
5770         if (enable_shadow_vmcs)
5771                 free_vmcs(vmx->nested.current_shadow_vmcs);
5772         /* Unpin physical memory we referred to in current vmcs02 */
5773         if (vmx->nested.apic_access_page) {
5774                 nested_release_page(vmx->nested.apic_access_page);
5775                 vmx->nested.apic_access_page = 0;
5776         }
5777
5778         nested_free_all_saved_vmcss(vmx);
5779 }
5780
5781 /* Emulate the VMXOFF instruction */
5782 static int handle_vmoff(struct kvm_vcpu *vcpu)
5783 {
5784         if (!nested_vmx_check_permission(vcpu))
5785                 return 1;
5786         free_nested(to_vmx(vcpu));
5787         skip_emulated_instruction(vcpu);
5788         nested_vmx_succeed(vcpu);
5789         return 1;
5790 }
5791
5792 /*
5793  * Decode the memory-address operand of a vmx instruction, as recorded on an
5794  * exit caused by such an instruction (run by a guest hypervisor).
5795  * On success, returns 0. When the operand is invalid, returns 1 and throws
5796  * #UD or #GP.
5797  */
5798 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5799                                  unsigned long exit_qualification,
5800                                  u32 vmx_instruction_info, gva_t *ret)
5801 {
5802         /*
5803          * According to Vol. 3B, "Information for VM Exits Due to Instruction
5804          * Execution", on an exit, vmx_instruction_info holds most of the
5805          * addressing components of the operand. Only the displacement part
5806          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5807          * For how an actual address is calculated from all these components,
5808          * refer to Vol. 1, "Operand Addressing".
5809          */
5810         int  scaling = vmx_instruction_info & 3;
5811         int  addr_size = (vmx_instruction_info >> 7) & 7;
5812         bool is_reg = vmx_instruction_info & (1u << 10);
5813         int  seg_reg = (vmx_instruction_info >> 15) & 7;
5814         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5815         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5816         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5817         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5818
5819         if (is_reg) {
5820                 kvm_queue_exception(vcpu, UD_VECTOR);
5821                 return 1;
5822         }
5823
5824         /* Addr = segment_base + offset */
5825         /* offset = base + [index * scale] + displacement */
5826         *ret = vmx_get_segment_base(vcpu, seg_reg);
5827         if (base_is_valid)
5828                 *ret += kvm_register_read(vcpu, base_reg);
5829         if (index_is_valid)
5830                 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5831         *ret += exit_qualification; /* holds the displacement */
5832
5833         if (addr_size == 1) /* 32 bit */
5834                 *ret &= 0xffffffff;
5835
5836         /*
5837          * TODO: throw #GP (and return 1) in various cases that the VM*
5838          * instructions require it - e.g., offset beyond segment limit,
5839          * unusable or unreadable/unwritable segment, non-canonical 64-bit
5840          * address, and so on. Currently these are not checked.
5841          */
5842         return 0;
5843 }
5844
5845 /* Emulate the VMCLEAR instruction */
5846 static int handle_vmclear(struct kvm_vcpu *vcpu)
5847 {
5848         struct vcpu_vmx *vmx = to_vmx(vcpu);
5849         gva_t gva;
5850         gpa_t vmptr;
5851         struct vmcs12 *vmcs12;
5852         struct page *page;
5853         struct x86_exception e;
5854
5855         if (!nested_vmx_check_permission(vcpu))
5856                 return 1;
5857
5858         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5859                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5860                 return 1;
5861
5862         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5863                                 sizeof(vmptr), &e)) {
5864                 kvm_inject_page_fault(vcpu, &e);
5865                 return 1;
5866         }
5867
5868         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5869                 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5870                 skip_emulated_instruction(vcpu);
5871                 return 1;
5872         }
5873
5874         if (vmptr == vmx->nested.current_vmptr) {
5875                 nested_release_vmcs12(vmx);
5876                 vmx->nested.current_vmptr = -1ull;
5877                 vmx->nested.current_vmcs12 = NULL;
5878         }
5879
5880         page = nested_get_page(vcpu, vmptr);
5881         if (page == NULL) {
5882                 /*
5883                  * For accurate processor emulation, VMCLEAR beyond available
5884                  * physical memory should do nothing at all. However, it is
5885                  * possible that a nested vmx bug, not a guest hypervisor bug,
5886                  * resulted in this case, so let's shut down before doing any
5887                  * more damage:
5888                  */
5889                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5890                 return 1;
5891         }
5892         vmcs12 = kmap(page);
5893         vmcs12->launch_state = 0;
5894         kunmap(page);
5895         nested_release_page(page);
5896
5897         nested_free_vmcs02(vmx, vmptr);
5898
5899         skip_emulated_instruction(vcpu);
5900         nested_vmx_succeed(vcpu);
5901         return 1;
5902 }
5903
5904 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5905
5906 /* Emulate the VMLAUNCH instruction */
5907 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5908 {
5909         return nested_vmx_run(vcpu, true);
5910 }
5911
5912 /* Emulate the VMRESUME instruction */
5913 static int handle_vmresume(struct kvm_vcpu *vcpu)
5914 {
5915
5916         return nested_vmx_run(vcpu, false);
5917 }
5918
5919 enum vmcs_field_type {
5920         VMCS_FIELD_TYPE_U16 = 0,
5921         VMCS_FIELD_TYPE_U64 = 1,
5922         VMCS_FIELD_TYPE_U32 = 2,
5923         VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5924 };
5925
5926 static inline int vmcs_field_type(unsigned long field)
5927 {
5928         if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5929                 return VMCS_FIELD_TYPE_U32;
5930         return (field >> 13) & 0x3 ;
5931 }
5932
5933 static inline int vmcs_field_readonly(unsigned long field)
5934 {
5935         return (((field >> 10) & 0x3) == 1);
5936 }
5937
5938 /*
5939  * Read a vmcs12 field. Since these can have varying lengths and we return
5940  * one type, we chose the biggest type (u64) and zero-extend the return value
5941  * to that size. Note that the caller, handle_vmread, might need to use only
5942  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5943  * 64-bit fields are to be returned).
5944  */
5945 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5946                                         unsigned long field, u64 *ret)
5947 {
5948         short offset = vmcs_field_to_offset(field);
5949         char *p;
5950
5951         if (offset < 0)
5952                 return 0;
5953
5954         p = ((char *)(get_vmcs12(vcpu))) + offset;
5955
5956         switch (vmcs_field_type(field)) {
5957         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5958                 *ret = *((natural_width *)p);
5959                 return 1;
5960         case VMCS_FIELD_TYPE_U16:
5961                 *ret = *((u16 *)p);
5962                 return 1;
5963         case VMCS_FIELD_TYPE_U32:
5964                 *ret = *((u32 *)p);
5965                 return 1;
5966         case VMCS_FIELD_TYPE_U64:
5967                 *ret = *((u64 *)p);
5968                 return 1;
5969         default:
5970                 return 0; /* can never happen. */
5971         }
5972 }
5973
5974
5975 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
5976                                     unsigned long field, u64 field_value){
5977         short offset = vmcs_field_to_offset(field);
5978         char *p = ((char *) get_vmcs12(vcpu)) + offset;
5979         if (offset < 0)
5980                 return false;
5981
5982         switch (vmcs_field_type(field)) {
5983         case VMCS_FIELD_TYPE_U16:
5984                 *(u16 *)p = field_value;
5985                 return true;
5986         case VMCS_FIELD_TYPE_U32:
5987                 *(u32 *)p = field_value;
5988                 return true;
5989         case VMCS_FIELD_TYPE_U64:
5990                 *(u64 *)p = field_value;
5991                 return true;
5992         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5993                 *(natural_width *)p = field_value;
5994                 return true;
5995         default:
5996                 return false; /* can never happen. */
5997         }
5998
5999 }
6000
6001 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6002 {
6003         int i;
6004         unsigned long field;
6005         u64 field_value;
6006         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6007         const unsigned long *fields = shadow_read_write_fields;
6008         const int num_fields = max_shadow_read_write_fields;
6009
6010         vmcs_load(shadow_vmcs);
6011
6012         for (i = 0; i < num_fields; i++) {
6013                 field = fields[i];
6014                 switch (vmcs_field_type(field)) {
6015                 case VMCS_FIELD_TYPE_U16:
6016                         field_value = vmcs_read16(field);
6017                         break;
6018                 case VMCS_FIELD_TYPE_U32:
6019                         field_value = vmcs_read32(field);
6020                         break;
6021                 case VMCS_FIELD_TYPE_U64:
6022                         field_value = vmcs_read64(field);
6023                         break;
6024                 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6025                         field_value = vmcs_readl(field);
6026                         break;
6027                 }
6028                 vmcs12_write_any(&vmx->vcpu, field, field_value);
6029         }
6030
6031         vmcs_clear(shadow_vmcs);
6032         vmcs_load(vmx->loaded_vmcs->vmcs);
6033 }
6034
6035 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6036 {
6037         const unsigned long *fields[] = {
6038                 shadow_read_write_fields,
6039                 shadow_read_only_fields
6040         };
6041         const int max_fields[] = {
6042                 max_shadow_read_write_fields,
6043                 max_shadow_read_only_fields
6044         };
6045         int i, q;
6046         unsigned long field;
6047         u64 field_value = 0;
6048         struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6049
6050         vmcs_load(shadow_vmcs);
6051
6052         for (q = 0; q < ARRAY_SIZE(fields); q++) {
6053                 for (i = 0; i < max_fields[q]; i++) {
6054                         field = fields[q][i];
6055                         vmcs12_read_any(&vmx->vcpu, field, &field_value);
6056
6057                         switch (vmcs_field_type(field)) {
6058                         case VMCS_FIELD_TYPE_U16:
6059                                 vmcs_write16(field, (u16)field_value);
6060                                 break;
6061                         case VMCS_FIELD_TYPE_U32:
6062                                 vmcs_write32(field, (u32)field_value);
6063                                 break;
6064                         case VMCS_FIELD_TYPE_U64:
6065                                 vmcs_write64(field, (u64)field_value);
6066                                 break;
6067                         case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6068                                 vmcs_writel(field, (long)field_value);
6069                                 break;
6070                         }
6071                 }
6072         }
6073
6074         vmcs_clear(shadow_vmcs);
6075         vmcs_load(vmx->loaded_vmcs->vmcs);
6076 }
6077
6078 /*
6079  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6080  * used before) all generate the same failure when it is missing.
6081  */
6082 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6083 {
6084         struct vcpu_vmx *vmx = to_vmx(vcpu);
6085         if (vmx->nested.current_vmptr == -1ull) {
6086                 nested_vmx_failInvalid(vcpu);
6087                 skip_emulated_instruction(vcpu);
6088                 return 0;
6089         }
6090         return 1;
6091 }
6092
6093 static int handle_vmread(struct kvm_vcpu *vcpu)
6094 {
6095         unsigned long field;
6096         u64 field_value;
6097         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6098         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6099         gva_t gva = 0;
6100
6101         if (!nested_vmx_check_permission(vcpu) ||
6102             !nested_vmx_check_vmcs12(vcpu))
6103                 return 1;
6104
6105         /* Decode instruction info and find the field to read */
6106         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6107         /* Read the field, zero-extended to a u64 field_value */
6108         if (!vmcs12_read_any(vcpu, field, &field_value)) {
6109                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6110                 skip_emulated_instruction(vcpu);
6111                 return 1;
6112         }
6113         /*
6114          * Now copy part of this value to register or memory, as requested.
6115          * Note that the number of bits actually copied is 32 or 64 depending
6116          * on the guest's mode (32 or 64 bit), not on the given field's length.
6117          */
6118         if (vmx_instruction_info & (1u << 10)) {
6119                 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6120                         field_value);
6121         } else {
6122                 if (get_vmx_mem_address(vcpu, exit_qualification,
6123                                 vmx_instruction_info, &gva))
6124                         return 1;
6125                 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6126                 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6127                              &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6128         }
6129
6130         nested_vmx_succeed(vcpu);
6131         skip_emulated_instruction(vcpu);
6132         return 1;
6133 }
6134
6135
6136 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6137 {
6138         unsigned long field;
6139         gva_t gva;
6140         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6141         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6142         /* The value to write might be 32 or 64 bits, depending on L1's long
6143          * mode, and eventually we need to write that into a field of several
6144          * possible lengths. The code below first zero-extends the value to 64
6145          * bit (field_value), and then copies only the approriate number of
6146          * bits into the vmcs12 field.
6147          */
6148         u64 field_value = 0;
6149         struct x86_exception e;
6150
6151         if (!nested_vmx_check_permission(vcpu) ||
6152             !nested_vmx_check_vmcs12(vcpu))
6153                 return 1;
6154
6155         if (vmx_instruction_info & (1u << 10))
6156                 field_value = kvm_register_read(vcpu,
6157                         (((vmx_instruction_info) >> 3) & 0xf));
6158         else {
6159                 if (get_vmx_mem_address(vcpu, exit_qualification,
6160                                 vmx_instruction_info, &gva))
6161                         return 1;
6162                 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6163                            &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6164                         kvm_inject_page_fault(vcpu, &e);
6165                         return 1;
6166                 }
6167         }
6168
6169
6170         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6171         if (vmcs_field_readonly(field)) {
6172                 nested_vmx_failValid(vcpu,
6173                         VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6174                 skip_emulated_instruction(vcpu);
6175                 return 1;
6176         }
6177
6178         if (!vmcs12_write_any(vcpu, field, field_value)) {
6179                 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6180                 skip_emulated_instruction(vcpu);
6181                 return 1;
6182         }
6183
6184         nested_vmx_succeed(vcpu);
6185         skip_emulated_instruction(vcpu);
6186         return 1;
6187 }
6188
6189 /* Emulate the VMPTRLD instruction */
6190 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6191 {
6192         struct vcpu_vmx *vmx = to_vmx(vcpu);
6193         gva_t gva;
6194         gpa_t vmptr;
6195         struct x86_exception e;
6196         u32 exec_control;
6197
6198         if (!nested_vmx_check_permission(vcpu))
6199                 return 1;
6200
6201         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6202                         vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6203                 return 1;
6204
6205         if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6206                                 sizeof(vmptr), &e)) {
6207                 kvm_inject_page_fault(vcpu, &e);
6208                 return 1;
6209         }
6210
6211         if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6212                 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6213                 skip_emulated_instruction(vcpu);
6214                 return 1;
6215         }
6216
6217         if (vmx->nested.current_vmptr != vmptr) {
6218                 struct vmcs12 *new_vmcs12;
6219                 struct page *page;
6220                 page = nested_get_page(vcpu, vmptr);
6221                 if (page == NULL) {
6222                         nested_vmx_failInvalid(vcpu);
6223                         skip_emulated_instruction(vcpu);
6224                         return 1;
6225                 }
6226                 new_vmcs12 = kmap(page);
6227                 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6228                         kunmap(page);
6229                         nested_release_page_clean(page);
6230                         nested_vmx_failValid(vcpu,
6231                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6232                         skip_emulated_instruction(vcpu);
6233                         return 1;
6234                 }
6235                 if (vmx->nested.current_vmptr != -1ull)
6236                         nested_release_vmcs12(vmx);
6237
6238                 vmx->nested.current_vmptr = vmptr;
6239                 vmx->nested.current_vmcs12 = new_vmcs12;
6240                 vmx->nested.current_vmcs12_page = page;
6241                 if (enable_shadow_vmcs) {
6242                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6243                         exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6244                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6245                         vmcs_write64(VMCS_LINK_POINTER,
6246                                      __pa(vmx->nested.current_shadow_vmcs));
6247                         vmx->nested.sync_shadow_vmcs = true;
6248                 }
6249         }
6250
6251         nested_vmx_succeed(vcpu);
6252         skip_emulated_instruction(vcpu);
6253         return 1;
6254 }
6255
6256 /* Emulate the VMPTRST instruction */
6257 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6258 {
6259         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6260         u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6261         gva_t vmcs_gva;
6262         struct x86_exception e;
6263
6264         if (!nested_vmx_check_permission(vcpu))
6265                 return 1;
6266
6267         if (get_vmx_mem_address(vcpu, exit_qualification,
6268                         vmx_instruction_info, &vmcs_gva))
6269                 return 1;
6270         /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6271         if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6272                                  (void *)&to_vmx(vcpu)->nested.current_vmptr,
6273                                  sizeof(u64), &e)) {
6274                 kvm_inject_page_fault(vcpu, &e);
6275                 return 1;
6276         }
6277         nested_vmx_succeed(vcpu);
6278         skip_emulated_instruction(vcpu);
6279         return 1;
6280 }
6281
6282 /*
6283  * The exit handlers return 1 if the exit was handled fully and guest execution
6284  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6285  * to be done to userspace and return 0.
6286  */
6287 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6288         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6289         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6290         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6291         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6292         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6293         [EXIT_REASON_CR_ACCESS]               = handle_cr,
6294         [EXIT_REASON_DR_ACCESS]               = handle_dr,
6295         [EXIT_REASON_CPUID]                   = handle_cpuid,
6296         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6297         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6298         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6299         [EXIT_REASON_HLT]                     = handle_halt,
6300         [EXIT_REASON_INVD]                    = handle_invd,
6301         [EXIT_REASON_INVLPG]                  = handle_invlpg,
6302         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6303         [EXIT_REASON_VMCALL]                  = handle_vmcall,
6304         [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6305         [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6306         [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6307         [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6308         [EXIT_REASON_VMREAD]                  = handle_vmread,
6309         [EXIT_REASON_VMRESUME]                = handle_vmresume,
6310         [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6311         [EXIT_REASON_VMOFF]                   = handle_vmoff,
6312         [EXIT_REASON_VMON]                    = handle_vmon,
6313         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6314         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6315         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6316         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6317         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6318         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6319         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6320         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6321         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6322         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6323         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6324         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
6325         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
6326 };
6327
6328 static const int kvm_vmx_max_exit_handlers =
6329         ARRAY_SIZE(kvm_vmx_exit_handlers);
6330
6331 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6332                                        struct vmcs12 *vmcs12)
6333 {
6334         unsigned long exit_qualification;
6335         gpa_t bitmap, last_bitmap;
6336         unsigned int port;
6337         int size;
6338         u8 b;
6339
6340         if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6341                 return 1;
6342
6343         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6344                 return 0;
6345
6346         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6347
6348         port = exit_qualification >> 16;
6349         size = (exit_qualification & 7) + 1;
6350
6351         last_bitmap = (gpa_t)-1;
6352         b = -1;
6353
6354         while (size > 0) {
6355                 if (port < 0x8000)
6356                         bitmap = vmcs12->io_bitmap_a;
6357                 else if (port < 0x10000)
6358                         bitmap = vmcs12->io_bitmap_b;
6359                 else
6360                         return 1;
6361                 bitmap += (port & 0x7fff) / 8;
6362
6363                 if (last_bitmap != bitmap)
6364                         if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6365                                 return 1;
6366                 if (b & (1 << (port & 7)))
6367                         return 1;
6368
6369                 port++;
6370                 size--;
6371                 last_bitmap = bitmap;
6372         }
6373
6374         return 0;
6375 }
6376
6377 /*
6378  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6379  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6380  * disinterest in the current event (read or write a specific MSR) by using an
6381  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6382  */
6383 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6384         struct vmcs12 *vmcs12, u32 exit_reason)
6385 {
6386         u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6387         gpa_t bitmap;
6388
6389         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6390                 return 1;
6391
6392         /*
6393          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6394          * for the four combinations of read/write and low/high MSR numbers.
6395          * First we need to figure out which of the four to use:
6396          */
6397         bitmap = vmcs12->msr_bitmap;
6398         if (exit_reason == EXIT_REASON_MSR_WRITE)
6399                 bitmap += 2048;
6400         if (msr_index >= 0xc0000000) {
6401                 msr_index -= 0xc0000000;
6402                 bitmap += 1024;
6403         }
6404
6405         /* Then read the msr_index'th bit from this bitmap: */
6406         if (msr_index < 1024*8) {
6407                 unsigned char b;
6408                 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6409                         return 1;
6410                 return 1 & (b >> (msr_index & 7));
6411         } else
6412                 return 1; /* let L1 handle the wrong parameter */
6413 }
6414
6415 /*
6416  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6417  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6418  * intercept (via guest_host_mask etc.) the current event.
6419  */
6420 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6421         struct vmcs12 *vmcs12)
6422 {
6423         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6424         int cr = exit_qualification & 15;
6425         int reg = (exit_qualification >> 8) & 15;
6426         unsigned long val = kvm_register_read(vcpu, reg);
6427
6428         switch ((exit_qualification >> 4) & 3) {
6429         case 0: /* mov to cr */
6430                 switch (cr) {
6431                 case 0:
6432                         if (vmcs12->cr0_guest_host_mask &
6433                             (val ^ vmcs12->cr0_read_shadow))
6434                                 return 1;
6435                         break;
6436                 case 3:
6437                         if ((vmcs12->cr3_target_count >= 1 &&
6438                                         vmcs12->cr3_target_value0 == val) ||
6439                                 (vmcs12->cr3_target_count >= 2 &&
6440                                         vmcs12->cr3_target_value1 == val) ||
6441                                 (vmcs12->cr3_target_count >= 3 &&
6442                                         vmcs12->cr3_target_value2 == val) ||
6443                                 (vmcs12->cr3_target_count >= 4 &&
6444                                         vmcs12->cr3_target_value3 == val))
6445                                 return 0;
6446                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6447                                 return 1;
6448                         break;
6449                 case 4:
6450                         if (vmcs12->cr4_guest_host_mask &
6451                             (vmcs12->cr4_read_shadow ^ val))
6452                                 return 1;
6453                         break;
6454                 case 8:
6455                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6456                                 return 1;
6457                         break;
6458                 }
6459                 break;
6460         case 2: /* clts */
6461                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6462                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
6463                         return 1;
6464                 break;
6465         case 1: /* mov from cr */
6466                 switch (cr) {
6467                 case 3:
6468                         if (vmcs12->cpu_based_vm_exec_control &
6469                             CPU_BASED_CR3_STORE_EXITING)
6470                                 return 1;
6471                         break;
6472                 case 8:
6473                         if (vmcs12->cpu_based_vm_exec_control &
6474                             CPU_BASED_CR8_STORE_EXITING)
6475                                 return 1;
6476                         break;
6477                 }
6478                 break;
6479         case 3: /* lmsw */
6480                 /*
6481                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6482                  * cr0. Other attempted changes are ignored, with no exit.
6483                  */
6484                 if (vmcs12->cr0_guest_host_mask & 0xe &
6485                     (val ^ vmcs12->cr0_read_shadow))
6486                         return 1;
6487                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6488                     !(vmcs12->cr0_read_shadow & 0x1) &&
6489                     (val & 0x1))
6490                         return 1;
6491                 break;
6492         }
6493         return 0;
6494 }
6495
6496 /*
6497  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6498  * should handle it ourselves in L0 (and then continue L2). Only call this
6499  * when in is_guest_mode (L2).
6500  */
6501 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6502 {
6503         u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6504         struct vcpu_vmx *vmx = to_vmx(vcpu);
6505         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6506         u32 exit_reason = vmx->exit_reason;
6507
6508         if (vmx->nested.nested_run_pending)
6509                 return 0;
6510
6511         if (unlikely(vmx->fail)) {
6512                 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6513                                     vmcs_read32(VM_INSTRUCTION_ERROR));
6514                 return 1;
6515         }
6516
6517         switch (exit_reason) {
6518         case EXIT_REASON_EXCEPTION_NMI:
6519                 if (!is_exception(intr_info))
6520                         return 0;
6521                 else if (is_page_fault(intr_info))
6522                         return enable_ept;
6523                 return vmcs12->exception_bitmap &
6524                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6525         case EXIT_REASON_EXTERNAL_INTERRUPT:
6526                 return 0;
6527         case EXIT_REASON_TRIPLE_FAULT:
6528                 return 1;
6529         case EXIT_REASON_PENDING_INTERRUPT:
6530                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6531         case EXIT_REASON_NMI_WINDOW:
6532                 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6533         case EXIT_REASON_TASK_SWITCH:
6534                 return 1;
6535         case EXIT_REASON_CPUID:
6536                 return 1;
6537         case EXIT_REASON_HLT:
6538                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6539         case EXIT_REASON_INVD:
6540                 return 1;
6541         case EXIT_REASON_INVLPG:
6542                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6543         case EXIT_REASON_RDPMC:
6544                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6545         case EXIT_REASON_RDTSC:
6546                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6547         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6548         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6549         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6550         case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6551         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6552                 /*
6553                  * VMX instructions trap unconditionally. This allows L1 to
6554                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
6555                  */
6556                 return 1;
6557         case EXIT_REASON_CR_ACCESS:
6558                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6559         case EXIT_REASON_DR_ACCESS:
6560                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6561         case EXIT_REASON_IO_INSTRUCTION:
6562                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6563         case EXIT_REASON_MSR_READ:
6564         case EXIT_REASON_MSR_WRITE:
6565                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6566         case EXIT_REASON_INVALID_STATE:
6567                 return 1;
6568         case EXIT_REASON_MWAIT_INSTRUCTION:
6569                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6570         case EXIT_REASON_MONITOR_INSTRUCTION:
6571                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6572         case EXIT_REASON_PAUSE_INSTRUCTION:
6573                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6574                         nested_cpu_has2(vmcs12,
6575                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6576         case EXIT_REASON_MCE_DURING_VMENTRY:
6577                 return 0;
6578         case EXIT_REASON_TPR_BELOW_THRESHOLD:
6579                 return 1;
6580         case EXIT_REASON_APIC_ACCESS:
6581                 return nested_cpu_has2(vmcs12,
6582                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6583         case EXIT_REASON_EPT_VIOLATION:
6584         case EXIT_REASON_EPT_MISCONFIG:
6585                 return 0;
6586         case EXIT_REASON_PREEMPTION_TIMER:
6587                 return vmcs12->pin_based_vm_exec_control &
6588                         PIN_BASED_VMX_PREEMPTION_TIMER;
6589         case EXIT_REASON_WBINVD:
6590                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6591         case EXIT_REASON_XSETBV:
6592                 return 1;
6593         default:
6594                 return 1;
6595         }
6596 }
6597
6598 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6599 {
6600         *info1 = vmcs_readl(EXIT_QUALIFICATION);
6601         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6602 }
6603
6604 /*
6605  * The guest has exited.  See if we can fix it or if we need userspace
6606  * assistance.
6607  */
6608 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6609 {
6610         struct vcpu_vmx *vmx = to_vmx(vcpu);
6611         u32 exit_reason = vmx->exit_reason;
6612         u32 vectoring_info = vmx->idt_vectoring_info;
6613
6614         /* If guest state is invalid, start emulating */
6615         if (vmx->emulation_required)
6616                 return handle_invalid_guest_state(vcpu);
6617
6618         /*
6619          * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6620          * we did not inject a still-pending event to L1 now because of
6621          * nested_run_pending, we need to re-enable this bit.
6622          */
6623         if (vmx->nested.nested_run_pending)
6624                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6625
6626         if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6627             exit_reason == EXIT_REASON_VMRESUME))
6628                 vmx->nested.nested_run_pending = 1;
6629         else
6630                 vmx->nested.nested_run_pending = 0;
6631
6632         if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6633                 nested_vmx_vmexit(vcpu);
6634                 return 1;
6635         }
6636
6637         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6638                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6639                 vcpu->run->fail_entry.hardware_entry_failure_reason
6640                         = exit_reason;
6641                 return 0;
6642         }
6643
6644         if (unlikely(vmx->fail)) {
6645                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6646                 vcpu->run->fail_entry.hardware_entry_failure_reason
6647                         = vmcs_read32(VM_INSTRUCTION_ERROR);
6648                 return 0;
6649         }
6650
6651         /*
6652          * Note:
6653          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6654          * delivery event since it indicates guest is accessing MMIO.
6655          * The vm-exit can be triggered again after return to guest that
6656          * will cause infinite loop.
6657          */
6658         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6659                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6660                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
6661                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
6662                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6663                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6664                 vcpu->run->internal.ndata = 2;
6665                 vcpu->run->internal.data[0] = vectoring_info;
6666                 vcpu->run->internal.data[1] = exit_reason;
6667                 return 0;
6668         }
6669
6670         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6671             !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6672                                         get_vmcs12(vcpu), vcpu)))) {
6673                 if (vmx_interrupt_allowed(vcpu)) {
6674                         vmx->soft_vnmi_blocked = 0;
6675                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6676                            vcpu->arch.nmi_pending) {
6677                         /*
6678                          * This CPU don't support us in finding the end of an
6679                          * NMI-blocked window if the guest runs with IRQs
6680                          * disabled. So we pull the trigger after 1 s of
6681                          * futile waiting, but inform the user about this.
6682                          */
6683                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6684                                "state on VCPU %d after 1 s timeout\n",
6685                                __func__, vcpu->vcpu_id);
6686                         vmx->soft_vnmi_blocked = 0;
6687                 }
6688         }
6689
6690         if (exit_reason < kvm_vmx_max_exit_handlers
6691             && kvm_vmx_exit_handlers[exit_reason])
6692                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6693         else {
6694                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6695                 vcpu->run->hw.hardware_exit_reason = exit_reason;
6696         }
6697         return 0;
6698 }
6699
6700 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6701 {
6702         if (irr == -1 || tpr < irr) {
6703                 vmcs_write32(TPR_THRESHOLD, 0);
6704                 return;
6705         }
6706
6707         vmcs_write32(TPR_THRESHOLD, irr);
6708 }
6709
6710 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6711 {
6712         u32 sec_exec_control;
6713
6714         /*
6715          * There is not point to enable virtualize x2apic without enable
6716          * apicv
6717          */
6718         if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6719                                 !vmx_vm_has_apicv(vcpu->kvm))
6720                 return;
6721
6722         if (!vm_need_tpr_shadow(vcpu->kvm))
6723                 return;
6724
6725         sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6726
6727         if (set) {
6728                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6729                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6730         } else {
6731                 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6732                 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6733         }
6734         vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6735
6736         vmx_set_msr_bitmap(vcpu);
6737 }
6738
6739 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6740 {
6741         u16 status;
6742         u8 old;
6743
6744         if (!vmx_vm_has_apicv(kvm))
6745                 return;
6746
6747         if (isr == -1)
6748                 isr = 0;
6749
6750         status = vmcs_read16(GUEST_INTR_STATUS);
6751         old = status >> 8;
6752         if (isr != old) {
6753                 status &= 0xff;
6754                 status |= isr << 8;
6755                 vmcs_write16(GUEST_INTR_STATUS, status);
6756         }
6757 }
6758
6759 static void vmx_set_rvi(int vector)
6760 {
6761         u16 status;
6762         u8 old;
6763
6764         status = vmcs_read16(GUEST_INTR_STATUS);
6765         old = (u8)status & 0xff;
6766         if ((u8)vector != old) {
6767                 status &= ~0xff;
6768                 status |= (u8)vector;
6769                 vmcs_write16(GUEST_INTR_STATUS, status);
6770         }
6771 }
6772
6773 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6774 {
6775         if (max_irr == -1)
6776                 return;
6777
6778         vmx_set_rvi(max_irr);
6779 }
6780
6781 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6782 {
6783         if (!vmx_vm_has_apicv(vcpu->kvm))
6784                 return;
6785
6786         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6787         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6788         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6789         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6790 }
6791
6792 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6793 {
6794         u32 exit_intr_info;
6795
6796         if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6797               || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6798                 return;
6799
6800         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6801         exit_intr_info = vmx->exit_intr_info;
6802
6803         /* Handle machine checks before interrupts are enabled */
6804         if (is_machine_check(exit_intr_info))
6805                 kvm_machine_check();
6806
6807         /* We need to handle NMIs before interrupts are enabled */
6808         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6809             (exit_intr_info & INTR_INFO_VALID_MASK)) {
6810                 kvm_before_handle_nmi(&vmx->vcpu);
6811                 asm("int $2");
6812                 kvm_after_handle_nmi(&vmx->vcpu);
6813         }
6814 }
6815
6816 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6817 {
6818         u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6819
6820         /*
6821          * If external interrupt exists, IF bit is set in rflags/eflags on the
6822          * interrupt stack frame, and interrupt will be enabled on a return
6823          * from interrupt handler.
6824          */
6825         if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6826                         == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6827                 unsigned int vector;
6828                 unsigned long entry;
6829                 gate_desc *desc;
6830                 struct vcpu_vmx *vmx = to_vmx(vcpu);
6831 #ifdef CONFIG_X86_64
6832                 unsigned long tmp;
6833 #endif
6834
6835                 vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6836                 desc = (gate_desc *)vmx->host_idt_base + vector;
6837                 entry = gate_offset(*desc);
6838                 asm volatile(
6839 #ifdef CONFIG_X86_64
6840                         "mov %%" _ASM_SP ", %[sp]\n\t"
6841                         "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6842                         "push $%c[ss]\n\t"
6843                         "push %[sp]\n\t"
6844 #endif
6845                         "pushf\n\t"
6846                         "orl $0x200, (%%" _ASM_SP ")\n\t"
6847                         __ASM_SIZE(push) " $%c[cs]\n\t"
6848                         "call *%[entry]\n\t"
6849                         :
6850 #ifdef CONFIG_X86_64
6851                         [sp]"=&r"(tmp)
6852 #endif
6853                         :
6854                         [entry]"r"(entry),
6855                         [ss]"i"(__KERNEL_DS),
6856                         [cs]"i"(__KERNEL_CS)
6857                         );
6858         } else
6859                 local_irq_enable();
6860 }
6861
6862 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6863 {
6864         u32 exit_intr_info;
6865         bool unblock_nmi;
6866         u8 vector;
6867         bool idtv_info_valid;
6868
6869         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6870
6871         if (cpu_has_virtual_nmis()) {
6872                 if (vmx->nmi_known_unmasked)
6873                         return;
6874                 /*
6875                  * Can't use vmx->exit_intr_info since we're not sure what
6876                  * the exit reason is.
6877                  */
6878                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6879                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6880                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6881                 /*
6882                  * SDM 3: 27.7.1.2 (September 2008)
6883                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6884                  * a guest IRET fault.
6885                  * SDM 3: 23.2.2 (September 2008)
6886                  * Bit 12 is undefined in any of the following cases:
6887                  *  If the VM exit sets the valid bit in the IDT-vectoring
6888                  *   information field.
6889                  *  If the VM exit is due to a double fault.
6890                  */
6891                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6892                     vector != DF_VECTOR && !idtv_info_valid)
6893                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6894                                       GUEST_INTR_STATE_NMI);
6895                 else
6896                         vmx->nmi_known_unmasked =
6897                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6898                                   & GUEST_INTR_STATE_NMI);
6899         } else if (unlikely(vmx->soft_vnmi_blocked))
6900                 vmx->vnmi_blocked_time +=
6901                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6902 }
6903
6904 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6905                                       u32 idt_vectoring_info,
6906                                       int instr_len_field,
6907                                       int error_code_field)
6908 {
6909         u8 vector;
6910         int type;
6911         bool idtv_info_valid;
6912
6913         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6914
6915         vcpu->arch.nmi_injected = false;
6916         kvm_clear_exception_queue(vcpu);
6917         kvm_clear_interrupt_queue(vcpu);
6918
6919         if (!idtv_info_valid)
6920                 return;
6921
6922         kvm_make_request(KVM_REQ_EVENT, vcpu);
6923
6924         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6925         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6926
6927         switch (type) {
6928         case INTR_TYPE_NMI_INTR:
6929                 vcpu->arch.nmi_injected = true;
6930                 /*
6931                  * SDM 3: 27.7.1.2 (September 2008)
6932                  * Clear bit "block by NMI" before VM entry if a NMI
6933                  * delivery faulted.
6934                  */
6935                 vmx_set_nmi_mask(vcpu, false);
6936                 break;
6937         case INTR_TYPE_SOFT_EXCEPTION:
6938                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6939                 /* fall through */
6940         case INTR_TYPE_HARD_EXCEPTION:
6941                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6942                         u32 err = vmcs_read32(error_code_field);
6943                         kvm_queue_exception_e(vcpu, vector, err);
6944                 } else
6945                         kvm_queue_exception(vcpu, vector);
6946                 break;
6947         case INTR_TYPE_SOFT_INTR:
6948                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6949                 /* fall through */
6950         case INTR_TYPE_EXT_INTR:
6951                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6952                 break;
6953         default:
6954                 break;
6955         }
6956 }
6957
6958 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6959 {
6960         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6961                                   VM_EXIT_INSTRUCTION_LEN,
6962                                   IDT_VECTORING_ERROR_CODE);
6963 }
6964
6965 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6966 {
6967         __vmx_complete_interrupts(vcpu,
6968                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6969                                   VM_ENTRY_INSTRUCTION_LEN,
6970                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6971
6972         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6973 }
6974
6975 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6976 {
6977         int i, nr_msrs;
6978         struct perf_guest_switch_msr *msrs;
6979
6980         msrs = perf_guest_get_msrs(&nr_msrs);
6981
6982         if (!msrs)
6983                 return;
6984
6985         for (i = 0; i < nr_msrs; i++)
6986                 if (msrs[i].host == msrs[i].guest)
6987                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6988                 else
6989                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6990                                         msrs[i].host);
6991 }
6992
6993 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6994 {
6995         struct vcpu_vmx *vmx = to_vmx(vcpu);
6996         unsigned long debugctlmsr;
6997
6998         /* Record the guest's net vcpu time for enforced NMI injections. */
6999         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7000                 vmx->entry_time = ktime_get();
7001
7002         /* Don't enter VMX if guest state is invalid, let the exit handler
7003            start emulation until we arrive back to a valid state */
7004         if (vmx->emulation_required)
7005                 return;
7006
7007         if (vmx->nested.sync_shadow_vmcs) {
7008                 copy_vmcs12_to_shadow(vmx);
7009                 vmx->nested.sync_shadow_vmcs = false;
7010         }
7011
7012         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7013                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7014         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7015                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7016
7017         /* When single-stepping over STI and MOV SS, we must clear the
7018          * corresponding interruptibility bits in the guest state. Otherwise
7019          * vmentry fails as it then expects bit 14 (BS) in pending debug
7020          * exceptions being set, but that's not correct for the guest debugging
7021          * case. */
7022         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7023                 vmx_set_interrupt_shadow(vcpu, 0);
7024
7025         atomic_switch_perf_msrs(vmx);
7026         debugctlmsr = get_debugctlmsr();
7027
7028         vmx->__launched = vmx->loaded_vmcs->launched;
7029         asm(
7030                 /* Store host registers */
7031                 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7032                 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7033                 "push %%" _ASM_CX " \n\t"
7034                 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7035                 "je 1f \n\t"
7036                 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7037                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7038                 "1: \n\t"
7039                 /* Reload cr2 if changed */
7040                 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7041                 "mov %%cr2, %%" _ASM_DX " \n\t"
7042                 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7043                 "je 2f \n\t"
7044                 "mov %%" _ASM_AX", %%cr2 \n\t"
7045                 "2: \n\t"
7046                 /* Check if vmlaunch of vmresume is needed */
7047                 "cmpl $0, %c[launched](%0) \n\t"
7048                 /* Load guest registers.  Don't clobber flags. */
7049                 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7050                 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7051                 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7052                 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7053                 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7054                 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7055 #ifdef CONFIG_X86_64
7056                 "mov %c[r8](%0),  %%r8  \n\t"
7057                 "mov %c[r9](%0),  %%r9  \n\t"
7058                 "mov %c[r10](%0), %%r10 \n\t"
7059                 "mov %c[r11](%0), %%r11 \n\t"
7060                 "mov %c[r12](%0), %%r12 \n\t"
7061                 "mov %c[r13](%0), %%r13 \n\t"
7062                 "mov %c[r14](%0), %%r14 \n\t"
7063                 "mov %c[r15](%0), %%r15 \n\t"
7064 #endif
7065                 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7066
7067                 /* Enter guest mode */
7068                 "jne 1f \n\t"
7069                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7070                 "jmp 2f \n\t"
7071                 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7072                 "2: "
7073                 /* Save guest registers, load host registers, keep flags */
7074                 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7075                 "pop %0 \n\t"
7076                 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7077                 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7078                 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7079                 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7080                 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7081                 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7082                 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7083 #ifdef CONFIG_X86_64
7084                 "mov %%r8,  %c[r8](%0) \n\t"
7085                 "mov %%r9,  %c[r9](%0) \n\t"
7086                 "mov %%r10, %c[r10](%0) \n\t"
7087                 "mov %%r11, %c[r11](%0) \n\t"
7088                 "mov %%r12, %c[r12](%0) \n\t"
7089                 "mov %%r13, %c[r13](%0) \n\t"
7090                 "mov %%r14, %c[r14](%0) \n\t"
7091                 "mov %%r15, %c[r15](%0) \n\t"
7092 #endif
7093                 "mov %%cr2, %%" _ASM_AX "   \n\t"
7094                 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7095
7096                 "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7097                 "setbe %c[fail](%0) \n\t"
7098                 ".pushsection .rodata \n\t"
7099                 ".global vmx_return \n\t"
7100                 "vmx_return: " _ASM_PTR " 2b \n\t"
7101                 ".popsection"
7102               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7103                 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7104                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7105                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7106                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7107                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7108                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7109                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7110                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7111                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7112                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7113 #ifdef CONFIG_X86_64
7114                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7115                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7116                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7117                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7118                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7119                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7120                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7121                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7122 #endif
7123                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7124                 [wordsize]"i"(sizeof(ulong))
7125               : "cc", "memory"
7126 #ifdef CONFIG_X86_64
7127                 , "rax", "rbx", "rdi", "rsi"
7128                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7129 #else
7130                 , "eax", "ebx", "edi", "esi"
7131 #endif
7132               );
7133
7134         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7135         if (debugctlmsr)
7136                 update_debugctlmsr(debugctlmsr);
7137
7138 #ifndef CONFIG_X86_64
7139         /*
7140          * The sysexit path does not restore ds/es, so we must set them to
7141          * a reasonable value ourselves.
7142          *
7143          * We can't defer this to vmx_load_host_state() since that function
7144          * may be executed in interrupt context, which saves and restore segments
7145          * around it, nullifying its effect.
7146          */
7147         loadsegment(ds, __USER_DS);
7148         loadsegment(es, __USER_DS);
7149 #endif
7150
7151         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7152                                   | (1 << VCPU_EXREG_RFLAGS)
7153                                   | (1 << VCPU_EXREG_CPL)
7154                                   | (1 << VCPU_EXREG_PDPTR)
7155                                   | (1 << VCPU_EXREG_SEGMENTS)
7156                                   | (1 << VCPU_EXREG_CR3));
7157         vcpu->arch.regs_dirty = 0;
7158
7159         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7160
7161         vmx->loaded_vmcs->launched = 1;
7162
7163         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7164         trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7165
7166         vmx_complete_atomic_exit(vmx);
7167         vmx_recover_nmi_blocking(vmx);
7168         vmx_complete_interrupts(vmx);
7169 }
7170
7171 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7172 {
7173         struct vcpu_vmx *vmx = to_vmx(vcpu);
7174
7175         free_vpid(vmx);
7176         free_nested(vmx);
7177         free_loaded_vmcs(vmx->loaded_vmcs);
7178         kfree(vmx->guest_msrs);
7179         kvm_vcpu_uninit(vcpu);
7180         kmem_cache_free(kvm_vcpu_cache, vmx);
7181 }
7182
7183 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7184 {
7185         int err;
7186         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7187         int cpu;
7188
7189         if (!vmx)
7190                 return ERR_PTR(-ENOMEM);
7191
7192         allocate_vpid(vmx);
7193
7194         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7195         if (err)
7196                 goto free_vcpu;
7197
7198         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7199         err = -ENOMEM;
7200         if (!vmx->guest_msrs) {
7201                 goto uninit_vcpu;
7202         }
7203
7204         vmx->loaded_vmcs = &vmx->vmcs01;
7205         vmx->loaded_vmcs->vmcs = alloc_vmcs();
7206         if (!vmx->loaded_vmcs->vmcs)
7207                 goto free_msrs;
7208         if (!vmm_exclusive)
7209                 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7210         loaded_vmcs_init(vmx->loaded_vmcs);
7211         if (!vmm_exclusive)
7212                 kvm_cpu_vmxoff();
7213
7214         cpu = get_cpu();
7215         vmx_vcpu_load(&vmx->vcpu, cpu);
7216         vmx->vcpu.cpu = cpu;
7217         err = vmx_vcpu_setup(vmx);
7218         vmx_vcpu_put(&vmx->vcpu);
7219         put_cpu();
7220         if (err)
7221                 goto free_vmcs;
7222         if (vm_need_virtualize_apic_accesses(kvm)) {
7223                 err = alloc_apic_access_page(kvm);
7224                 if (err)
7225                         goto free_vmcs;
7226         }
7227
7228         if (enable_ept) {
7229                 if (!kvm->arch.ept_identity_map_addr)
7230                         kvm->arch.ept_identity_map_addr =
7231                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7232                 err = -ENOMEM;
7233                 if (alloc_identity_pagetable(kvm) != 0)
7234                         goto free_vmcs;
7235                 if (!init_rmode_identity_map(kvm))
7236                         goto free_vmcs;
7237         }
7238
7239         vmx->nested.current_vmptr = -1ull;
7240         vmx->nested.current_vmcs12 = NULL;
7241
7242         return &vmx->vcpu;
7243
7244 free_vmcs:
7245         free_loaded_vmcs(vmx->loaded_vmcs);
7246 free_msrs:
7247         kfree(vmx->guest_msrs);
7248 uninit_vcpu:
7249         kvm_vcpu_uninit(&vmx->vcpu);
7250 free_vcpu:
7251         free_vpid(vmx);
7252         kmem_cache_free(kvm_vcpu_cache, vmx);
7253         return ERR_PTR(err);
7254 }
7255
7256 static void __init vmx_check_processor_compat(void *rtn)
7257 {
7258         struct vmcs_config vmcs_conf;
7259
7260         *(int *)rtn = 0;
7261         if (setup_vmcs_config(&vmcs_conf) < 0)
7262                 *(int *)rtn = -EIO;
7263         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7264                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7265                                 smp_processor_id());
7266                 *(int *)rtn = -EIO;
7267         }
7268 }
7269
7270 static int get_ept_level(void)
7271 {
7272         return VMX_EPT_DEFAULT_GAW + 1;
7273 }
7274
7275 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7276 {
7277         u64 ret;
7278
7279         /* For VT-d and EPT combination
7280          * 1. MMIO: always map as UC
7281          * 2. EPT with VT-d:
7282          *   a. VT-d without snooping control feature: can't guarantee the
7283          *      result, try to trust guest.
7284          *   b. VT-d with snooping control feature: snooping control feature of
7285          *      VT-d engine can guarantee the cache correctness. Just set it
7286          *      to WB to keep consistent with host. So the same as item 3.
7287          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7288          *    consistent with host MTRR
7289          */
7290         if (is_mmio)
7291                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7292         else if (vcpu->kvm->arch.iommu_domain &&
7293                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7294                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7295                       VMX_EPT_MT_EPTE_SHIFT;
7296         else
7297                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7298                         | VMX_EPT_IPAT_BIT;
7299
7300         return ret;
7301 }
7302
7303 static int vmx_get_lpage_level(void)
7304 {
7305         if (enable_ept && !cpu_has_vmx_ept_1g_page())
7306                 return PT_DIRECTORY_LEVEL;
7307         else
7308                 /* For shadow and EPT supported 1GB page */
7309                 return PT_PDPE_LEVEL;
7310 }
7311
7312 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7313 {
7314         struct kvm_cpuid_entry2 *best;
7315         struct vcpu_vmx *vmx = to_vmx(vcpu);
7316         u32 exec_control;
7317
7318         vmx->rdtscp_enabled = false;
7319         if (vmx_rdtscp_supported()) {
7320                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7321                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7322                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7323                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7324                                 vmx->rdtscp_enabled = true;
7325                         else {
7326                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7327                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7328                                                 exec_control);
7329                         }
7330                 }
7331         }
7332
7333         /* Exposing INVPCID only when PCID is exposed */
7334         best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7335         if (vmx_invpcid_supported() &&
7336             best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7337             guest_cpuid_has_pcid(vcpu)) {
7338                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7339                 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7340                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7341                              exec_control);
7342         } else {
7343                 if (cpu_has_secondary_exec_ctrls()) {
7344                         exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7345                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7346                         vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7347                                      exec_control);
7348                 }
7349                 if (best)
7350                         best->ebx &= ~bit(X86_FEATURE_INVPCID);
7351         }
7352 }
7353
7354 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7355 {
7356         if (func == 1 && nested)
7357                 entry->ecx |= bit(X86_FEATURE_VMX);
7358 }
7359
7360 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7361                 struct x86_exception *fault)
7362 {
7363         struct vmcs12 *vmcs12;
7364         nested_vmx_vmexit(vcpu);
7365         vmcs12 = get_vmcs12(vcpu);
7366
7367         if (fault->error_code & PFERR_RSVD_MASK)
7368                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
7369         else
7370                 vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
7371         vmcs12->exit_qualification = vcpu->arch.exit_qualification;
7372         vmcs12->guest_physical_address = fault->address;
7373 }
7374
7375 /* Callbacks for nested_ept_init_mmu_context: */
7376
7377 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7378 {
7379         /* return the page table to be shadowed - in our case, EPT12 */
7380         return get_vmcs12(vcpu)->ept_pointer;
7381 }
7382
7383 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7384 {
7385         int r = kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7386                         nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7387
7388         vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7389         vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7390         vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7391
7392         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7393
7394         return r;
7395 }
7396
7397 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7398 {
7399         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7400 }
7401
7402 /*
7403  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7404  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7405  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7406  * guest in a way that will both be appropriate to L1's requests, and our
7407  * needs. In addition to modifying the active vmcs (which is vmcs02), this
7408  * function also has additional necessary side-effects, like setting various
7409  * vcpu->arch fields.
7410  */
7411 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7412 {
7413         struct vcpu_vmx *vmx = to_vmx(vcpu);
7414         u32 exec_control;
7415
7416         vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7417         vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7418         vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7419         vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7420         vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7421         vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7422         vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7423         vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7424         vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7425         vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7426         vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7427         vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7428         vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7429         vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7430         vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7431         vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7432         vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7433         vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7434         vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7435         vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7436         vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7437         vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7438         vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7439         vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7440         vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7441         vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7442         vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7443         vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7444         vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7445         vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7446         vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7447         vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7448         vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7449         vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7450         vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7451         vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7452
7453         vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7454         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7455                 vmcs12->vm_entry_intr_info_field);
7456         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7457                 vmcs12->vm_entry_exception_error_code);
7458         vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7459                 vmcs12->vm_entry_instruction_len);
7460         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7461                 vmcs12->guest_interruptibility_info);
7462         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7463         kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7464         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7465         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7466                 vmcs12->guest_pending_dbg_exceptions);
7467         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7468         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7469
7470         vmcs_write64(VMCS_LINK_POINTER, -1ull);
7471
7472         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7473                 (vmcs_config.pin_based_exec_ctrl |
7474                  vmcs12->pin_based_vm_exec_control));
7475
7476         if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7477                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7478                              vmcs12->vmx_preemption_timer_value);
7479
7480         /*
7481          * Whether page-faults are trapped is determined by a combination of
7482          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7483          * If enable_ept, L0 doesn't care about page faults and we should
7484          * set all of these to L1's desires. However, if !enable_ept, L0 does
7485          * care about (at least some) page faults, and because it is not easy
7486          * (if at all possible?) to merge L0 and L1's desires, we simply ask
7487          * to exit on each and every L2 page fault. This is done by setting
7488          * MASK=MATCH=0 and (see below) EB.PF=1.
7489          * Note that below we don't need special code to set EB.PF beyond the
7490          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7491          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7492          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7493          *
7494          * A problem with this approach (when !enable_ept) is that L1 may be
7495          * injected with more page faults than it asked for. This could have
7496          * caused problems, but in practice existing hypervisors don't care.
7497          * To fix this, we will need to emulate the PFEC checking (on the L1
7498          * page tables), using walk_addr(), when injecting PFs to L1.
7499          */
7500         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7501                 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7502         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7503                 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7504
7505         if (cpu_has_secondary_exec_ctrls()) {
7506                 u32 exec_control = vmx_secondary_exec_control(vmx);
7507                 if (!vmx->rdtscp_enabled)
7508                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
7509                 /* Take the following fields only from vmcs12 */
7510                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7511                 if (nested_cpu_has(vmcs12,
7512                                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7513                         exec_control |= vmcs12->secondary_vm_exec_control;
7514
7515                 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7516                         /*
7517                          * Translate L1 physical address to host physical
7518                          * address for vmcs02. Keep the page pinned, so this
7519                          * physical address remains valid. We keep a reference
7520                          * to it so we can release it later.
7521                          */
7522                         if (vmx->nested.apic_access_page) /* shouldn't happen */
7523                                 nested_release_page(vmx->nested.apic_access_page);
7524                         vmx->nested.apic_access_page =
7525                                 nested_get_page(vcpu, vmcs12->apic_access_addr);
7526                         /*
7527                          * If translation failed, no matter: This feature asks
7528                          * to exit when accessing the given address, and if it
7529                          * can never be accessed, this feature won't do
7530                          * anything anyway.
7531                          */
7532                         if (!vmx->nested.apic_access_page)
7533                                 exec_control &=
7534                                   ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7535                         else
7536                                 vmcs_write64(APIC_ACCESS_ADDR,
7537                                   page_to_phys(vmx->nested.apic_access_page));
7538                 }
7539
7540                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7541         }
7542
7543
7544         /*
7545          * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7546          * Some constant fields are set here by vmx_set_constant_host_state().
7547          * Other fields are different per CPU, and will be set later when
7548          * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7549          */
7550         vmx_set_constant_host_state(vmx);
7551
7552         /*
7553          * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7554          * entry, but only if the current (host) sp changed from the value
7555          * we wrote last (vmx->host_rsp). This cache is no longer relevant
7556          * if we switch vmcs, and rather than hold a separate cache per vmcs,
7557          * here we just force the write to happen on entry.
7558          */
7559         vmx->host_rsp = 0;
7560
7561         exec_control = vmx_exec_control(vmx); /* L0's desires */
7562         exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7563         exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7564         exec_control &= ~CPU_BASED_TPR_SHADOW;
7565         exec_control |= vmcs12->cpu_based_vm_exec_control;
7566         /*
7567          * Merging of IO and MSR bitmaps not currently supported.
7568          * Rather, exit every time.
7569          */
7570         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7571         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7572         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7573
7574         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7575
7576         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7577          * bitwise-or of what L1 wants to trap for L2, and what we want to
7578          * trap. Note that CR0.TS also needs updating - we do this later.
7579          */
7580         update_exception_bitmap(vcpu);
7581         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7582         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7583
7584         /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7585          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7586          * bits are further modified by vmx_set_efer() below.
7587          */
7588         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
7589
7590         /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7591          * emulated by vmx_set_efer(), below.
7592          */
7593         vmcs_write32(VM_ENTRY_CONTROLS,
7594                 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7595                         ~VM_ENTRY_IA32E_MODE) |
7596                 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7597
7598         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7599                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7600         else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7601                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7602
7603
7604         set_cr4_guest_host_mask(vmx);
7605
7606         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7607                 vmcs_write64(TSC_OFFSET,
7608                         vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7609         else
7610                 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7611
7612         if (enable_vpid) {
7613                 /*
7614                  * Trivially support vpid by letting L2s share their parent
7615                  * L1's vpid. TODO: move to a more elaborate solution, giving
7616                  * each L2 its own vpid and exposing the vpid feature to L1.
7617                  */
7618                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7619                 vmx_flush_tlb(vcpu);
7620         }
7621
7622         if (nested_cpu_has_ept(vmcs12)) {
7623                 kvm_mmu_unload(vcpu);
7624                 nested_ept_init_mmu_context(vcpu);
7625         }
7626
7627         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7628                 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7629         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7630                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7631         else
7632                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7633         /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7634         vmx_set_efer(vcpu, vcpu->arch.efer);
7635
7636         /*
7637          * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7638          * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7639          * The CR0_READ_SHADOW is what L2 should have expected to read given
7640          * the specifications by L1; It's not enough to take
7641          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7642          * have more bits than L1 expected.
7643          */
7644         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7645         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7646
7647         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7648         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7649
7650         /* shadow page tables on either EPT or shadow page tables */
7651         kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7652         kvm_mmu_reset_context(vcpu);
7653
7654         /*
7655          * L1 may access the L2's PDPTR, so save them to construct vmcs12
7656          */
7657         if (enable_ept) {
7658                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7659                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7660                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7661                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7662         }
7663
7664         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7665         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7666 }
7667
7668 /*
7669  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7670  * for running an L2 nested guest.
7671  */
7672 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7673 {
7674         struct vmcs12 *vmcs12;
7675         struct vcpu_vmx *vmx = to_vmx(vcpu);
7676         int cpu;
7677         struct loaded_vmcs *vmcs02;
7678         bool ia32e;
7679
7680         if (!nested_vmx_check_permission(vcpu) ||
7681             !nested_vmx_check_vmcs12(vcpu))
7682                 return 1;
7683
7684         skip_emulated_instruction(vcpu);
7685         vmcs12 = get_vmcs12(vcpu);
7686
7687         if (enable_shadow_vmcs)
7688                 copy_shadow_to_vmcs12(vmx);
7689
7690         /*
7691          * The nested entry process starts with enforcing various prerequisites
7692          * on vmcs12 as required by the Intel SDM, and act appropriately when
7693          * they fail: As the SDM explains, some conditions should cause the
7694          * instruction to fail, while others will cause the instruction to seem
7695          * to succeed, but return an EXIT_REASON_INVALID_STATE.
7696          * To speed up the normal (success) code path, we should avoid checking
7697          * for misconfigurations which will anyway be caught by the processor
7698          * when using the merged vmcs02.
7699          */
7700         if (vmcs12->launch_state == launch) {
7701                 nested_vmx_failValid(vcpu,
7702                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7703                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7704                 return 1;
7705         }
7706
7707         if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7708                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7709                 return 1;
7710         }
7711
7712         if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7713                         !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7714                 /*TODO: Also verify bits beyond physical address width are 0*/
7715                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7716                 return 1;
7717         }
7718
7719         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7720                         !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7721                 /*TODO: Also verify bits beyond physical address width are 0*/
7722                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7723                 return 1;
7724         }
7725
7726         if (vmcs12->vm_entry_msr_load_count > 0 ||
7727             vmcs12->vm_exit_msr_load_count > 0 ||
7728             vmcs12->vm_exit_msr_store_count > 0) {
7729                 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7730                                     __func__);
7731                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7732                 return 1;
7733         }
7734
7735         if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7736               nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7737             !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7738               nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7739             !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7740               nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7741             !vmx_control_verify(vmcs12->vm_exit_controls,
7742               nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7743             !vmx_control_verify(vmcs12->vm_entry_controls,
7744               nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7745         {
7746                 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7747                 return 1;
7748         }
7749
7750         if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7751             ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7752                 nested_vmx_failValid(vcpu,
7753                         VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7754                 return 1;
7755         }
7756
7757         if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7758             ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7759                 nested_vmx_entry_failure(vcpu, vmcs12,
7760                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7761                 return 1;
7762         }
7763         if (vmcs12->vmcs_link_pointer != -1ull) {
7764                 nested_vmx_entry_failure(vcpu, vmcs12,
7765                         EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7766                 return 1;
7767         }
7768
7769         /*
7770          * If the load IA32_EFER VM-entry control is 1, the following checks
7771          * are performed on the field for the IA32_EFER MSR:
7772          * - Bits reserved in the IA32_EFER MSR must be 0.
7773          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
7774          *   the IA-32e mode guest VM-exit control. It must also be identical
7775          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
7776          *   CR0.PG) is 1.
7777          */
7778         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
7779                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
7780                 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
7781                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
7782                     ((vmcs12->guest_cr0 & X86_CR0_PG) &&
7783                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
7784                         nested_vmx_entry_failure(vcpu, vmcs12,
7785                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7786                         return 1;
7787                 }
7788         }
7789
7790         /*
7791          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
7792          * IA32_EFER MSR must be 0 in the field for that register. In addition,
7793          * the values of the LMA and LME bits in the field must each be that of
7794          * the host address-space size VM-exit control.
7795          */
7796         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
7797                 ia32e = (vmcs12->vm_exit_controls &
7798                          VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
7799                 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
7800                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
7801                     ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
7802                         nested_vmx_entry_failure(vcpu, vmcs12,
7803                                 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7804                         return 1;
7805                 }
7806         }
7807
7808         /*
7809          * We're finally done with prerequisite checking, and can start with
7810          * the nested entry.
7811          */
7812
7813         vmcs02 = nested_get_current_vmcs02(vmx);
7814         if (!vmcs02)
7815                 return -ENOMEM;
7816
7817         enter_guest_mode(vcpu);
7818
7819         vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7820
7821         cpu = get_cpu();
7822         vmx->loaded_vmcs = vmcs02;
7823         vmx_vcpu_put(vcpu);
7824         vmx_vcpu_load(vcpu, cpu);
7825         vcpu->cpu = cpu;
7826         put_cpu();
7827
7828         vmx_segment_cache_clear(vmx);
7829
7830         vmcs12->launch_state = 1;
7831
7832         prepare_vmcs02(vcpu, vmcs12);
7833
7834         /*
7835          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7836          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7837          * returned as far as L1 is concerned. It will only return (and set
7838          * the success flag) when L2 exits (see nested_vmx_vmexit()).
7839          */
7840         return 1;
7841 }
7842
7843 /*
7844  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7845  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7846  * This function returns the new value we should put in vmcs12.guest_cr0.
7847  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7848  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7849  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7850  *     didn't trap the bit, because if L1 did, so would L0).
7851  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7852  *     been modified by L2, and L1 knows it. So just leave the old value of
7853  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7854  *     isn't relevant, because if L0 traps this bit it can set it to anything.
7855  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7856  *     changed these bits, and therefore they need to be updated, but L0
7857  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7858  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7859  */
7860 static inline unsigned long
7861 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7862 {
7863         return
7864         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7865         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7866         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7867                         vcpu->arch.cr0_guest_owned_bits));
7868 }
7869
7870 static inline unsigned long
7871 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7872 {
7873         return
7874         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7875         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7876         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7877                         vcpu->arch.cr4_guest_owned_bits));
7878 }
7879
7880 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
7881                                        struct vmcs12 *vmcs12)
7882 {
7883         u32 idt_vectoring;
7884         unsigned int nr;
7885
7886         if (vcpu->arch.exception.pending) {
7887                 nr = vcpu->arch.exception.nr;
7888                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7889
7890                 if (kvm_exception_is_soft(nr)) {
7891                         vmcs12->vm_exit_instruction_len =
7892                                 vcpu->arch.event_exit_inst_len;
7893                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
7894                 } else
7895                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
7896
7897                 if (vcpu->arch.exception.has_error_code) {
7898                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
7899                         vmcs12->idt_vectoring_error_code =
7900                                 vcpu->arch.exception.error_code;
7901                 }
7902
7903                 vmcs12->idt_vectoring_info_field = idt_vectoring;
7904         } else if (vcpu->arch.nmi_pending) {
7905                 vmcs12->idt_vectoring_info_field =
7906                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
7907         } else if (vcpu->arch.interrupt.pending) {
7908                 nr = vcpu->arch.interrupt.nr;
7909                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7910
7911                 if (vcpu->arch.interrupt.soft) {
7912                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
7913                         vmcs12->vm_entry_instruction_len =
7914                                 vcpu->arch.event_exit_inst_len;
7915                 } else
7916                         idt_vectoring |= INTR_TYPE_EXT_INTR;
7917
7918                 vmcs12->idt_vectoring_info_field = idt_vectoring;
7919         }
7920 }
7921
7922 /*
7923  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7924  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7925  * and this function updates it to reflect the changes to the guest state while
7926  * L2 was running (and perhaps made some exits which were handled directly by L0
7927  * without going back to L1), and to reflect the exit reason.
7928  * Note that we do not have to copy here all VMCS fields, just those that
7929  * could have changed by the L2 guest or the exit - i.e., the guest-state and
7930  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7931  * which already writes to vmcs12 directly.
7932  */
7933 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7934 {
7935         /* update guest state fields: */
7936         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7937         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7938
7939         kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7940         vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7941         vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7942         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7943
7944         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7945         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7946         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7947         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7948         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7949         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7950         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7951         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7952         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7953         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7954         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7955         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7956         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7957         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7958         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7959         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7960         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7961         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7962         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7963         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7964         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7965         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7966         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7967         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7968         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7969         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7970         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7971         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7972         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7973         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7974         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7975         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7976         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7977         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7978         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7979         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7980
7981         vmcs12->guest_interruptibility_info =
7982                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7983         vmcs12->guest_pending_dbg_exceptions =
7984                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7985
7986         /*
7987          * In some cases (usually, nested EPT), L2 is allowed to change its
7988          * own CR3 without exiting. If it has changed it, we must keep it.
7989          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
7990          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
7991          *
7992          * Additionally, restore L2's PDPTR to vmcs12.
7993          */
7994         if (enable_ept) {
7995                 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
7996                 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
7997                 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
7998                 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
7999                 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8000         }
8001
8002         vmcs12->vm_entry_controls =
8003                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8004                 (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
8005
8006         /* TODO: These cannot have changed unless we have MSR bitmaps and
8007          * the relevant bit asks not to trap the change */
8008         vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8009         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8010                 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8011         vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8012         vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8013         vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8014
8015         /* update exit information fields: */
8016
8017         vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason;
8018         vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8019
8020         vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8021         if ((vmcs12->vm_exit_intr_info &
8022              (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8023             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8024                 vmcs12->vm_exit_intr_error_code =
8025                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8026         vmcs12->idt_vectoring_info_field = 0;
8027         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8028         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8029
8030         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8031                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8032                  * instead of reading the real value. */
8033                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8034
8035                 /*
8036                  * Transfer the event that L0 or L1 may wanted to inject into
8037                  * L2 to IDT_VECTORING_INFO_FIELD.
8038                  */
8039                 vmcs12_save_pending_event(vcpu, vmcs12);
8040         }
8041
8042         /*
8043          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8044          * preserved above and would only end up incorrectly in L1.
8045          */
8046         vcpu->arch.nmi_injected = false;
8047         kvm_clear_exception_queue(vcpu);
8048         kvm_clear_interrupt_queue(vcpu);
8049 }
8050
8051 /*
8052  * A part of what we need to when the nested L2 guest exits and we want to
8053  * run its L1 parent, is to reset L1's guest state to the host state specified
8054  * in vmcs12.
8055  * This function is to be called not only on normal nested exit, but also on
8056  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8057  * Failures During or After Loading Guest State").
8058  * This function should be called when the active VMCS is L1's (vmcs01).
8059  */
8060 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8061                                    struct vmcs12 *vmcs12)
8062 {
8063         struct kvm_segment seg;
8064
8065         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8066                 vcpu->arch.efer = vmcs12->host_ia32_efer;
8067         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8068                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8069         else
8070                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8071         vmx_set_efer(vcpu, vcpu->arch.efer);
8072
8073         kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8074         kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8075         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8076         /*
8077          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8078          * actually changed, because it depends on the current state of
8079          * fpu_active (which may have changed).
8080          * Note that vmx_set_cr0 refers to efer set above.
8081          */
8082         kvm_set_cr0(vcpu, vmcs12->host_cr0);
8083         /*
8084          * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8085          * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8086          * but we also need to update cr0_guest_host_mask and exception_bitmap.
8087          */
8088         update_exception_bitmap(vcpu);
8089         vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8090         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8091
8092         /*
8093          * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8094          * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8095          */
8096         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8097         kvm_set_cr4(vcpu, vmcs12->host_cr4);
8098
8099         if (nested_cpu_has_ept(vmcs12))
8100                 nested_ept_uninit_mmu_context(vcpu);
8101
8102         kvm_set_cr3(vcpu, vmcs12->host_cr3);
8103         kvm_mmu_reset_context(vcpu);
8104
8105         if (enable_vpid) {
8106                 /*
8107                  * Trivially support vpid by letting L2s share their parent
8108                  * L1's vpid. TODO: move to a more elaborate solution, giving
8109                  * each L2 its own vpid and exposing the vpid feature to L1.
8110                  */
8111                 vmx_flush_tlb(vcpu);
8112         }
8113
8114
8115         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8116         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8117         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8118         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8119         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8120
8121         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
8122                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8123         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8124                 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8125                         vmcs12->host_ia32_perf_global_ctrl);
8126
8127         /* Set L1 segment info according to Intel SDM
8128             27.5.2 Loading Host Segment and Descriptor-Table Registers */
8129         seg = (struct kvm_segment) {
8130                 .base = 0,
8131                 .limit = 0xFFFFFFFF,
8132                 .selector = vmcs12->host_cs_selector,
8133                 .type = 11,
8134                 .present = 1,
8135                 .s = 1,
8136                 .g = 1
8137         };
8138         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8139                 seg.l = 1;
8140         else
8141                 seg.db = 1;
8142         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8143         seg = (struct kvm_segment) {
8144                 .base = 0,
8145                 .limit = 0xFFFFFFFF,
8146                 .type = 3,
8147                 .present = 1,
8148                 .s = 1,
8149                 .db = 1,
8150                 .g = 1
8151         };
8152         seg.selector = vmcs12->host_ds_selector;
8153         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8154         seg.selector = vmcs12->host_es_selector;
8155         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8156         seg.selector = vmcs12->host_ss_selector;
8157         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8158         seg.selector = vmcs12->host_fs_selector;
8159         seg.base = vmcs12->host_fs_base;
8160         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8161         seg.selector = vmcs12->host_gs_selector;
8162         seg.base = vmcs12->host_gs_base;
8163         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8164         seg = (struct kvm_segment) {
8165                 .base = vmcs12->host_tr_base,
8166                 .limit = 0x67,
8167                 .selector = vmcs12->host_tr_selector,
8168                 .type = 11,
8169                 .present = 1
8170         };
8171         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8172
8173         kvm_set_dr(vcpu, 7, 0x400);
8174         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8175 }
8176
8177 /*
8178  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8179  * and modify vmcs12 to make it see what it would expect to see there if
8180  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8181  */
8182 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8183 {
8184         struct vcpu_vmx *vmx = to_vmx(vcpu);
8185         int cpu;
8186         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8187
8188         /* trying to cancel vmlaunch/vmresume is a bug */
8189         WARN_ON_ONCE(vmx->nested.nested_run_pending);
8190
8191         leave_guest_mode(vcpu);
8192         prepare_vmcs12(vcpu, vmcs12);
8193
8194         cpu = get_cpu();
8195         vmx->loaded_vmcs = &vmx->vmcs01;
8196         vmx_vcpu_put(vcpu);
8197         vmx_vcpu_load(vcpu, cpu);
8198         vcpu->cpu = cpu;
8199         put_cpu();
8200
8201         vmx_segment_cache_clear(vmx);
8202
8203         /* if no vmcs02 cache requested, remove the one we used */
8204         if (VMCS02_POOL_SIZE == 0)
8205                 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8206
8207         load_vmcs12_host_state(vcpu, vmcs12);
8208
8209         /* Update TSC_OFFSET if TSC was changed while L2 ran */
8210         vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8211
8212         /* This is needed for same reason as it was needed in prepare_vmcs02 */
8213         vmx->host_rsp = 0;
8214
8215         /* Unpin physical memory we referred to in vmcs02 */
8216         if (vmx->nested.apic_access_page) {
8217                 nested_release_page(vmx->nested.apic_access_page);
8218                 vmx->nested.apic_access_page = 0;
8219         }
8220
8221         /*
8222          * Exiting from L2 to L1, we're now back to L1 which thinks it just
8223          * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8224          * success or failure flag accordingly.
8225          */
8226         if (unlikely(vmx->fail)) {
8227                 vmx->fail = 0;
8228                 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8229         } else
8230                 nested_vmx_succeed(vcpu);
8231         if (enable_shadow_vmcs)
8232                 vmx->nested.sync_shadow_vmcs = true;
8233 }
8234
8235 /*
8236  * L1's failure to enter L2 is a subset of a normal exit, as explained in
8237  * 23.7 "VM-entry failures during or after loading guest state" (this also
8238  * lists the acceptable exit-reason and exit-qualification parameters).
8239  * It should only be called before L2 actually succeeded to run, and when
8240  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8241  */
8242 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8243                         struct vmcs12 *vmcs12,
8244                         u32 reason, unsigned long qualification)
8245 {
8246         load_vmcs12_host_state(vcpu, vmcs12);
8247         vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8248         vmcs12->exit_qualification = qualification;
8249         nested_vmx_succeed(vcpu);
8250         if (enable_shadow_vmcs)
8251                 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8252 }
8253
8254 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8255                                struct x86_instruction_info *info,
8256                                enum x86_intercept_stage stage)
8257 {
8258         return X86EMUL_CONTINUE;
8259 }
8260
8261 static struct kvm_x86_ops vmx_x86_ops = {
8262         .cpu_has_kvm_support = cpu_has_kvm_support,
8263         .disabled_by_bios = vmx_disabled_by_bios,
8264         .hardware_setup = hardware_setup,
8265         .hardware_unsetup = hardware_unsetup,
8266         .check_processor_compatibility = vmx_check_processor_compat,
8267         .hardware_enable = hardware_enable,
8268         .hardware_disable = hardware_disable,
8269         .cpu_has_accelerated_tpr = report_flexpriority,
8270
8271         .vcpu_create = vmx_create_vcpu,
8272         .vcpu_free = vmx_free_vcpu,
8273         .vcpu_reset = vmx_vcpu_reset,
8274
8275         .prepare_guest_switch = vmx_save_host_state,
8276         .vcpu_load = vmx_vcpu_load,
8277         .vcpu_put = vmx_vcpu_put,
8278
8279         .update_db_bp_intercept = update_exception_bitmap,
8280         .get_msr = vmx_get_msr,
8281         .set_msr = vmx_set_msr,
8282         .get_segment_base = vmx_get_segment_base,
8283         .get_segment = vmx_get_segment,
8284         .set_segment = vmx_set_segment,
8285         .get_cpl = vmx_get_cpl,
8286         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8287         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8288         .decache_cr3 = vmx_decache_cr3,
8289         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8290         .set_cr0 = vmx_set_cr0,
8291         .set_cr3 = vmx_set_cr3,
8292         .set_cr4 = vmx_set_cr4,
8293         .set_efer = vmx_set_efer,
8294         .get_idt = vmx_get_idt,
8295         .set_idt = vmx_set_idt,
8296         .get_gdt = vmx_get_gdt,
8297         .set_gdt = vmx_set_gdt,
8298         .set_dr7 = vmx_set_dr7,
8299         .cache_reg = vmx_cache_reg,
8300         .get_rflags = vmx_get_rflags,
8301         .set_rflags = vmx_set_rflags,
8302         .fpu_activate = vmx_fpu_activate,
8303         .fpu_deactivate = vmx_fpu_deactivate,
8304
8305         .tlb_flush = vmx_flush_tlb,
8306
8307         .run = vmx_vcpu_run,
8308         .handle_exit = vmx_handle_exit,
8309         .skip_emulated_instruction = skip_emulated_instruction,
8310         .set_interrupt_shadow = vmx_set_interrupt_shadow,
8311         .get_interrupt_shadow = vmx_get_interrupt_shadow,
8312         .patch_hypercall = vmx_patch_hypercall,
8313         .set_irq = vmx_inject_irq,
8314         .set_nmi = vmx_inject_nmi,
8315         .queue_exception = vmx_queue_exception,
8316         .cancel_injection = vmx_cancel_injection,
8317         .interrupt_allowed = vmx_interrupt_allowed,
8318         .nmi_allowed = vmx_nmi_allowed,
8319         .get_nmi_mask = vmx_get_nmi_mask,
8320         .set_nmi_mask = vmx_set_nmi_mask,
8321         .enable_nmi_window = enable_nmi_window,
8322         .enable_irq_window = enable_irq_window,
8323         .update_cr8_intercept = update_cr8_intercept,
8324         .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8325         .vm_has_apicv = vmx_vm_has_apicv,
8326         .load_eoi_exitmap = vmx_load_eoi_exitmap,
8327         .hwapic_irr_update = vmx_hwapic_irr_update,
8328         .hwapic_isr_update = vmx_hwapic_isr_update,
8329         .sync_pir_to_irr = vmx_sync_pir_to_irr,
8330         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8331
8332         .set_tss_addr = vmx_set_tss_addr,
8333         .get_tdp_level = get_ept_level,
8334         .get_mt_mask = vmx_get_mt_mask,
8335
8336         .get_exit_info = vmx_get_exit_info,
8337
8338         .get_lpage_level = vmx_get_lpage_level,
8339
8340         .cpuid_update = vmx_cpuid_update,
8341
8342         .rdtscp_supported = vmx_rdtscp_supported,
8343         .invpcid_supported = vmx_invpcid_supported,
8344
8345         .set_supported_cpuid = vmx_set_supported_cpuid,
8346
8347         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8348
8349         .set_tsc_khz = vmx_set_tsc_khz,
8350         .read_tsc_offset = vmx_read_tsc_offset,
8351         .write_tsc_offset = vmx_write_tsc_offset,
8352         .adjust_tsc_offset = vmx_adjust_tsc_offset,
8353         .compute_tsc_offset = vmx_compute_tsc_offset,
8354         .read_l1_tsc = vmx_read_l1_tsc,
8355
8356         .set_tdp_cr3 = vmx_set_cr3,
8357
8358         .check_intercept = vmx_check_intercept,
8359         .handle_external_intr = vmx_handle_external_intr,
8360 };
8361
8362 static int __init vmx_init(void)
8363 {
8364         int r, i, msr;
8365
8366         rdmsrl_safe(MSR_EFER, &host_efer);
8367
8368         for (i = 0; i < NR_VMX_MSR; ++i)
8369                 kvm_define_shared_msr(i, vmx_msr_index[i]);
8370
8371         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8372         if (!vmx_io_bitmap_a)
8373                 return -ENOMEM;
8374
8375         r = -ENOMEM;
8376
8377         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8378         if (!vmx_io_bitmap_b)
8379                 goto out;
8380
8381         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8382         if (!vmx_msr_bitmap_legacy)
8383                 goto out1;
8384
8385         vmx_msr_bitmap_legacy_x2apic =
8386                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8387         if (!vmx_msr_bitmap_legacy_x2apic)
8388                 goto out2;
8389
8390         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8391         if (!vmx_msr_bitmap_longmode)
8392                 goto out3;
8393
8394         vmx_msr_bitmap_longmode_x2apic =
8395                                 (unsigned long *)__get_free_page(GFP_KERNEL);
8396         if (!vmx_msr_bitmap_longmode_x2apic)
8397                 goto out4;
8398         vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8399         if (!vmx_vmread_bitmap)
8400                 goto out5;
8401
8402         vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8403         if (!vmx_vmwrite_bitmap)
8404                 goto out6;
8405
8406         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8407         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8408         /* shadowed read/write fields */
8409         for (i = 0; i < max_shadow_read_write_fields; i++) {
8410                 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8411                 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8412         }
8413         /* shadowed read only fields */
8414         for (i = 0; i < max_shadow_read_only_fields; i++)
8415                 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8416
8417         /*
8418          * Allow direct access to the PC debug port (it is often used for I/O
8419          * delays, but the vmexits simply slow things down).
8420          */
8421         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8422         clear_bit(0x80, vmx_io_bitmap_a);
8423
8424         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8425
8426         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8427         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8428
8429         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8430
8431         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8432                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8433         if (r)
8434                 goto out7;
8435
8436 #ifdef CONFIG_KEXEC
8437         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8438                            crash_vmclear_local_loaded_vmcss);
8439 #endif
8440
8441         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8442         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8443         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8444         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8445         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8446         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8447         memcpy(vmx_msr_bitmap_legacy_x2apic,
8448                         vmx_msr_bitmap_legacy, PAGE_SIZE);
8449         memcpy(vmx_msr_bitmap_longmode_x2apic,
8450                         vmx_msr_bitmap_longmode, PAGE_SIZE);
8451
8452         if (enable_apicv) {
8453                 for (msr = 0x800; msr <= 0x8ff; msr++)
8454                         vmx_disable_intercept_msr_read_x2apic(msr);
8455
8456                 /* According SDM, in x2apic mode, the whole id reg is used.
8457                  * But in KVM, it only use the highest eight bits. Need to
8458                  * intercept it */
8459                 vmx_enable_intercept_msr_read_x2apic(0x802);
8460                 /* TMCCT */
8461                 vmx_enable_intercept_msr_read_x2apic(0x839);
8462                 /* TPR */
8463                 vmx_disable_intercept_msr_write_x2apic(0x808);
8464                 /* EOI */
8465                 vmx_disable_intercept_msr_write_x2apic(0x80b);
8466                 /* SELF-IPI */
8467                 vmx_disable_intercept_msr_write_x2apic(0x83f);
8468         }
8469
8470         if (enable_ept) {
8471                 kvm_mmu_set_mask_ptes(0ull,
8472                         (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8473                         (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8474                         0ull, VMX_EPT_EXECUTABLE_MASK);
8475                 ept_set_mmio_spte_mask();
8476                 kvm_enable_tdp();
8477         } else
8478                 kvm_disable_tdp();
8479
8480         return 0;
8481
8482 out7:
8483         free_page((unsigned long)vmx_vmwrite_bitmap);
8484 out6:
8485         free_page((unsigned long)vmx_vmread_bitmap);
8486 out5:
8487         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8488 out4:
8489         free_page((unsigned long)vmx_msr_bitmap_longmode);
8490 out3:
8491         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8492 out2:
8493         free_page((unsigned long)vmx_msr_bitmap_legacy);
8494 out1:
8495         free_page((unsigned long)vmx_io_bitmap_b);
8496 out:
8497         free_page((unsigned long)vmx_io_bitmap_a);
8498         return r;
8499 }
8500
8501 static void __exit vmx_exit(void)
8502 {
8503         free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8504         free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8505         free_page((unsigned long)vmx_msr_bitmap_legacy);
8506         free_page((unsigned long)vmx_msr_bitmap_longmode);
8507         free_page((unsigned long)vmx_io_bitmap_b);
8508         free_page((unsigned long)vmx_io_bitmap_a);
8509         free_page((unsigned long)vmx_vmwrite_bitmap);
8510         free_page((unsigned long)vmx_vmread_bitmap);
8511
8512 #ifdef CONFIG_KEXEC
8513         rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8514         synchronize_rcu();
8515 #endif
8516
8517         kvm_exit();
8518 }
8519
8520 module_init(vmx_init)
8521 module_exit(vmx_exit)