]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/mmu.c
KVM: MMU: fast invalidate all mmio sptes
[~andy/linux] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 /*
201  * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202  * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203  * number.
204  */
205 #define MMIO_SPTE_GEN_LOW_SHIFT         3
206 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
207
208 #define MMIO_GEN_SHIFT                  19
209 #define MMIO_GEN_LOW_SHIFT              9
210 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
212 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
213
214 static u64 generation_mmio_spte_mask(unsigned int gen)
215 {
216         u64 mask;
217
218         WARN_ON(gen > MMIO_MAX_GEN);
219
220         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222         return mask;
223 }
224
225 static unsigned int get_mmio_spte_generation(u64 spte)
226 {
227         unsigned int gen;
228
229         spte &= ~shadow_mmio_mask;
230
231         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233         return gen;
234 }
235
236 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237 {
238         return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
239 }
240
241 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
242                            unsigned access)
243 {
244         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
245         unsigned int gen = kvm_current_mmio_generation(kvm);
246         u64 mask = generation_mmio_spte_mask(gen);
247
248         access &= ACC_WRITE_MASK | ACC_USER_MASK;
249         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
250         sp->mmio_cached = true;
251
252         trace_mark_mmio_spte(sptep, gfn, access, gen);
253         mmu_spte_set(sptep, mask);
254 }
255
256 static bool is_mmio_spte(u64 spte)
257 {
258         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
259 }
260
261 static gfn_t get_mmio_spte_gfn(u64 spte)
262 {
263         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
264         return (spte & ~mask) >> PAGE_SHIFT;
265 }
266
267 static unsigned get_mmio_spte_access(u64 spte)
268 {
269         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
270         return (spte & ~mask) & ~PAGE_MASK;
271 }
272
273 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
274                           pfn_t pfn, unsigned access)
275 {
276         if (unlikely(is_noslot_pfn(pfn))) {
277                 mark_mmio_spte(kvm, sptep, gfn, access);
278                 return true;
279         }
280
281         return false;
282 }
283
284 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
285 {
286         return likely(get_mmio_spte_generation(spte) ==
287                         kvm_current_mmio_generation(kvm));
288 }
289
290 static inline u64 rsvd_bits(int s, int e)
291 {
292         return ((1ULL << (e - s + 1)) - 1) << s;
293 }
294
295 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
296                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
297 {
298         shadow_user_mask = user_mask;
299         shadow_accessed_mask = accessed_mask;
300         shadow_dirty_mask = dirty_mask;
301         shadow_nx_mask = nx_mask;
302         shadow_x_mask = x_mask;
303 }
304 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
305
306 static int is_cpuid_PSE36(void)
307 {
308         return 1;
309 }
310
311 static int is_nx(struct kvm_vcpu *vcpu)
312 {
313         return vcpu->arch.efer & EFER_NX;
314 }
315
316 static int is_shadow_present_pte(u64 pte)
317 {
318         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
319 }
320
321 static int is_large_pte(u64 pte)
322 {
323         return pte & PT_PAGE_SIZE_MASK;
324 }
325
326 static int is_dirty_gpte(unsigned long pte)
327 {
328         return pte & PT_DIRTY_MASK;
329 }
330
331 static int is_rmap_spte(u64 pte)
332 {
333         return is_shadow_present_pte(pte);
334 }
335
336 static int is_last_spte(u64 pte, int level)
337 {
338         if (level == PT_PAGE_TABLE_LEVEL)
339                 return 1;
340         if (is_large_pte(pte))
341                 return 1;
342         return 0;
343 }
344
345 static pfn_t spte_to_pfn(u64 pte)
346 {
347         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
348 }
349
350 static gfn_t pse36_gfn_delta(u32 gpte)
351 {
352         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
353
354         return (gpte & PT32_DIR_PSE36_MASK) << shift;
355 }
356
357 #ifdef CONFIG_X86_64
358 static void __set_spte(u64 *sptep, u64 spte)
359 {
360         *sptep = spte;
361 }
362
363 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
364 {
365         *sptep = spte;
366 }
367
368 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
369 {
370         return xchg(sptep, spte);
371 }
372
373 static u64 __get_spte_lockless(u64 *sptep)
374 {
375         return ACCESS_ONCE(*sptep);
376 }
377
378 static bool __check_direct_spte_mmio_pf(u64 spte)
379 {
380         /* It is valid if the spte is zapped. */
381         return spte == 0ull;
382 }
383 #else
384 union split_spte {
385         struct {
386                 u32 spte_low;
387                 u32 spte_high;
388         };
389         u64 spte;
390 };
391
392 static void count_spte_clear(u64 *sptep, u64 spte)
393 {
394         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
395
396         if (is_shadow_present_pte(spte))
397                 return;
398
399         /* Ensure the spte is completely set before we increase the count */
400         smp_wmb();
401         sp->clear_spte_count++;
402 }
403
404 static void __set_spte(u64 *sptep, u64 spte)
405 {
406         union split_spte *ssptep, sspte;
407
408         ssptep = (union split_spte *)sptep;
409         sspte = (union split_spte)spte;
410
411         ssptep->spte_high = sspte.spte_high;
412
413         /*
414          * If we map the spte from nonpresent to present, We should store
415          * the high bits firstly, then set present bit, so cpu can not
416          * fetch this spte while we are setting the spte.
417          */
418         smp_wmb();
419
420         ssptep->spte_low = sspte.spte_low;
421 }
422
423 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
424 {
425         union split_spte *ssptep, sspte;
426
427         ssptep = (union split_spte *)sptep;
428         sspte = (union split_spte)spte;
429
430         ssptep->spte_low = sspte.spte_low;
431
432         /*
433          * If we map the spte from present to nonpresent, we should clear
434          * present bit firstly to avoid vcpu fetch the old high bits.
435          */
436         smp_wmb();
437
438         ssptep->spte_high = sspte.spte_high;
439         count_spte_clear(sptep, spte);
440 }
441
442 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
443 {
444         union split_spte *ssptep, sspte, orig;
445
446         ssptep = (union split_spte *)sptep;
447         sspte = (union split_spte)spte;
448
449         /* xchg acts as a barrier before the setting of the high bits */
450         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
451         orig.spte_high = ssptep->spte_high;
452         ssptep->spte_high = sspte.spte_high;
453         count_spte_clear(sptep, spte);
454
455         return orig.spte;
456 }
457
458 /*
459  * The idea using the light way get the spte on x86_32 guest is from
460  * gup_get_pte(arch/x86/mm/gup.c).
461  * The difference is we can not catch the spte tlb flush if we leave
462  * guest mode, so we emulate it by increase clear_spte_count when spte
463  * is cleared.
464  */
465 static u64 __get_spte_lockless(u64 *sptep)
466 {
467         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
468         union split_spte spte, *orig = (union split_spte *)sptep;
469         int count;
470
471 retry:
472         count = sp->clear_spte_count;
473         smp_rmb();
474
475         spte.spte_low = orig->spte_low;
476         smp_rmb();
477
478         spte.spte_high = orig->spte_high;
479         smp_rmb();
480
481         if (unlikely(spte.spte_low != orig->spte_low ||
482               count != sp->clear_spte_count))
483                 goto retry;
484
485         return spte.spte;
486 }
487
488 static bool __check_direct_spte_mmio_pf(u64 spte)
489 {
490         union split_spte sspte = (union split_spte)spte;
491         u32 high_mmio_mask = shadow_mmio_mask >> 32;
492
493         /* It is valid if the spte is zapped. */
494         if (spte == 0ull)
495                 return true;
496
497         /* It is valid if the spte is being zapped. */
498         if (sspte.spte_low == 0ull &&
499             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
500                 return true;
501
502         return false;
503 }
504 #endif
505
506 static bool spte_is_locklessly_modifiable(u64 spte)
507 {
508         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
509                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
510 }
511
512 static bool spte_has_volatile_bits(u64 spte)
513 {
514         /*
515          * Always atomicly update spte if it can be updated
516          * out of mmu-lock, it can ensure dirty bit is not lost,
517          * also, it can help us to get a stable is_writable_pte()
518          * to ensure tlb flush is not missed.
519          */
520         if (spte_is_locklessly_modifiable(spte))
521                 return true;
522
523         if (!shadow_accessed_mask)
524                 return false;
525
526         if (!is_shadow_present_pte(spte))
527                 return false;
528
529         if ((spte & shadow_accessed_mask) &&
530               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
531                 return false;
532
533         return true;
534 }
535
536 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
537 {
538         return (old_spte & bit_mask) && !(new_spte & bit_mask);
539 }
540
541 /* Rules for using mmu_spte_set:
542  * Set the sptep from nonpresent to present.
543  * Note: the sptep being assigned *must* be either not present
544  * or in a state where the hardware will not attempt to update
545  * the spte.
546  */
547 static void mmu_spte_set(u64 *sptep, u64 new_spte)
548 {
549         WARN_ON(is_shadow_present_pte(*sptep));
550         __set_spte(sptep, new_spte);
551 }
552
553 /* Rules for using mmu_spte_update:
554  * Update the state bits, it means the mapped pfn is not changged.
555  *
556  * Whenever we overwrite a writable spte with a read-only one we
557  * should flush remote TLBs. Otherwise rmap_write_protect
558  * will find a read-only spte, even though the writable spte
559  * might be cached on a CPU's TLB, the return value indicates this
560  * case.
561  */
562 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
563 {
564         u64 old_spte = *sptep;
565         bool ret = false;
566
567         WARN_ON(!is_rmap_spte(new_spte));
568
569         if (!is_shadow_present_pte(old_spte)) {
570                 mmu_spte_set(sptep, new_spte);
571                 return ret;
572         }
573
574         if (!spte_has_volatile_bits(old_spte))
575                 __update_clear_spte_fast(sptep, new_spte);
576         else
577                 old_spte = __update_clear_spte_slow(sptep, new_spte);
578
579         /*
580          * For the spte updated out of mmu-lock is safe, since
581          * we always atomicly update it, see the comments in
582          * spte_has_volatile_bits().
583          */
584         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
585                 ret = true;
586
587         if (!shadow_accessed_mask)
588                 return ret;
589
590         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
591                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
592         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
593                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
594
595         return ret;
596 }
597
598 /*
599  * Rules for using mmu_spte_clear_track_bits:
600  * It sets the sptep from present to nonpresent, and track the
601  * state bits, it is used to clear the last level sptep.
602  */
603 static int mmu_spte_clear_track_bits(u64 *sptep)
604 {
605         pfn_t pfn;
606         u64 old_spte = *sptep;
607
608         if (!spte_has_volatile_bits(old_spte))
609                 __update_clear_spte_fast(sptep, 0ull);
610         else
611                 old_spte = __update_clear_spte_slow(sptep, 0ull);
612
613         if (!is_rmap_spte(old_spte))
614                 return 0;
615
616         pfn = spte_to_pfn(old_spte);
617
618         /*
619          * KVM does not hold the refcount of the page used by
620          * kvm mmu, before reclaiming the page, we should
621          * unmap it from mmu first.
622          */
623         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
624
625         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
626                 kvm_set_pfn_accessed(pfn);
627         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
628                 kvm_set_pfn_dirty(pfn);
629         return 1;
630 }
631
632 /*
633  * Rules for using mmu_spte_clear_no_track:
634  * Directly clear spte without caring the state bits of sptep,
635  * it is used to set the upper level spte.
636  */
637 static void mmu_spte_clear_no_track(u64 *sptep)
638 {
639         __update_clear_spte_fast(sptep, 0ull);
640 }
641
642 static u64 mmu_spte_get_lockless(u64 *sptep)
643 {
644         return __get_spte_lockless(sptep);
645 }
646
647 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
648 {
649         /*
650          * Prevent page table teardown by making any free-er wait during
651          * kvm_flush_remote_tlbs() IPI to all active vcpus.
652          */
653         local_irq_disable();
654         vcpu->mode = READING_SHADOW_PAGE_TABLES;
655         /*
656          * Make sure a following spte read is not reordered ahead of the write
657          * to vcpu->mode.
658          */
659         smp_mb();
660 }
661
662 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
663 {
664         /*
665          * Make sure the write to vcpu->mode is not reordered in front of
666          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
667          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
668          */
669         smp_mb();
670         vcpu->mode = OUTSIDE_GUEST_MODE;
671         local_irq_enable();
672 }
673
674 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
675                                   struct kmem_cache *base_cache, int min)
676 {
677         void *obj;
678
679         if (cache->nobjs >= min)
680                 return 0;
681         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
682                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
683                 if (!obj)
684                         return -ENOMEM;
685                 cache->objects[cache->nobjs++] = obj;
686         }
687         return 0;
688 }
689
690 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
691 {
692         return cache->nobjs;
693 }
694
695 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
696                                   struct kmem_cache *cache)
697 {
698         while (mc->nobjs)
699                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
700 }
701
702 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
703                                        int min)
704 {
705         void *page;
706
707         if (cache->nobjs >= min)
708                 return 0;
709         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
710                 page = (void *)__get_free_page(GFP_KERNEL);
711                 if (!page)
712                         return -ENOMEM;
713                 cache->objects[cache->nobjs++] = page;
714         }
715         return 0;
716 }
717
718 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
719 {
720         while (mc->nobjs)
721                 free_page((unsigned long)mc->objects[--mc->nobjs]);
722 }
723
724 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
725 {
726         int r;
727
728         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
730         if (r)
731                 goto out;
732         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
733         if (r)
734                 goto out;
735         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
736                                    mmu_page_header_cache, 4);
737 out:
738         return r;
739 }
740
741 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
742 {
743         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
744                                 pte_list_desc_cache);
745         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
746         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
747                                 mmu_page_header_cache);
748 }
749
750 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
751 {
752         void *p;
753
754         BUG_ON(!mc->nobjs);
755         p = mc->objects[--mc->nobjs];
756         return p;
757 }
758
759 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
760 {
761         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
762 }
763
764 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
765 {
766         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
767 }
768
769 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
770 {
771         if (!sp->role.direct)
772                 return sp->gfns[index];
773
774         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
775 }
776
777 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
778 {
779         if (sp->role.direct)
780                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
781         else
782                 sp->gfns[index] = gfn;
783 }
784
785 /*
786  * Return the pointer to the large page information for a given gfn,
787  * handling slots that are not large page aligned.
788  */
789 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
790                                               struct kvm_memory_slot *slot,
791                                               int level)
792 {
793         unsigned long idx;
794
795         idx = gfn_to_index(gfn, slot->base_gfn, level);
796         return &slot->arch.lpage_info[level - 2][idx];
797 }
798
799 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
800 {
801         struct kvm_memory_slot *slot;
802         struct kvm_lpage_info *linfo;
803         int i;
804
805         slot = gfn_to_memslot(kvm, gfn);
806         for (i = PT_DIRECTORY_LEVEL;
807              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
808                 linfo = lpage_info_slot(gfn, slot, i);
809                 linfo->write_count += 1;
810         }
811         kvm->arch.indirect_shadow_pages++;
812 }
813
814 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
815 {
816         struct kvm_memory_slot *slot;
817         struct kvm_lpage_info *linfo;
818         int i;
819
820         slot = gfn_to_memslot(kvm, gfn);
821         for (i = PT_DIRECTORY_LEVEL;
822              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
823                 linfo = lpage_info_slot(gfn, slot, i);
824                 linfo->write_count -= 1;
825                 WARN_ON(linfo->write_count < 0);
826         }
827         kvm->arch.indirect_shadow_pages--;
828 }
829
830 static int has_wrprotected_page(struct kvm *kvm,
831                                 gfn_t gfn,
832                                 int level)
833 {
834         struct kvm_memory_slot *slot;
835         struct kvm_lpage_info *linfo;
836
837         slot = gfn_to_memslot(kvm, gfn);
838         if (slot) {
839                 linfo = lpage_info_slot(gfn, slot, level);
840                 return linfo->write_count;
841         }
842
843         return 1;
844 }
845
846 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
847 {
848         unsigned long page_size;
849         int i, ret = 0;
850
851         page_size = kvm_host_page_size(kvm, gfn);
852
853         for (i = PT_PAGE_TABLE_LEVEL;
854              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
855                 if (page_size >= KVM_HPAGE_SIZE(i))
856                         ret = i;
857                 else
858                         break;
859         }
860
861         return ret;
862 }
863
864 static struct kvm_memory_slot *
865 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
866                             bool no_dirty_log)
867 {
868         struct kvm_memory_slot *slot;
869
870         slot = gfn_to_memslot(vcpu->kvm, gfn);
871         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
872               (no_dirty_log && slot->dirty_bitmap))
873                 slot = NULL;
874
875         return slot;
876 }
877
878 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
879 {
880         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
881 }
882
883 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
884 {
885         int host_level, level, max_level;
886
887         host_level = host_mapping_level(vcpu->kvm, large_gfn);
888
889         if (host_level == PT_PAGE_TABLE_LEVEL)
890                 return host_level;
891
892         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
893
894         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
895                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
896                         break;
897
898         return level - 1;
899 }
900
901 /*
902  * Pte mapping structures:
903  *
904  * If pte_list bit zero is zero, then pte_list point to the spte.
905  *
906  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
907  * pte_list_desc containing more mappings.
908  *
909  * Returns the number of pte entries before the spte was added or zero if
910  * the spte was not added.
911  *
912  */
913 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
914                         unsigned long *pte_list)
915 {
916         struct pte_list_desc *desc;
917         int i, count = 0;
918
919         if (!*pte_list) {
920                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
921                 *pte_list = (unsigned long)spte;
922         } else if (!(*pte_list & 1)) {
923                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
924                 desc = mmu_alloc_pte_list_desc(vcpu);
925                 desc->sptes[0] = (u64 *)*pte_list;
926                 desc->sptes[1] = spte;
927                 *pte_list = (unsigned long)desc | 1;
928                 ++count;
929         } else {
930                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
931                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
932                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
933                         desc = desc->more;
934                         count += PTE_LIST_EXT;
935                 }
936                 if (desc->sptes[PTE_LIST_EXT-1]) {
937                         desc->more = mmu_alloc_pte_list_desc(vcpu);
938                         desc = desc->more;
939                 }
940                 for (i = 0; desc->sptes[i]; ++i)
941                         ++count;
942                 desc->sptes[i] = spte;
943         }
944         return count;
945 }
946
947 static void
948 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
949                            int i, struct pte_list_desc *prev_desc)
950 {
951         int j;
952
953         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
954                 ;
955         desc->sptes[i] = desc->sptes[j];
956         desc->sptes[j] = NULL;
957         if (j != 0)
958                 return;
959         if (!prev_desc && !desc->more)
960                 *pte_list = (unsigned long)desc->sptes[0];
961         else
962                 if (prev_desc)
963                         prev_desc->more = desc->more;
964                 else
965                         *pte_list = (unsigned long)desc->more | 1;
966         mmu_free_pte_list_desc(desc);
967 }
968
969 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
970 {
971         struct pte_list_desc *desc;
972         struct pte_list_desc *prev_desc;
973         int i;
974
975         if (!*pte_list) {
976                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
977                 BUG();
978         } else if (!(*pte_list & 1)) {
979                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
980                 if ((u64 *)*pte_list != spte) {
981                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
982                         BUG();
983                 }
984                 *pte_list = 0;
985         } else {
986                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
987                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
988                 prev_desc = NULL;
989                 while (desc) {
990                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
991                                 if (desc->sptes[i] == spte) {
992                                         pte_list_desc_remove_entry(pte_list,
993                                                                desc, i,
994                                                                prev_desc);
995                                         return;
996                                 }
997                         prev_desc = desc;
998                         desc = desc->more;
999                 }
1000                 pr_err("pte_list_remove: %p many->many\n", spte);
1001                 BUG();
1002         }
1003 }
1004
1005 typedef void (*pte_list_walk_fn) (u64 *spte);
1006 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1007 {
1008         struct pte_list_desc *desc;
1009         int i;
1010
1011         if (!*pte_list)
1012                 return;
1013
1014         if (!(*pte_list & 1))
1015                 return fn((u64 *)*pte_list);
1016
1017         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1018         while (desc) {
1019                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1020                         fn(desc->sptes[i]);
1021                 desc = desc->more;
1022         }
1023 }
1024
1025 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1026                                     struct kvm_memory_slot *slot)
1027 {
1028         unsigned long idx;
1029
1030         idx = gfn_to_index(gfn, slot->base_gfn, level);
1031         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1032 }
1033
1034 /*
1035  * Take gfn and return the reverse mapping to it.
1036  */
1037 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1038 {
1039         struct kvm_memory_slot *slot;
1040
1041         slot = gfn_to_memslot(kvm, gfn);
1042         return __gfn_to_rmap(gfn, level, slot);
1043 }
1044
1045 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1046 {
1047         struct kvm_mmu_memory_cache *cache;
1048
1049         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1050         return mmu_memory_cache_free_objects(cache);
1051 }
1052
1053 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1054 {
1055         struct kvm_mmu_page *sp;
1056         unsigned long *rmapp;
1057
1058         sp = page_header(__pa(spte));
1059         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1060         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1061         return pte_list_add(vcpu, spte, rmapp);
1062 }
1063
1064 static void rmap_remove(struct kvm *kvm, u64 *spte)
1065 {
1066         struct kvm_mmu_page *sp;
1067         gfn_t gfn;
1068         unsigned long *rmapp;
1069
1070         sp = page_header(__pa(spte));
1071         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1072         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1073         pte_list_remove(spte, rmapp);
1074 }
1075
1076 /*
1077  * Used by the following functions to iterate through the sptes linked by a
1078  * rmap.  All fields are private and not assumed to be used outside.
1079  */
1080 struct rmap_iterator {
1081         /* private fields */
1082         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1083         int pos;                        /* index of the sptep */
1084 };
1085
1086 /*
1087  * Iteration must be started by this function.  This should also be used after
1088  * removing/dropping sptes from the rmap link because in such cases the
1089  * information in the itererator may not be valid.
1090  *
1091  * Returns sptep if found, NULL otherwise.
1092  */
1093 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1094 {
1095         if (!rmap)
1096                 return NULL;
1097
1098         if (!(rmap & 1)) {
1099                 iter->desc = NULL;
1100                 return (u64 *)rmap;
1101         }
1102
1103         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1104         iter->pos = 0;
1105         return iter->desc->sptes[iter->pos];
1106 }
1107
1108 /*
1109  * Must be used with a valid iterator: e.g. after rmap_get_first().
1110  *
1111  * Returns sptep if found, NULL otherwise.
1112  */
1113 static u64 *rmap_get_next(struct rmap_iterator *iter)
1114 {
1115         if (iter->desc) {
1116                 if (iter->pos < PTE_LIST_EXT - 1) {
1117                         u64 *sptep;
1118
1119                         ++iter->pos;
1120                         sptep = iter->desc->sptes[iter->pos];
1121                         if (sptep)
1122                                 return sptep;
1123                 }
1124
1125                 iter->desc = iter->desc->more;
1126
1127                 if (iter->desc) {
1128                         iter->pos = 0;
1129                         /* desc->sptes[0] cannot be NULL */
1130                         return iter->desc->sptes[iter->pos];
1131                 }
1132         }
1133
1134         return NULL;
1135 }
1136
1137 static void drop_spte(struct kvm *kvm, u64 *sptep)
1138 {
1139         if (mmu_spte_clear_track_bits(sptep))
1140                 rmap_remove(kvm, sptep);
1141 }
1142
1143
1144 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1145 {
1146         if (is_large_pte(*sptep)) {
1147                 WARN_ON(page_header(__pa(sptep))->role.level ==
1148                         PT_PAGE_TABLE_LEVEL);
1149                 drop_spte(kvm, sptep);
1150                 --kvm->stat.lpages;
1151                 return true;
1152         }
1153
1154         return false;
1155 }
1156
1157 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1158 {
1159         if (__drop_large_spte(vcpu->kvm, sptep))
1160                 kvm_flush_remote_tlbs(vcpu->kvm);
1161 }
1162
1163 /*
1164  * Write-protect on the specified @sptep, @pt_protect indicates whether
1165  * spte writ-protection is caused by protecting shadow page table.
1166  * @flush indicates whether tlb need be flushed.
1167  *
1168  * Note: write protection is difference between drity logging and spte
1169  * protection:
1170  * - for dirty logging, the spte can be set to writable at anytime if
1171  *   its dirty bitmap is properly set.
1172  * - for spte protection, the spte can be writable only after unsync-ing
1173  *   shadow page.
1174  *
1175  * Return true if the spte is dropped.
1176  */
1177 static bool
1178 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1179 {
1180         u64 spte = *sptep;
1181
1182         if (!is_writable_pte(spte) &&
1183               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1184                 return false;
1185
1186         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1187
1188         if (__drop_large_spte(kvm, sptep)) {
1189                 *flush |= true;
1190                 return true;
1191         }
1192
1193         if (pt_protect)
1194                 spte &= ~SPTE_MMU_WRITEABLE;
1195         spte = spte & ~PT_WRITABLE_MASK;
1196
1197         *flush |= mmu_spte_update(sptep, spte);
1198         return false;
1199 }
1200
1201 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1202                                  bool pt_protect)
1203 {
1204         u64 *sptep;
1205         struct rmap_iterator iter;
1206         bool flush = false;
1207
1208         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1209                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1210                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1211                         sptep = rmap_get_first(*rmapp, &iter);
1212                         continue;
1213                 }
1214
1215                 sptep = rmap_get_next(&iter);
1216         }
1217
1218         return flush;
1219 }
1220
1221 /**
1222  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1223  * @kvm: kvm instance
1224  * @slot: slot to protect
1225  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1226  * @mask: indicates which pages we should protect
1227  *
1228  * Used when we do not need to care about huge page mappings: e.g. during dirty
1229  * logging we do not have any such mappings.
1230  */
1231 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1232                                      struct kvm_memory_slot *slot,
1233                                      gfn_t gfn_offset, unsigned long mask)
1234 {
1235         unsigned long *rmapp;
1236
1237         while (mask) {
1238                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1239                                       PT_PAGE_TABLE_LEVEL, slot);
1240                 __rmap_write_protect(kvm, rmapp, false);
1241
1242                 /* clear the first set bit */
1243                 mask &= mask - 1;
1244         }
1245 }
1246
1247 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1248 {
1249         struct kvm_memory_slot *slot;
1250         unsigned long *rmapp;
1251         int i;
1252         bool write_protected = false;
1253
1254         slot = gfn_to_memslot(kvm, gfn);
1255
1256         for (i = PT_PAGE_TABLE_LEVEL;
1257              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1258                 rmapp = __gfn_to_rmap(gfn, i, slot);
1259                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1260         }
1261
1262         return write_protected;
1263 }
1264
1265 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1266                            struct kvm_memory_slot *slot, unsigned long data)
1267 {
1268         u64 *sptep;
1269         struct rmap_iterator iter;
1270         int need_tlb_flush = 0;
1271
1272         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1273                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1274                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1275
1276                 drop_spte(kvm, sptep);
1277                 need_tlb_flush = 1;
1278         }
1279
1280         return need_tlb_flush;
1281 }
1282
1283 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1284                              struct kvm_memory_slot *slot, unsigned long data)
1285 {
1286         u64 *sptep;
1287         struct rmap_iterator iter;
1288         int need_flush = 0;
1289         u64 new_spte;
1290         pte_t *ptep = (pte_t *)data;
1291         pfn_t new_pfn;
1292
1293         WARN_ON(pte_huge(*ptep));
1294         new_pfn = pte_pfn(*ptep);
1295
1296         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1297                 BUG_ON(!is_shadow_present_pte(*sptep));
1298                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1299
1300                 need_flush = 1;
1301
1302                 if (pte_write(*ptep)) {
1303                         drop_spte(kvm, sptep);
1304                         sptep = rmap_get_first(*rmapp, &iter);
1305                 } else {
1306                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1307                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1308
1309                         new_spte &= ~PT_WRITABLE_MASK;
1310                         new_spte &= ~SPTE_HOST_WRITEABLE;
1311                         new_spte &= ~shadow_accessed_mask;
1312
1313                         mmu_spte_clear_track_bits(sptep);
1314                         mmu_spte_set(sptep, new_spte);
1315                         sptep = rmap_get_next(&iter);
1316                 }
1317         }
1318
1319         if (need_flush)
1320                 kvm_flush_remote_tlbs(kvm);
1321
1322         return 0;
1323 }
1324
1325 static int kvm_handle_hva_range(struct kvm *kvm,
1326                                 unsigned long start,
1327                                 unsigned long end,
1328                                 unsigned long data,
1329                                 int (*handler)(struct kvm *kvm,
1330                                                unsigned long *rmapp,
1331                                                struct kvm_memory_slot *slot,
1332                                                unsigned long data))
1333 {
1334         int j;
1335         int ret = 0;
1336         struct kvm_memslots *slots;
1337         struct kvm_memory_slot *memslot;
1338
1339         slots = kvm_memslots(kvm);
1340
1341         kvm_for_each_memslot(memslot, slots) {
1342                 unsigned long hva_start, hva_end;
1343                 gfn_t gfn_start, gfn_end;
1344
1345                 hva_start = max(start, memslot->userspace_addr);
1346                 hva_end = min(end, memslot->userspace_addr +
1347                                         (memslot->npages << PAGE_SHIFT));
1348                 if (hva_start >= hva_end)
1349                         continue;
1350                 /*
1351                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1352                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1353                  */
1354                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1355                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1356
1357                 for (j = PT_PAGE_TABLE_LEVEL;
1358                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1359                         unsigned long idx, idx_end;
1360                         unsigned long *rmapp;
1361
1362                         /*
1363                          * {idx(page_j) | page_j intersects with
1364                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1365                          */
1366                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1367                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1368
1369                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1370
1371                         for (; idx <= idx_end; ++idx)
1372                                 ret |= handler(kvm, rmapp++, memslot, data);
1373                 }
1374         }
1375
1376         return ret;
1377 }
1378
1379 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1380                           unsigned long data,
1381                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1382                                          struct kvm_memory_slot *slot,
1383                                          unsigned long data))
1384 {
1385         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1386 }
1387
1388 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1389 {
1390         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1391 }
1392
1393 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1394 {
1395         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1396 }
1397
1398 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1399 {
1400         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1401 }
1402
1403 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1404                          struct kvm_memory_slot *slot, unsigned long data)
1405 {
1406         u64 *sptep;
1407         struct rmap_iterator uninitialized_var(iter);
1408         int young = 0;
1409
1410         /*
1411          * In case of absence of EPT Access and Dirty Bits supports,
1412          * emulate the accessed bit for EPT, by checking if this page has
1413          * an EPT mapping, and clearing it if it does. On the next access,
1414          * a new EPT mapping will be established.
1415          * This has some overhead, but not as much as the cost of swapping
1416          * out actively used pages or breaking up actively used hugepages.
1417          */
1418         if (!shadow_accessed_mask) {
1419                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1420                 goto out;
1421         }
1422
1423         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1424              sptep = rmap_get_next(&iter)) {
1425                 BUG_ON(!is_shadow_present_pte(*sptep));
1426
1427                 if (*sptep & shadow_accessed_mask) {
1428                         young = 1;
1429                         clear_bit((ffs(shadow_accessed_mask) - 1),
1430                                  (unsigned long *)sptep);
1431                 }
1432         }
1433 out:
1434         /* @data has hva passed to kvm_age_hva(). */
1435         trace_kvm_age_page(data, slot, young);
1436         return young;
1437 }
1438
1439 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1440                               struct kvm_memory_slot *slot, unsigned long data)
1441 {
1442         u64 *sptep;
1443         struct rmap_iterator iter;
1444         int young = 0;
1445
1446         /*
1447          * If there's no access bit in the secondary pte set by the
1448          * hardware it's up to gup-fast/gup to set the access bit in
1449          * the primary pte or in the page structure.
1450          */
1451         if (!shadow_accessed_mask)
1452                 goto out;
1453
1454         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1455              sptep = rmap_get_next(&iter)) {
1456                 BUG_ON(!is_shadow_present_pte(*sptep));
1457
1458                 if (*sptep & shadow_accessed_mask) {
1459                         young = 1;
1460                         break;
1461                 }
1462         }
1463 out:
1464         return young;
1465 }
1466
1467 #define RMAP_RECYCLE_THRESHOLD 1000
1468
1469 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1470 {
1471         unsigned long *rmapp;
1472         struct kvm_mmu_page *sp;
1473
1474         sp = page_header(__pa(spte));
1475
1476         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1477
1478         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1479         kvm_flush_remote_tlbs(vcpu->kvm);
1480 }
1481
1482 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1483 {
1484         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1485 }
1486
1487 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1488 {
1489         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1490 }
1491
1492 #ifdef MMU_DEBUG
1493 static int is_empty_shadow_page(u64 *spt)
1494 {
1495         u64 *pos;
1496         u64 *end;
1497
1498         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1499                 if (is_shadow_present_pte(*pos)) {
1500                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1501                                pos, *pos);
1502                         return 0;
1503                 }
1504         return 1;
1505 }
1506 #endif
1507
1508 /*
1509  * This value is the sum of all of the kvm instances's
1510  * kvm->arch.n_used_mmu_pages values.  We need a global,
1511  * aggregate version in order to make the slab shrinker
1512  * faster
1513  */
1514 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1515 {
1516         kvm->arch.n_used_mmu_pages += nr;
1517         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1518 }
1519
1520 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1521 {
1522         ASSERT(is_empty_shadow_page(sp->spt));
1523         hlist_del(&sp->hash_link);
1524         list_del(&sp->link);
1525         free_page((unsigned long)sp->spt);
1526         if (!sp->role.direct)
1527                 free_page((unsigned long)sp->gfns);
1528         kmem_cache_free(mmu_page_header_cache, sp);
1529 }
1530
1531 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1532 {
1533         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1534 }
1535
1536 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1537                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1538 {
1539         if (!parent_pte)
1540                 return;
1541
1542         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1543 }
1544
1545 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1546                                        u64 *parent_pte)
1547 {
1548         pte_list_remove(parent_pte, &sp->parent_ptes);
1549 }
1550
1551 static void drop_parent_pte(struct kvm_mmu_page *sp,
1552                             u64 *parent_pte)
1553 {
1554         mmu_page_remove_parent_pte(sp, parent_pte);
1555         mmu_spte_clear_no_track(parent_pte);
1556 }
1557
1558 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1559                                                u64 *parent_pte, int direct)
1560 {
1561         struct kvm_mmu_page *sp;
1562
1563         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1564         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1565         if (!direct)
1566                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1567         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1568
1569         /*
1570          * The active_mmu_pages list is the FIFO list, do not move the
1571          * page until it is zapped. kvm_zap_obsolete_pages depends on
1572          * this feature. See the comments in kvm_zap_obsolete_pages().
1573          */
1574         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1575         sp->parent_ptes = 0;
1576         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1577         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1578         return sp;
1579 }
1580
1581 static void mark_unsync(u64 *spte);
1582 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1583 {
1584         pte_list_walk(&sp->parent_ptes, mark_unsync);
1585 }
1586
1587 static void mark_unsync(u64 *spte)
1588 {
1589         struct kvm_mmu_page *sp;
1590         unsigned int index;
1591
1592         sp = page_header(__pa(spte));
1593         index = spte - sp->spt;
1594         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1595                 return;
1596         if (sp->unsync_children++)
1597                 return;
1598         kvm_mmu_mark_parents_unsync(sp);
1599 }
1600
1601 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1602                                struct kvm_mmu_page *sp)
1603 {
1604         return 1;
1605 }
1606
1607 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1608 {
1609 }
1610
1611 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1612                                  struct kvm_mmu_page *sp, u64 *spte,
1613                                  const void *pte)
1614 {
1615         WARN_ON(1);
1616 }
1617
1618 #define KVM_PAGE_ARRAY_NR 16
1619
1620 struct kvm_mmu_pages {
1621         struct mmu_page_and_offset {
1622                 struct kvm_mmu_page *sp;
1623                 unsigned int idx;
1624         } page[KVM_PAGE_ARRAY_NR];
1625         unsigned int nr;
1626 };
1627
1628 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1629                          int idx)
1630 {
1631         int i;
1632
1633         if (sp->unsync)
1634                 for (i=0; i < pvec->nr; i++)
1635                         if (pvec->page[i].sp == sp)
1636                                 return 0;
1637
1638         pvec->page[pvec->nr].sp = sp;
1639         pvec->page[pvec->nr].idx = idx;
1640         pvec->nr++;
1641         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1642 }
1643
1644 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1645                            struct kvm_mmu_pages *pvec)
1646 {
1647         int i, ret, nr_unsync_leaf = 0;
1648
1649         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1650                 struct kvm_mmu_page *child;
1651                 u64 ent = sp->spt[i];
1652
1653                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1654                         goto clear_child_bitmap;
1655
1656                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1657
1658                 if (child->unsync_children) {
1659                         if (mmu_pages_add(pvec, child, i))
1660                                 return -ENOSPC;
1661
1662                         ret = __mmu_unsync_walk(child, pvec);
1663                         if (!ret)
1664                                 goto clear_child_bitmap;
1665                         else if (ret > 0)
1666                                 nr_unsync_leaf += ret;
1667                         else
1668                                 return ret;
1669                 } else if (child->unsync) {
1670                         nr_unsync_leaf++;
1671                         if (mmu_pages_add(pvec, child, i))
1672                                 return -ENOSPC;
1673                 } else
1674                          goto clear_child_bitmap;
1675
1676                 continue;
1677
1678 clear_child_bitmap:
1679                 __clear_bit(i, sp->unsync_child_bitmap);
1680                 sp->unsync_children--;
1681                 WARN_ON((int)sp->unsync_children < 0);
1682         }
1683
1684
1685         return nr_unsync_leaf;
1686 }
1687
1688 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1689                            struct kvm_mmu_pages *pvec)
1690 {
1691         if (!sp->unsync_children)
1692                 return 0;
1693
1694         mmu_pages_add(pvec, sp, 0);
1695         return __mmu_unsync_walk(sp, pvec);
1696 }
1697
1698 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1699 {
1700         WARN_ON(!sp->unsync);
1701         trace_kvm_mmu_sync_page(sp);
1702         sp->unsync = 0;
1703         --kvm->stat.mmu_unsync;
1704 }
1705
1706 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1707                                     struct list_head *invalid_list);
1708 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1709                                     struct list_head *invalid_list);
1710
1711 /*
1712  * NOTE: we should pay more attention on the zapped-obsolete page
1713  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1714  * since it has been deleted from active_mmu_pages but still can be found
1715  * at hast list.
1716  *
1717  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1718  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1719  * all the obsolete pages.
1720  */
1721 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1722         hlist_for_each_entry(_sp,                                       \
1723           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1724                 if ((_sp)->gfn != (_gfn)) {} else
1725
1726 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1727         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1728                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1729
1730 /* @sp->gfn should be write-protected at the call site */
1731 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1732                            struct list_head *invalid_list, bool clear_unsync)
1733 {
1734         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1735                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1736                 return 1;
1737         }
1738
1739         if (clear_unsync)
1740                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1741
1742         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1743                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1744                 return 1;
1745         }
1746
1747         kvm_mmu_flush_tlb(vcpu);
1748         return 0;
1749 }
1750
1751 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1752                                    struct kvm_mmu_page *sp)
1753 {
1754         LIST_HEAD(invalid_list);
1755         int ret;
1756
1757         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1758         if (ret)
1759                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1760
1761         return ret;
1762 }
1763
1764 #ifdef CONFIG_KVM_MMU_AUDIT
1765 #include "mmu_audit.c"
1766 #else
1767 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1768 static void mmu_audit_disable(void) { }
1769 #endif
1770
1771 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1772                          struct list_head *invalid_list)
1773 {
1774         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1775 }
1776
1777 /* @gfn should be write-protected at the call site */
1778 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1779 {
1780         struct kvm_mmu_page *s;
1781         LIST_HEAD(invalid_list);
1782         bool flush = false;
1783
1784         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1785                 if (!s->unsync)
1786                         continue;
1787
1788                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1789                 kvm_unlink_unsync_page(vcpu->kvm, s);
1790                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1791                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1792                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1793                         continue;
1794                 }
1795                 flush = true;
1796         }
1797
1798         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1799         if (flush)
1800                 kvm_mmu_flush_tlb(vcpu);
1801 }
1802
1803 struct mmu_page_path {
1804         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1805         unsigned int idx[PT64_ROOT_LEVEL-1];
1806 };
1807
1808 #define for_each_sp(pvec, sp, parents, i)                       \
1809                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1810                         sp = pvec.page[i].sp;                   \
1811                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1812                         i = mmu_pages_next(&pvec, &parents, i))
1813
1814 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1815                           struct mmu_page_path *parents,
1816                           int i)
1817 {
1818         int n;
1819
1820         for (n = i+1; n < pvec->nr; n++) {
1821                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1822
1823                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1824                         parents->idx[0] = pvec->page[n].idx;
1825                         return n;
1826                 }
1827
1828                 parents->parent[sp->role.level-2] = sp;
1829                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1830         }
1831
1832         return n;
1833 }
1834
1835 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1836 {
1837         struct kvm_mmu_page *sp;
1838         unsigned int level = 0;
1839
1840         do {
1841                 unsigned int idx = parents->idx[level];
1842
1843                 sp = parents->parent[level];
1844                 if (!sp)
1845                         return;
1846
1847                 --sp->unsync_children;
1848                 WARN_ON((int)sp->unsync_children < 0);
1849                 __clear_bit(idx, sp->unsync_child_bitmap);
1850                 level++;
1851         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1852 }
1853
1854 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1855                                struct mmu_page_path *parents,
1856                                struct kvm_mmu_pages *pvec)
1857 {
1858         parents->parent[parent->role.level-1] = NULL;
1859         pvec->nr = 0;
1860 }
1861
1862 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1863                               struct kvm_mmu_page *parent)
1864 {
1865         int i;
1866         struct kvm_mmu_page *sp;
1867         struct mmu_page_path parents;
1868         struct kvm_mmu_pages pages;
1869         LIST_HEAD(invalid_list);
1870
1871         kvm_mmu_pages_init(parent, &parents, &pages);
1872         while (mmu_unsync_walk(parent, &pages)) {
1873                 bool protected = false;
1874
1875                 for_each_sp(pages, sp, parents, i)
1876                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1877
1878                 if (protected)
1879                         kvm_flush_remote_tlbs(vcpu->kvm);
1880
1881                 for_each_sp(pages, sp, parents, i) {
1882                         kvm_sync_page(vcpu, sp, &invalid_list);
1883                         mmu_pages_clear_parents(&parents);
1884                 }
1885                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1886                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1887                 kvm_mmu_pages_init(parent, &parents, &pages);
1888         }
1889 }
1890
1891 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1892 {
1893         int i;
1894
1895         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1896                 sp->spt[i] = 0ull;
1897 }
1898
1899 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1900 {
1901         sp->write_flooding_count = 0;
1902 }
1903
1904 static void clear_sp_write_flooding_count(u64 *spte)
1905 {
1906         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1907
1908         __clear_sp_write_flooding_count(sp);
1909 }
1910
1911 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1912 {
1913         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1914 }
1915
1916 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1917                                              gfn_t gfn,
1918                                              gva_t gaddr,
1919                                              unsigned level,
1920                                              int direct,
1921                                              unsigned access,
1922                                              u64 *parent_pte)
1923 {
1924         union kvm_mmu_page_role role;
1925         unsigned quadrant;
1926         struct kvm_mmu_page *sp;
1927         bool need_sync = false;
1928
1929         role = vcpu->arch.mmu.base_role;
1930         role.level = level;
1931         role.direct = direct;
1932         if (role.direct)
1933                 role.cr4_pae = 0;
1934         role.access = access;
1935         if (!vcpu->arch.mmu.direct_map
1936             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1937                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1938                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1939                 role.quadrant = quadrant;
1940         }
1941         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1942                 if (is_obsolete_sp(vcpu->kvm, sp))
1943                         continue;
1944
1945                 if (!need_sync && sp->unsync)
1946                         need_sync = true;
1947
1948                 if (sp->role.word != role.word)
1949                         continue;
1950
1951                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1952                         break;
1953
1954                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1955                 if (sp->unsync_children) {
1956                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1957                         kvm_mmu_mark_parents_unsync(sp);
1958                 } else if (sp->unsync)
1959                         kvm_mmu_mark_parents_unsync(sp);
1960
1961                 __clear_sp_write_flooding_count(sp);
1962                 trace_kvm_mmu_get_page(sp, false);
1963                 return sp;
1964         }
1965         ++vcpu->kvm->stat.mmu_cache_miss;
1966         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1967         if (!sp)
1968                 return sp;
1969         sp->gfn = gfn;
1970         sp->role = role;
1971         hlist_add_head(&sp->hash_link,
1972                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1973         if (!direct) {
1974                 if (rmap_write_protect(vcpu->kvm, gfn))
1975                         kvm_flush_remote_tlbs(vcpu->kvm);
1976                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1977                         kvm_sync_pages(vcpu, gfn);
1978
1979                 account_shadowed(vcpu->kvm, gfn);
1980         }
1981         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1982         init_shadow_page_table(sp);
1983         trace_kvm_mmu_get_page(sp, true);
1984         return sp;
1985 }
1986
1987 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1988                              struct kvm_vcpu *vcpu, u64 addr)
1989 {
1990         iterator->addr = addr;
1991         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1992         iterator->level = vcpu->arch.mmu.shadow_root_level;
1993
1994         if (iterator->level == PT64_ROOT_LEVEL &&
1995             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1996             !vcpu->arch.mmu.direct_map)
1997                 --iterator->level;
1998
1999         if (iterator->level == PT32E_ROOT_LEVEL) {
2000                 iterator->shadow_addr
2001                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2002                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2003                 --iterator->level;
2004                 if (!iterator->shadow_addr)
2005                         iterator->level = 0;
2006         }
2007 }
2008
2009 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2010 {
2011         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2012                 return false;
2013
2014         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2015         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2016         return true;
2017 }
2018
2019 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2020                                u64 spte)
2021 {
2022         if (is_last_spte(spte, iterator->level)) {
2023                 iterator->level = 0;
2024                 return;
2025         }
2026
2027         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2028         --iterator->level;
2029 }
2030
2031 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2032 {
2033         return __shadow_walk_next(iterator, *iterator->sptep);
2034 }
2035
2036 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2037 {
2038         u64 spte;
2039
2040         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2041                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2042
2043         mmu_spte_set(sptep, spte);
2044 }
2045
2046 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2047                                    unsigned direct_access)
2048 {
2049         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2050                 struct kvm_mmu_page *child;
2051
2052                 /*
2053                  * For the direct sp, if the guest pte's dirty bit
2054                  * changed form clean to dirty, it will corrupt the
2055                  * sp's access: allow writable in the read-only sp,
2056                  * so we should update the spte at this point to get
2057                  * a new sp with the correct access.
2058                  */
2059                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2060                 if (child->role.access == direct_access)
2061                         return;
2062
2063                 drop_parent_pte(child, sptep);
2064                 kvm_flush_remote_tlbs(vcpu->kvm);
2065         }
2066 }
2067
2068 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2069                              u64 *spte)
2070 {
2071         u64 pte;
2072         struct kvm_mmu_page *child;
2073
2074         pte = *spte;
2075         if (is_shadow_present_pte(pte)) {
2076                 if (is_last_spte(pte, sp->role.level)) {
2077                         drop_spte(kvm, spte);
2078                         if (is_large_pte(pte))
2079                                 --kvm->stat.lpages;
2080                 } else {
2081                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2082                         drop_parent_pte(child, spte);
2083                 }
2084                 return true;
2085         }
2086
2087         if (is_mmio_spte(pte))
2088                 mmu_spte_clear_no_track(spte);
2089
2090         return false;
2091 }
2092
2093 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2094                                          struct kvm_mmu_page *sp)
2095 {
2096         unsigned i;
2097
2098         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2099                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2100 }
2101
2102 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2103 {
2104         mmu_page_remove_parent_pte(sp, parent_pte);
2105 }
2106
2107 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2108 {
2109         u64 *sptep;
2110         struct rmap_iterator iter;
2111
2112         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2113                 drop_parent_pte(sp, sptep);
2114 }
2115
2116 static int mmu_zap_unsync_children(struct kvm *kvm,
2117                                    struct kvm_mmu_page *parent,
2118                                    struct list_head *invalid_list)
2119 {
2120         int i, zapped = 0;
2121         struct mmu_page_path parents;
2122         struct kvm_mmu_pages pages;
2123
2124         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2125                 return 0;
2126
2127         kvm_mmu_pages_init(parent, &parents, &pages);
2128         while (mmu_unsync_walk(parent, &pages)) {
2129                 struct kvm_mmu_page *sp;
2130
2131                 for_each_sp(pages, sp, parents, i) {
2132                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2133                         mmu_pages_clear_parents(&parents);
2134                         zapped++;
2135                 }
2136                 kvm_mmu_pages_init(parent, &parents, &pages);
2137         }
2138
2139         return zapped;
2140 }
2141
2142 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2143                                     struct list_head *invalid_list)
2144 {
2145         int ret;
2146
2147         trace_kvm_mmu_prepare_zap_page(sp);
2148         ++kvm->stat.mmu_shadow_zapped;
2149         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2150         kvm_mmu_page_unlink_children(kvm, sp);
2151         kvm_mmu_unlink_parents(kvm, sp);
2152
2153         if (!sp->role.invalid && !sp->role.direct)
2154                 unaccount_shadowed(kvm, sp->gfn);
2155
2156         if (sp->unsync)
2157                 kvm_unlink_unsync_page(kvm, sp);
2158         if (!sp->root_count) {
2159                 /* Count self */
2160                 ret++;
2161                 list_move(&sp->link, invalid_list);
2162                 kvm_mod_used_mmu_pages(kvm, -1);
2163         } else {
2164                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2165
2166                 /*
2167                  * The obsolete pages can not be used on any vcpus.
2168                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2169                  */
2170                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2171                         kvm_reload_remote_mmus(kvm);
2172         }
2173
2174         sp->role.invalid = 1;
2175         return ret;
2176 }
2177
2178 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2179                                     struct list_head *invalid_list)
2180 {
2181         struct kvm_mmu_page *sp, *nsp;
2182
2183         if (list_empty(invalid_list))
2184                 return;
2185
2186         /*
2187          * wmb: make sure everyone sees our modifications to the page tables
2188          * rmb: make sure we see changes to vcpu->mode
2189          */
2190         smp_mb();
2191
2192         /*
2193          * Wait for all vcpus to exit guest mode and/or lockless shadow
2194          * page table walks.
2195          */
2196         kvm_flush_remote_tlbs(kvm);
2197
2198         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2199                 WARN_ON(!sp->role.invalid || sp->root_count);
2200                 kvm_mmu_free_page(sp);
2201         }
2202 }
2203
2204 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2205                                         struct list_head *invalid_list)
2206 {
2207         struct kvm_mmu_page *sp;
2208
2209         if (list_empty(&kvm->arch.active_mmu_pages))
2210                 return false;
2211
2212         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2213                         struct kvm_mmu_page, link);
2214         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2215
2216         return true;
2217 }
2218
2219 /*
2220  * Changing the number of mmu pages allocated to the vm
2221  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2222  */
2223 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2224 {
2225         LIST_HEAD(invalid_list);
2226
2227         spin_lock(&kvm->mmu_lock);
2228
2229         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2230                 /* Need to free some mmu pages to achieve the goal. */
2231                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2232                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2233                                 break;
2234
2235                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2236                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2237         }
2238
2239         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2240
2241         spin_unlock(&kvm->mmu_lock);
2242 }
2243
2244 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2245 {
2246         struct kvm_mmu_page *sp;
2247         LIST_HEAD(invalid_list);
2248         int r;
2249
2250         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2251         r = 0;
2252         spin_lock(&kvm->mmu_lock);
2253         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2254                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2255                          sp->role.word);
2256                 r = 1;
2257                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2258         }
2259         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2260         spin_unlock(&kvm->mmu_lock);
2261
2262         return r;
2263 }
2264 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2265
2266 /*
2267  * The function is based on mtrr_type_lookup() in
2268  * arch/x86/kernel/cpu/mtrr/generic.c
2269  */
2270 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2271                          u64 start, u64 end)
2272 {
2273         int i;
2274         u64 base, mask;
2275         u8 prev_match, curr_match;
2276         int num_var_ranges = KVM_NR_VAR_MTRR;
2277
2278         if (!mtrr_state->enabled)
2279                 return 0xFF;
2280
2281         /* Make end inclusive end, instead of exclusive */
2282         end--;
2283
2284         /* Look in fixed ranges. Just return the type as per start */
2285         if (mtrr_state->have_fixed && (start < 0x100000)) {
2286                 int idx;
2287
2288                 if (start < 0x80000) {
2289                         idx = 0;
2290                         idx += (start >> 16);
2291                         return mtrr_state->fixed_ranges[idx];
2292                 } else if (start < 0xC0000) {
2293                         idx = 1 * 8;
2294                         idx += ((start - 0x80000) >> 14);
2295                         return mtrr_state->fixed_ranges[idx];
2296                 } else if (start < 0x1000000) {
2297                         idx = 3 * 8;
2298                         idx += ((start - 0xC0000) >> 12);
2299                         return mtrr_state->fixed_ranges[idx];
2300                 }
2301         }
2302
2303         /*
2304          * Look in variable ranges
2305          * Look of multiple ranges matching this address and pick type
2306          * as per MTRR precedence
2307          */
2308         if (!(mtrr_state->enabled & 2))
2309                 return mtrr_state->def_type;
2310
2311         prev_match = 0xFF;
2312         for (i = 0; i < num_var_ranges; ++i) {
2313                 unsigned short start_state, end_state;
2314
2315                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2316                         continue;
2317
2318                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2319                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2320                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2321                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2322
2323                 start_state = ((start & mask) == (base & mask));
2324                 end_state = ((end & mask) == (base & mask));
2325                 if (start_state != end_state)
2326                         return 0xFE;
2327
2328                 if ((start & mask) != (base & mask))
2329                         continue;
2330
2331                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2332                 if (prev_match == 0xFF) {
2333                         prev_match = curr_match;
2334                         continue;
2335                 }
2336
2337                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2338                     curr_match == MTRR_TYPE_UNCACHABLE)
2339                         return MTRR_TYPE_UNCACHABLE;
2340
2341                 if ((prev_match == MTRR_TYPE_WRBACK &&
2342                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2343                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2344                      curr_match == MTRR_TYPE_WRBACK)) {
2345                         prev_match = MTRR_TYPE_WRTHROUGH;
2346                         curr_match = MTRR_TYPE_WRTHROUGH;
2347                 }
2348
2349                 if (prev_match != curr_match)
2350                         return MTRR_TYPE_UNCACHABLE;
2351         }
2352
2353         if (prev_match != 0xFF)
2354                 return prev_match;
2355
2356         return mtrr_state->def_type;
2357 }
2358
2359 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2360 {
2361         u8 mtrr;
2362
2363         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2364                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2365         if (mtrr == 0xfe || mtrr == 0xff)
2366                 mtrr = MTRR_TYPE_WRBACK;
2367         return mtrr;
2368 }
2369 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2370
2371 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2372 {
2373         trace_kvm_mmu_unsync_page(sp);
2374         ++vcpu->kvm->stat.mmu_unsync;
2375         sp->unsync = 1;
2376
2377         kvm_mmu_mark_parents_unsync(sp);
2378 }
2379
2380 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2381 {
2382         struct kvm_mmu_page *s;
2383
2384         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2385                 if (s->unsync)
2386                         continue;
2387                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2388                 __kvm_unsync_page(vcpu, s);
2389         }
2390 }
2391
2392 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2393                                   bool can_unsync)
2394 {
2395         struct kvm_mmu_page *s;
2396         bool need_unsync = false;
2397
2398         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2399                 if (!can_unsync)
2400                         return 1;
2401
2402                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2403                         return 1;
2404
2405                 if (!s->unsync)
2406                         need_unsync = true;
2407         }
2408         if (need_unsync)
2409                 kvm_unsync_pages(vcpu, gfn);
2410         return 0;
2411 }
2412
2413 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2414                     unsigned pte_access, int level,
2415                     gfn_t gfn, pfn_t pfn, bool speculative,
2416                     bool can_unsync, bool host_writable)
2417 {
2418         u64 spte;
2419         int ret = 0;
2420
2421         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2422                 return 0;
2423
2424         spte = PT_PRESENT_MASK;
2425         if (!speculative)
2426                 spte |= shadow_accessed_mask;
2427
2428         if (pte_access & ACC_EXEC_MASK)
2429                 spte |= shadow_x_mask;
2430         else
2431                 spte |= shadow_nx_mask;
2432
2433         if (pte_access & ACC_USER_MASK)
2434                 spte |= shadow_user_mask;
2435
2436         if (level > PT_PAGE_TABLE_LEVEL)
2437                 spte |= PT_PAGE_SIZE_MASK;
2438         if (tdp_enabled)
2439                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2440                         kvm_is_mmio_pfn(pfn));
2441
2442         if (host_writable)
2443                 spte |= SPTE_HOST_WRITEABLE;
2444         else
2445                 pte_access &= ~ACC_WRITE_MASK;
2446
2447         spte |= (u64)pfn << PAGE_SHIFT;
2448
2449         if (pte_access & ACC_WRITE_MASK) {
2450
2451                 /*
2452                  * Other vcpu creates new sp in the window between
2453                  * mapping_level() and acquiring mmu-lock. We can
2454                  * allow guest to retry the access, the mapping can
2455                  * be fixed if guest refault.
2456                  */
2457                 if (level > PT_PAGE_TABLE_LEVEL &&
2458                     has_wrprotected_page(vcpu->kvm, gfn, level))
2459                         goto done;
2460
2461                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2462
2463                 /*
2464                  * Optimization: for pte sync, if spte was writable the hash
2465                  * lookup is unnecessary (and expensive). Write protection
2466                  * is responsibility of mmu_get_page / kvm_sync_page.
2467                  * Same reasoning can be applied to dirty page accounting.
2468                  */
2469                 if (!can_unsync && is_writable_pte(*sptep))
2470                         goto set_pte;
2471
2472                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2473                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2474                                  __func__, gfn);
2475                         ret = 1;
2476                         pte_access &= ~ACC_WRITE_MASK;
2477                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2478                 }
2479         }
2480
2481         if (pte_access & ACC_WRITE_MASK)
2482                 mark_page_dirty(vcpu->kvm, gfn);
2483
2484 set_pte:
2485         if (mmu_spte_update(sptep, spte))
2486                 kvm_flush_remote_tlbs(vcpu->kvm);
2487 done:
2488         return ret;
2489 }
2490
2491 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2492                          unsigned pte_access, int write_fault, int *emulate,
2493                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2494                          bool host_writable)
2495 {
2496         int was_rmapped = 0;
2497         int rmap_count;
2498
2499         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2500                  *sptep, write_fault, gfn);
2501
2502         if (is_rmap_spte(*sptep)) {
2503                 /*
2504                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2505                  * the parent of the now unreachable PTE.
2506                  */
2507                 if (level > PT_PAGE_TABLE_LEVEL &&
2508                     !is_large_pte(*sptep)) {
2509                         struct kvm_mmu_page *child;
2510                         u64 pte = *sptep;
2511
2512                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2513                         drop_parent_pte(child, sptep);
2514                         kvm_flush_remote_tlbs(vcpu->kvm);
2515                 } else if (pfn != spte_to_pfn(*sptep)) {
2516                         pgprintk("hfn old %llx new %llx\n",
2517                                  spte_to_pfn(*sptep), pfn);
2518                         drop_spte(vcpu->kvm, sptep);
2519                         kvm_flush_remote_tlbs(vcpu->kvm);
2520                 } else
2521                         was_rmapped = 1;
2522         }
2523
2524         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2525               true, host_writable)) {
2526                 if (write_fault)
2527                         *emulate = 1;
2528                 kvm_mmu_flush_tlb(vcpu);
2529         }
2530
2531         if (unlikely(is_mmio_spte(*sptep) && emulate))
2532                 *emulate = 1;
2533
2534         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2535         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2536                  is_large_pte(*sptep)? "2MB" : "4kB",
2537                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2538                  *sptep, sptep);
2539         if (!was_rmapped && is_large_pte(*sptep))
2540                 ++vcpu->kvm->stat.lpages;
2541
2542         if (is_shadow_present_pte(*sptep)) {
2543                 if (!was_rmapped) {
2544                         rmap_count = rmap_add(vcpu, sptep, gfn);
2545                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2546                                 rmap_recycle(vcpu, sptep, gfn);
2547                 }
2548         }
2549
2550         kvm_release_pfn_clean(pfn);
2551 }
2552
2553 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2554 {
2555         mmu_free_roots(vcpu);
2556 }
2557
2558 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2559 {
2560         int bit7;
2561
2562         bit7 = (gpte >> 7) & 1;
2563         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2564 }
2565
2566 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2567                                      bool no_dirty_log)
2568 {
2569         struct kvm_memory_slot *slot;
2570
2571         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2572         if (!slot)
2573                 return KVM_PFN_ERR_FAULT;
2574
2575         return gfn_to_pfn_memslot_atomic(slot, gfn);
2576 }
2577
2578 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2579                                   struct kvm_mmu_page *sp, u64 *spte,
2580                                   u64 gpte)
2581 {
2582         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2583                 goto no_present;
2584
2585         if (!is_present_gpte(gpte))
2586                 goto no_present;
2587
2588         if (!(gpte & PT_ACCESSED_MASK))
2589                 goto no_present;
2590
2591         return false;
2592
2593 no_present:
2594         drop_spte(vcpu->kvm, spte);
2595         return true;
2596 }
2597
2598 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2599                                     struct kvm_mmu_page *sp,
2600                                     u64 *start, u64 *end)
2601 {
2602         struct page *pages[PTE_PREFETCH_NUM];
2603         unsigned access = sp->role.access;
2604         int i, ret;
2605         gfn_t gfn;
2606
2607         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2608         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2609                 return -1;
2610
2611         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2612         if (ret <= 0)
2613                 return -1;
2614
2615         for (i = 0; i < ret; i++, gfn++, start++)
2616                 mmu_set_spte(vcpu, start, access, 0, NULL,
2617                              sp->role.level, gfn, page_to_pfn(pages[i]),
2618                              true, true);
2619
2620         return 0;
2621 }
2622
2623 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2624                                   struct kvm_mmu_page *sp, u64 *sptep)
2625 {
2626         u64 *spte, *start = NULL;
2627         int i;
2628
2629         WARN_ON(!sp->role.direct);
2630
2631         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2632         spte = sp->spt + i;
2633
2634         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2635                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2636                         if (!start)
2637                                 continue;
2638                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2639                                 break;
2640                         start = NULL;
2641                 } else if (!start)
2642                         start = spte;
2643         }
2644 }
2645
2646 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2647 {
2648         struct kvm_mmu_page *sp;
2649
2650         /*
2651          * Since it's no accessed bit on EPT, it's no way to
2652          * distinguish between actually accessed translations
2653          * and prefetched, so disable pte prefetch if EPT is
2654          * enabled.
2655          */
2656         if (!shadow_accessed_mask)
2657                 return;
2658
2659         sp = page_header(__pa(sptep));
2660         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2661                 return;
2662
2663         __direct_pte_prefetch(vcpu, sp, sptep);
2664 }
2665
2666 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2667                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2668                         bool prefault)
2669 {
2670         struct kvm_shadow_walk_iterator iterator;
2671         struct kvm_mmu_page *sp;
2672         int emulate = 0;
2673         gfn_t pseudo_gfn;
2674
2675         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2676                 if (iterator.level == level) {
2677                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2678                                      write, &emulate, level, gfn, pfn,
2679                                      prefault, map_writable);
2680                         direct_pte_prefetch(vcpu, iterator.sptep);
2681                         ++vcpu->stat.pf_fixed;
2682                         break;
2683                 }
2684
2685                 if (!is_shadow_present_pte(*iterator.sptep)) {
2686                         u64 base_addr = iterator.addr;
2687
2688                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2689                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2690                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2691                                               iterator.level - 1,
2692                                               1, ACC_ALL, iterator.sptep);
2693
2694                         link_shadow_page(iterator.sptep, sp);
2695                 }
2696         }
2697         return emulate;
2698 }
2699
2700 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2701 {
2702         siginfo_t info;
2703
2704         info.si_signo   = SIGBUS;
2705         info.si_errno   = 0;
2706         info.si_code    = BUS_MCEERR_AR;
2707         info.si_addr    = (void __user *)address;
2708         info.si_addr_lsb = PAGE_SHIFT;
2709
2710         send_sig_info(SIGBUS, &info, tsk);
2711 }
2712
2713 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2714 {
2715         /*
2716          * Do not cache the mmio info caused by writing the readonly gfn
2717          * into the spte otherwise read access on readonly gfn also can
2718          * caused mmio page fault and treat it as mmio access.
2719          * Return 1 to tell kvm to emulate it.
2720          */
2721         if (pfn == KVM_PFN_ERR_RO_FAULT)
2722                 return 1;
2723
2724         if (pfn == KVM_PFN_ERR_HWPOISON) {
2725                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2726                 return 0;
2727         }
2728
2729         return -EFAULT;
2730 }
2731
2732 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2733                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2734 {
2735         pfn_t pfn = *pfnp;
2736         gfn_t gfn = *gfnp;
2737         int level = *levelp;
2738
2739         /*
2740          * Check if it's a transparent hugepage. If this would be an
2741          * hugetlbfs page, level wouldn't be set to
2742          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2743          * here.
2744          */
2745         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2746             level == PT_PAGE_TABLE_LEVEL &&
2747             PageTransCompound(pfn_to_page(pfn)) &&
2748             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2749                 unsigned long mask;
2750                 /*
2751                  * mmu_notifier_retry was successful and we hold the
2752                  * mmu_lock here, so the pmd can't become splitting
2753                  * from under us, and in turn
2754                  * __split_huge_page_refcount() can't run from under
2755                  * us and we can safely transfer the refcount from
2756                  * PG_tail to PG_head as we switch the pfn to tail to
2757                  * head.
2758                  */
2759                 *levelp = level = PT_DIRECTORY_LEVEL;
2760                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2761                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2762                 if (pfn & mask) {
2763                         gfn &= ~mask;
2764                         *gfnp = gfn;
2765                         kvm_release_pfn_clean(pfn);
2766                         pfn &= ~mask;
2767                         kvm_get_pfn(pfn);
2768                         *pfnp = pfn;
2769                 }
2770         }
2771 }
2772
2773 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2774                                 pfn_t pfn, unsigned access, int *ret_val)
2775 {
2776         bool ret = true;
2777
2778         /* The pfn is invalid, report the error! */
2779         if (unlikely(is_error_pfn(pfn))) {
2780                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2781                 goto exit;
2782         }
2783
2784         if (unlikely(is_noslot_pfn(pfn)))
2785                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2786
2787         ret = false;
2788 exit:
2789         return ret;
2790 }
2791
2792 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2793 {
2794         /*
2795          * #PF can be fast only if the shadow page table is present and it
2796          * is caused by write-protect, that means we just need change the
2797          * W bit of the spte which can be done out of mmu-lock.
2798          */
2799         if (!(error_code & PFERR_PRESENT_MASK) ||
2800               !(error_code & PFERR_WRITE_MASK))
2801                 return false;
2802
2803         return true;
2804 }
2805
2806 static bool
2807 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2808 {
2809         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2810         gfn_t gfn;
2811
2812         WARN_ON(!sp->role.direct);
2813
2814         /*
2815          * The gfn of direct spte is stable since it is calculated
2816          * by sp->gfn.
2817          */
2818         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2819
2820         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2821                 mark_page_dirty(vcpu->kvm, gfn);
2822
2823         return true;
2824 }
2825
2826 /*
2827  * Return value:
2828  * - true: let the vcpu to access on the same address again.
2829  * - false: let the real page fault path to fix it.
2830  */
2831 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2832                             u32 error_code)
2833 {
2834         struct kvm_shadow_walk_iterator iterator;
2835         bool ret = false;
2836         u64 spte = 0ull;
2837
2838         if (!page_fault_can_be_fast(vcpu, error_code))
2839                 return false;
2840
2841         walk_shadow_page_lockless_begin(vcpu);
2842         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2843                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2844                         break;
2845
2846         /*
2847          * If the mapping has been changed, let the vcpu fault on the
2848          * same address again.
2849          */
2850         if (!is_rmap_spte(spte)) {
2851                 ret = true;
2852                 goto exit;
2853         }
2854
2855         if (!is_last_spte(spte, level))
2856                 goto exit;
2857
2858         /*
2859          * Check if it is a spurious fault caused by TLB lazily flushed.
2860          *
2861          * Need not check the access of upper level table entries since
2862          * they are always ACC_ALL.
2863          */
2864          if (is_writable_pte(spte)) {
2865                 ret = true;
2866                 goto exit;
2867         }
2868
2869         /*
2870          * Currently, to simplify the code, only the spte write-protected
2871          * by dirty-log can be fast fixed.
2872          */
2873         if (!spte_is_locklessly_modifiable(spte))
2874                 goto exit;
2875
2876         /*
2877          * Currently, fast page fault only works for direct mapping since
2878          * the gfn is not stable for indirect shadow page.
2879          * See Documentation/virtual/kvm/locking.txt to get more detail.
2880          */
2881         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2882 exit:
2883         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2884                               spte, ret);
2885         walk_shadow_page_lockless_end(vcpu);
2886
2887         return ret;
2888 }
2889
2890 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2891                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2892 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2893
2894 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2895                          gfn_t gfn, bool prefault)
2896 {
2897         int r;
2898         int level;
2899         int force_pt_level;
2900         pfn_t pfn;
2901         unsigned long mmu_seq;
2902         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2903
2904         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2905         if (likely(!force_pt_level)) {
2906                 level = mapping_level(vcpu, gfn);
2907                 /*
2908                  * This path builds a PAE pagetable - so we can map
2909                  * 2mb pages at maximum. Therefore check if the level
2910                  * is larger than that.
2911                  */
2912                 if (level > PT_DIRECTORY_LEVEL)
2913                         level = PT_DIRECTORY_LEVEL;
2914
2915                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2916         } else
2917                 level = PT_PAGE_TABLE_LEVEL;
2918
2919         if (fast_page_fault(vcpu, v, level, error_code))
2920                 return 0;
2921
2922         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2923         smp_rmb();
2924
2925         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2926                 return 0;
2927
2928         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2929                 return r;
2930
2931         spin_lock(&vcpu->kvm->mmu_lock);
2932         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2933                 goto out_unlock;
2934         make_mmu_pages_available(vcpu);
2935         if (likely(!force_pt_level))
2936                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2937         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2938                          prefault);
2939         spin_unlock(&vcpu->kvm->mmu_lock);
2940
2941
2942         return r;
2943
2944 out_unlock:
2945         spin_unlock(&vcpu->kvm->mmu_lock);
2946         kvm_release_pfn_clean(pfn);
2947         return 0;
2948 }
2949
2950
2951 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2952 {
2953         int i;
2954         struct kvm_mmu_page *sp;
2955         LIST_HEAD(invalid_list);
2956
2957         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2958                 return;
2959
2960         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2961             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2962              vcpu->arch.mmu.direct_map)) {
2963                 hpa_t root = vcpu->arch.mmu.root_hpa;
2964
2965                 spin_lock(&vcpu->kvm->mmu_lock);
2966                 sp = page_header(root);
2967                 --sp->root_count;
2968                 if (!sp->root_count && sp->role.invalid) {
2969                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2970                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2971                 }
2972                 spin_unlock(&vcpu->kvm->mmu_lock);
2973                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2974                 return;
2975         }
2976
2977         spin_lock(&vcpu->kvm->mmu_lock);
2978         for (i = 0; i < 4; ++i) {
2979                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2980
2981                 if (root) {
2982                         root &= PT64_BASE_ADDR_MASK;
2983                         sp = page_header(root);
2984                         --sp->root_count;
2985                         if (!sp->root_count && sp->role.invalid)
2986                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2987                                                          &invalid_list);
2988                 }
2989                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2990         }
2991         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2992         spin_unlock(&vcpu->kvm->mmu_lock);
2993         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2994 }
2995
2996 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2997 {
2998         int ret = 0;
2999
3000         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3001                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3002                 ret = 1;
3003         }
3004
3005         return ret;
3006 }
3007
3008 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3009 {
3010         struct kvm_mmu_page *sp;
3011         unsigned i;
3012
3013         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3014                 spin_lock(&vcpu->kvm->mmu_lock);
3015                 make_mmu_pages_available(vcpu);
3016                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3017                                       1, ACC_ALL, NULL);
3018                 ++sp->root_count;
3019                 spin_unlock(&vcpu->kvm->mmu_lock);
3020                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3021         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3022                 for (i = 0; i < 4; ++i) {
3023                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3024
3025                         ASSERT(!VALID_PAGE(root));
3026                         spin_lock(&vcpu->kvm->mmu_lock);
3027                         make_mmu_pages_available(vcpu);
3028                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3029                                               i << 30,
3030                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3031                                               NULL);
3032                         root = __pa(sp->spt);
3033                         ++sp->root_count;
3034                         spin_unlock(&vcpu->kvm->mmu_lock);
3035                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3036                 }
3037                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3038         } else
3039                 BUG();
3040
3041         return 0;
3042 }
3043
3044 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3045 {
3046         struct kvm_mmu_page *sp;
3047         u64 pdptr, pm_mask;
3048         gfn_t root_gfn;
3049         int i;
3050
3051         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3052
3053         if (mmu_check_root(vcpu, root_gfn))
3054                 return 1;
3055
3056         /*
3057          * Do we shadow a long mode page table? If so we need to
3058          * write-protect the guests page table root.
3059          */
3060         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3061                 hpa_t root = vcpu->arch.mmu.root_hpa;
3062
3063                 ASSERT(!VALID_PAGE(root));
3064
3065                 spin_lock(&vcpu->kvm->mmu_lock);
3066                 make_mmu_pages_available(vcpu);
3067                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3068                                       0, ACC_ALL, NULL);
3069                 root = __pa(sp->spt);
3070                 ++sp->root_count;
3071                 spin_unlock(&vcpu->kvm->mmu_lock);
3072                 vcpu->arch.mmu.root_hpa = root;
3073                 return 0;
3074         }
3075
3076         /*
3077          * We shadow a 32 bit page table. This may be a legacy 2-level
3078          * or a PAE 3-level page table. In either case we need to be aware that
3079          * the shadow page table may be a PAE or a long mode page table.
3080          */
3081         pm_mask = PT_PRESENT_MASK;
3082         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3083                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3084
3085         for (i = 0; i < 4; ++i) {
3086                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3087
3088                 ASSERT(!VALID_PAGE(root));
3089                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3090                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3091                         if (!is_present_gpte(pdptr)) {
3092                                 vcpu->arch.mmu.pae_root[i] = 0;
3093                                 continue;
3094                         }
3095                         root_gfn = pdptr >> PAGE_SHIFT;
3096                         if (mmu_check_root(vcpu, root_gfn))
3097                                 return 1;
3098                 }
3099                 spin_lock(&vcpu->kvm->mmu_lock);
3100                 make_mmu_pages_available(vcpu);
3101                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3102                                       PT32_ROOT_LEVEL, 0,
3103                                       ACC_ALL, NULL);
3104                 root = __pa(sp->spt);
3105                 ++sp->root_count;
3106                 spin_unlock(&vcpu->kvm->mmu_lock);
3107
3108                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3109         }
3110         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3111
3112         /*
3113          * If we shadow a 32 bit page table with a long mode page
3114          * table we enter this path.
3115          */
3116         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3117                 if (vcpu->arch.mmu.lm_root == NULL) {
3118                         /*
3119                          * The additional page necessary for this is only
3120                          * allocated on demand.
3121                          */
3122
3123                         u64 *lm_root;
3124
3125                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3126                         if (lm_root == NULL)
3127                                 return 1;
3128
3129                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3130
3131                         vcpu->arch.mmu.lm_root = lm_root;
3132                 }
3133
3134                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3135         }
3136
3137         return 0;
3138 }
3139
3140 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3141 {
3142         if (vcpu->arch.mmu.direct_map)
3143                 return mmu_alloc_direct_roots(vcpu);
3144         else
3145                 return mmu_alloc_shadow_roots(vcpu);
3146 }
3147
3148 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3149 {
3150         int i;
3151         struct kvm_mmu_page *sp;
3152
3153         if (vcpu->arch.mmu.direct_map)
3154                 return;
3155
3156         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3157                 return;
3158
3159         vcpu_clear_mmio_info(vcpu, ~0ul);
3160         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3161         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3162                 hpa_t root = vcpu->arch.mmu.root_hpa;
3163                 sp = page_header(root);
3164                 mmu_sync_children(vcpu, sp);
3165                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3166                 return;
3167         }
3168         for (i = 0; i < 4; ++i) {
3169                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3170
3171                 if (root && VALID_PAGE(root)) {
3172                         root &= PT64_BASE_ADDR_MASK;
3173                         sp = page_header(root);
3174                         mmu_sync_children(vcpu, sp);
3175                 }
3176         }
3177         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3178 }
3179
3180 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3181 {
3182         spin_lock(&vcpu->kvm->mmu_lock);
3183         mmu_sync_roots(vcpu);
3184         spin_unlock(&vcpu->kvm->mmu_lock);
3185 }
3186
3187 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3188                                   u32 access, struct x86_exception *exception)
3189 {
3190         if (exception)
3191                 exception->error_code = 0;
3192         return vaddr;
3193 }
3194
3195 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3196                                          u32 access,
3197                                          struct x86_exception *exception)
3198 {
3199         if (exception)
3200                 exception->error_code = 0;
3201         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3202 }
3203
3204 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3205 {
3206         if (direct)
3207                 return vcpu_match_mmio_gpa(vcpu, addr);
3208
3209         return vcpu_match_mmio_gva(vcpu, addr);
3210 }
3211
3212
3213 /*
3214  * On direct hosts, the last spte is only allows two states
3215  * for mmio page fault:
3216  *   - It is the mmio spte
3217  *   - It is zapped or it is being zapped.
3218  *
3219  * This function completely checks the spte when the last spte
3220  * is not the mmio spte.
3221  */
3222 static bool check_direct_spte_mmio_pf(u64 spte)
3223 {
3224         return __check_direct_spte_mmio_pf(spte);
3225 }
3226
3227 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3228 {
3229         struct kvm_shadow_walk_iterator iterator;
3230         u64 spte = 0ull;
3231
3232         walk_shadow_page_lockless_begin(vcpu);
3233         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3234                 if (!is_shadow_present_pte(spte))
3235                         break;
3236         walk_shadow_page_lockless_end(vcpu);
3237
3238         return spte;
3239 }
3240
3241 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3242 {
3243         u64 spte;
3244
3245         if (quickly_check_mmio_pf(vcpu, addr, direct))
3246                 return RET_MMIO_PF_EMULATE;
3247
3248         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3249
3250         if (is_mmio_spte(spte)) {
3251                 gfn_t gfn = get_mmio_spte_gfn(spte);
3252                 unsigned access = get_mmio_spte_access(spte);
3253
3254                 if (!check_mmio_spte(vcpu->kvm, spte))
3255                         return RET_MMIO_PF_INVALID;
3256
3257                 if (direct)
3258                         addr = 0;
3259
3260                 trace_handle_mmio_page_fault(addr, gfn, access);
3261                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3262                 return RET_MMIO_PF_EMULATE;
3263         }
3264
3265         /*
3266          * It's ok if the gva is remapped by other cpus on shadow guest,
3267          * it's a BUG if the gfn is not a mmio page.
3268          */
3269         if (direct && !check_direct_spte_mmio_pf(spte))
3270                 return RET_MMIO_PF_BUG;
3271
3272         /*
3273          * If the page table is zapped by other cpus, let CPU fault again on
3274          * the address.
3275          */
3276         return RET_MMIO_PF_RETRY;
3277 }
3278 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3279
3280 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3281                                   u32 error_code, bool direct)
3282 {
3283         int ret;
3284
3285         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3286         WARN_ON(ret == RET_MMIO_PF_BUG);
3287         return ret;
3288 }
3289
3290 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3291                                 u32 error_code, bool prefault)
3292 {
3293         gfn_t gfn;
3294         int r;
3295
3296         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3297
3298         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3299                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3300
3301                 if (likely(r != RET_MMIO_PF_INVALID))
3302                         return r;
3303         }
3304
3305         r = mmu_topup_memory_caches(vcpu);
3306         if (r)
3307                 return r;
3308
3309         ASSERT(vcpu);
3310         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3311
3312         gfn = gva >> PAGE_SHIFT;
3313
3314         return nonpaging_map(vcpu, gva & PAGE_MASK,
3315                              error_code, gfn, prefault);
3316 }
3317
3318 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3319 {
3320         struct kvm_arch_async_pf arch;
3321
3322         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3323         arch.gfn = gfn;
3324         arch.direct_map = vcpu->arch.mmu.direct_map;
3325         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3326
3327         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3328 }
3329
3330 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3331 {
3332         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3333                      kvm_event_needs_reinjection(vcpu)))
3334                 return false;
3335
3336         return kvm_x86_ops->interrupt_allowed(vcpu);
3337 }
3338
3339 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3340                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3341 {
3342         bool async;
3343
3344         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3345
3346         if (!async)
3347                 return false; /* *pfn has correct page already */
3348
3349         if (!prefault && can_do_async_pf(vcpu)) {
3350                 trace_kvm_try_async_get_page(gva, gfn);
3351                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3352                         trace_kvm_async_pf_doublefault(gva, gfn);
3353                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3354                         return true;
3355                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3356                         return true;
3357         }
3358
3359         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3360
3361         return false;
3362 }
3363
3364 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3365                           bool prefault)
3366 {
3367         pfn_t pfn;
3368         int r;
3369         int level;
3370         int force_pt_level;
3371         gfn_t gfn = gpa >> PAGE_SHIFT;
3372         unsigned long mmu_seq;
3373         int write = error_code & PFERR_WRITE_MASK;
3374         bool map_writable;
3375
3376         ASSERT(vcpu);
3377         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3378
3379         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3380                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3381
3382                 if (likely(r != RET_MMIO_PF_INVALID))
3383                         return r;
3384         }
3385
3386         r = mmu_topup_memory_caches(vcpu);
3387         if (r)
3388                 return r;
3389
3390         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3391         if (likely(!force_pt_level)) {
3392                 level = mapping_level(vcpu, gfn);
3393                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3394         } else
3395                 level = PT_PAGE_TABLE_LEVEL;
3396
3397         if (fast_page_fault(vcpu, gpa, level, error_code))
3398                 return 0;
3399
3400         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3401         smp_rmb();
3402
3403         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3404                 return 0;
3405
3406         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3407                 return r;
3408
3409         spin_lock(&vcpu->kvm->mmu_lock);
3410         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3411                 goto out_unlock;
3412         make_mmu_pages_available(vcpu);
3413         if (likely(!force_pt_level))
3414                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3415         r = __direct_map(vcpu, gpa, write, map_writable,
3416                          level, gfn, pfn, prefault);
3417         spin_unlock(&vcpu->kvm->mmu_lock);
3418
3419         return r;
3420
3421 out_unlock:
3422         spin_unlock(&vcpu->kvm->mmu_lock);
3423         kvm_release_pfn_clean(pfn);
3424         return 0;
3425 }
3426
3427 static void nonpaging_free(struct kvm_vcpu *vcpu)
3428 {
3429         mmu_free_roots(vcpu);
3430 }
3431
3432 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3433                                   struct kvm_mmu *context)
3434 {
3435         context->new_cr3 = nonpaging_new_cr3;
3436         context->page_fault = nonpaging_page_fault;
3437         context->gva_to_gpa = nonpaging_gva_to_gpa;
3438         context->free = nonpaging_free;
3439         context->sync_page = nonpaging_sync_page;
3440         context->invlpg = nonpaging_invlpg;
3441         context->update_pte = nonpaging_update_pte;
3442         context->root_level = 0;
3443         context->shadow_root_level = PT32E_ROOT_LEVEL;
3444         context->root_hpa = INVALID_PAGE;
3445         context->direct_map = true;
3446         context->nx = false;
3447         return 0;
3448 }
3449
3450 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3451 {
3452         ++vcpu->stat.tlb_flush;
3453         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3454 }
3455
3456 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3457 {
3458         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3459         mmu_free_roots(vcpu);
3460 }
3461
3462 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3463 {
3464         return kvm_read_cr3(vcpu);
3465 }
3466
3467 static void inject_page_fault(struct kvm_vcpu *vcpu,
3468                               struct x86_exception *fault)
3469 {
3470         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3471 }
3472
3473 static void paging_free(struct kvm_vcpu *vcpu)
3474 {
3475         nonpaging_free(vcpu);
3476 }
3477
3478 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3479 {
3480         unsigned mask;
3481
3482         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3483
3484         mask = (unsigned)~ACC_WRITE_MASK;
3485         /* Allow write access to dirty gptes */
3486         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3487         *access &= mask;
3488 }
3489
3490 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3491                            unsigned access, int *nr_present)
3492 {
3493         if (unlikely(is_mmio_spte(*sptep))) {
3494                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3495                         mmu_spte_clear_no_track(sptep);
3496                         return true;
3497                 }
3498
3499                 (*nr_present)++;
3500                 mark_mmio_spte(kvm, sptep, gfn, access);
3501                 return true;
3502         }
3503
3504         return false;
3505 }
3506
3507 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3508 {
3509         unsigned access;
3510
3511         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3512         access &= ~(gpte >> PT64_NX_SHIFT);
3513
3514         return access;
3515 }
3516
3517 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3518 {
3519         unsigned index;
3520
3521         index = level - 1;
3522         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3523         return mmu->last_pte_bitmap & (1 << index);
3524 }
3525
3526 #define PTTYPE 64
3527 #include "paging_tmpl.h"
3528 #undef PTTYPE
3529
3530 #define PTTYPE 32
3531 #include "paging_tmpl.h"
3532 #undef PTTYPE
3533
3534 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3535                                   struct kvm_mmu *context)
3536 {
3537         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3538         u64 exb_bit_rsvd = 0;
3539
3540         if (!context->nx)
3541                 exb_bit_rsvd = rsvd_bits(63, 63);
3542         switch (context->root_level) {
3543         case PT32_ROOT_LEVEL:
3544                 /* no rsvd bits for 2 level 4K page table entries */
3545                 context->rsvd_bits_mask[0][1] = 0;
3546                 context->rsvd_bits_mask[0][0] = 0;
3547                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3548
3549                 if (!is_pse(vcpu)) {
3550                         context->rsvd_bits_mask[1][1] = 0;
3551                         break;
3552                 }
3553
3554                 if (is_cpuid_PSE36())
3555                         /* 36bits PSE 4MB page */
3556                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3557                 else
3558                         /* 32 bits PSE 4MB page */
3559                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3560                 break;
3561         case PT32E_ROOT_LEVEL:
3562                 context->rsvd_bits_mask[0][2] =
3563                         rsvd_bits(maxphyaddr, 63) |
3564                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3565                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3566                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3567                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3568                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3569                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3570                         rsvd_bits(maxphyaddr, 62) |
3571                         rsvd_bits(13, 20);              /* large page */
3572                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3573                 break;
3574         case PT64_ROOT_LEVEL:
3575                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3576                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3577                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3578                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3579                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3580                         rsvd_bits(maxphyaddr, 51);
3581                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3582                         rsvd_bits(maxphyaddr, 51);
3583                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3584                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3585                         rsvd_bits(maxphyaddr, 51) |
3586                         rsvd_bits(13, 29);
3587                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3588                         rsvd_bits(maxphyaddr, 51) |
3589                         rsvd_bits(13, 20);              /* large page */
3590                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3591                 break;
3592         }
3593 }
3594
3595 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3596 {
3597         unsigned bit, byte, pfec;
3598         u8 map;
3599         bool fault, x, w, u, wf, uf, ff, smep;
3600
3601         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3602         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3603                 pfec = byte << 1;
3604                 map = 0;
3605                 wf = pfec & PFERR_WRITE_MASK;
3606                 uf = pfec & PFERR_USER_MASK;
3607                 ff = pfec & PFERR_FETCH_MASK;
3608                 for (bit = 0; bit < 8; ++bit) {
3609                         x = bit & ACC_EXEC_MASK;
3610                         w = bit & ACC_WRITE_MASK;
3611                         u = bit & ACC_USER_MASK;
3612
3613                         /* Not really needed: !nx will cause pte.nx to fault */
3614                         x |= !mmu->nx;
3615                         /* Allow supervisor writes if !cr0.wp */
3616                         w |= !is_write_protection(vcpu) && !uf;
3617                         /* Disallow supervisor fetches of user code if cr4.smep */
3618                         x &= !(smep && u && !uf);
3619
3620                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3621                         map |= fault << bit;
3622                 }
3623                 mmu->permissions[byte] = map;
3624         }
3625 }
3626
3627 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3628 {
3629         u8 map;
3630         unsigned level, root_level = mmu->root_level;
3631         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3632
3633         if (root_level == PT32E_ROOT_LEVEL)
3634                 --root_level;
3635         /* PT_PAGE_TABLE_LEVEL always terminates */
3636         map = 1 | (1 << ps_set_index);
3637         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3638                 if (level <= PT_PDPE_LEVEL
3639                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3640                         map |= 1 << (ps_set_index | (level - 1));
3641         }
3642         mmu->last_pte_bitmap = map;
3643 }
3644
3645 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3646                                         struct kvm_mmu *context,
3647                                         int level)
3648 {
3649         context->nx = is_nx(vcpu);
3650         context->root_level = level;
3651
3652         reset_rsvds_bits_mask(vcpu, context);
3653         update_permission_bitmask(vcpu, context);
3654         update_last_pte_bitmap(vcpu, context);
3655
3656         ASSERT(is_pae(vcpu));
3657         context->new_cr3 = paging_new_cr3;
3658         context->page_fault = paging64_page_fault;
3659         context->gva_to_gpa = paging64_gva_to_gpa;
3660         context->sync_page = paging64_sync_page;
3661         context->invlpg = paging64_invlpg;
3662         context->update_pte = paging64_update_pte;
3663         context->free = paging_free;
3664         context->shadow_root_level = level;
3665         context->root_hpa = INVALID_PAGE;
3666         context->direct_map = false;
3667         return 0;
3668 }
3669
3670 static int paging64_init_context(struct kvm_vcpu *vcpu,
3671                                  struct kvm_mmu *context)
3672 {
3673         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3674 }
3675
3676 static int paging32_init_context(struct kvm_vcpu *vcpu,
3677                                  struct kvm_mmu *context)
3678 {
3679         context->nx = false;
3680         context->root_level = PT32_ROOT_LEVEL;
3681
3682         reset_rsvds_bits_mask(vcpu, context);
3683         update_permission_bitmask(vcpu, context);
3684         update_last_pte_bitmap(vcpu, context);
3685
3686         context->new_cr3 = paging_new_cr3;
3687         context->page_fault = paging32_page_fault;
3688         context->gva_to_gpa = paging32_gva_to_gpa;
3689         context->free = paging_free;
3690         context->sync_page = paging32_sync_page;
3691         context->invlpg = paging32_invlpg;
3692         context->update_pte = paging32_update_pte;
3693         context->shadow_root_level = PT32E_ROOT_LEVEL;
3694         context->root_hpa = INVALID_PAGE;
3695         context->direct_map = false;
3696         return 0;
3697 }
3698
3699 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3700                                   struct kvm_mmu *context)
3701 {
3702         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3703 }
3704
3705 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3706 {
3707         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3708
3709         context->base_role.word = 0;
3710         context->new_cr3 = nonpaging_new_cr3;
3711         context->page_fault = tdp_page_fault;
3712         context->free = nonpaging_free;
3713         context->sync_page = nonpaging_sync_page;
3714         context->invlpg = nonpaging_invlpg;
3715         context->update_pte = nonpaging_update_pte;
3716         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3717         context->root_hpa = INVALID_PAGE;
3718         context->direct_map = true;
3719         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3720         context->get_cr3 = get_cr3;
3721         context->get_pdptr = kvm_pdptr_read;
3722         context->inject_page_fault = kvm_inject_page_fault;
3723
3724         if (!is_paging(vcpu)) {
3725                 context->nx = false;
3726                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3727                 context->root_level = 0;
3728         } else if (is_long_mode(vcpu)) {
3729                 context->nx = is_nx(vcpu);
3730                 context->root_level = PT64_ROOT_LEVEL;
3731                 reset_rsvds_bits_mask(vcpu, context);
3732                 context->gva_to_gpa = paging64_gva_to_gpa;
3733         } else if (is_pae(vcpu)) {
3734                 context->nx = is_nx(vcpu);
3735                 context->root_level = PT32E_ROOT_LEVEL;
3736                 reset_rsvds_bits_mask(vcpu, context);
3737                 context->gva_to_gpa = paging64_gva_to_gpa;
3738         } else {
3739                 context->nx = false;
3740                 context->root_level = PT32_ROOT_LEVEL;
3741                 reset_rsvds_bits_mask(vcpu, context);
3742                 context->gva_to_gpa = paging32_gva_to_gpa;
3743         }
3744
3745         update_permission_bitmask(vcpu, context);
3746         update_last_pte_bitmap(vcpu, context);
3747
3748         return 0;
3749 }
3750
3751 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3752 {
3753         int r;
3754         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3755         ASSERT(vcpu);
3756         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3757
3758         if (!is_paging(vcpu))
3759                 r = nonpaging_init_context(vcpu, context);
3760         else if (is_long_mode(vcpu))
3761                 r = paging64_init_context(vcpu, context);
3762         else if (is_pae(vcpu))
3763                 r = paging32E_init_context(vcpu, context);
3764         else
3765                 r = paging32_init_context(vcpu, context);
3766
3767         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3768         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3769         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3770         vcpu->arch.mmu.base_role.smep_andnot_wp
3771                 = smep && !is_write_protection(vcpu);
3772
3773         return r;
3774 }
3775 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3776
3777 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3778 {
3779         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3780
3781         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3782         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3783         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3784         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3785
3786         return r;
3787 }
3788
3789 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3790 {
3791         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3792
3793         g_context->get_cr3           = get_cr3;
3794         g_context->get_pdptr         = kvm_pdptr_read;
3795         g_context->inject_page_fault = kvm_inject_page_fault;
3796
3797         /*
3798          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3799          * translation of l2_gpa to l1_gpa addresses is done using the
3800          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3801          * functions between mmu and nested_mmu are swapped.
3802          */
3803         if (!is_paging(vcpu)) {
3804                 g_context->nx = false;
3805                 g_context->root_level = 0;
3806                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3807         } else if (is_long_mode(vcpu)) {
3808                 g_context->nx = is_nx(vcpu);
3809                 g_context->root_level = PT64_ROOT_LEVEL;
3810                 reset_rsvds_bits_mask(vcpu, g_context);
3811                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3812         } else if (is_pae(vcpu)) {
3813                 g_context->nx = is_nx(vcpu);
3814                 g_context->root_level = PT32E_ROOT_LEVEL;
3815                 reset_rsvds_bits_mask(vcpu, g_context);
3816                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3817         } else {
3818                 g_context->nx = false;
3819                 g_context->root_level = PT32_ROOT_LEVEL;
3820                 reset_rsvds_bits_mask(vcpu, g_context);
3821                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3822         }
3823
3824         update_permission_bitmask(vcpu, g_context);
3825         update_last_pte_bitmap(vcpu, g_context);
3826
3827         return 0;
3828 }
3829
3830 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3831 {
3832         if (mmu_is_nested(vcpu))
3833                 return init_kvm_nested_mmu(vcpu);
3834         else if (tdp_enabled)
3835                 return init_kvm_tdp_mmu(vcpu);
3836         else
3837                 return init_kvm_softmmu(vcpu);
3838 }
3839
3840 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3841 {
3842         ASSERT(vcpu);
3843         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3844                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3845                 vcpu->arch.mmu.free(vcpu);
3846 }
3847
3848 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3849 {
3850         destroy_kvm_mmu(vcpu);
3851         return init_kvm_mmu(vcpu);
3852 }
3853 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3854
3855 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3856 {
3857         int r;
3858
3859         r = mmu_topup_memory_caches(vcpu);
3860         if (r)
3861                 goto out;
3862         r = mmu_alloc_roots(vcpu);
3863         kvm_mmu_sync_roots(vcpu);
3864         if (r)
3865                 goto out;
3866         /* set_cr3() should ensure TLB has been flushed */
3867         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3868 out:
3869         return r;
3870 }
3871 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3872
3873 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3874 {
3875         mmu_free_roots(vcpu);
3876 }
3877 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3878
3879 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3880                                   struct kvm_mmu_page *sp, u64 *spte,
3881                                   const void *new)
3882 {
3883         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3884                 ++vcpu->kvm->stat.mmu_pde_zapped;
3885                 return;
3886         }
3887
3888         ++vcpu->kvm->stat.mmu_pte_updated;
3889         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3890 }
3891
3892 static bool need_remote_flush(u64 old, u64 new)
3893 {
3894         if (!is_shadow_present_pte(old))
3895                 return false;
3896         if (!is_shadow_present_pte(new))
3897                 return true;
3898         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3899                 return true;
3900         old ^= PT64_NX_MASK;
3901         new ^= PT64_NX_MASK;
3902         return (old & ~new & PT64_PERM_MASK) != 0;
3903 }
3904
3905 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3906                                     bool remote_flush, bool local_flush)
3907 {
3908         if (zap_page)
3909                 return;
3910
3911         if (remote_flush)
3912                 kvm_flush_remote_tlbs(vcpu->kvm);
3913         else if (local_flush)
3914                 kvm_mmu_flush_tlb(vcpu);
3915 }
3916
3917 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3918                                     const u8 *new, int *bytes)
3919 {
3920         u64 gentry;
3921         int r;
3922
3923         /*
3924          * Assume that the pte write on a page table of the same type
3925          * as the current vcpu paging mode since we update the sptes only
3926          * when they have the same mode.
3927          */
3928         if (is_pae(vcpu) && *bytes == 4) {
3929                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3930                 *gpa &= ~(gpa_t)7;
3931                 *bytes = 8;
3932                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3933                 if (r)
3934                         gentry = 0;
3935                 new = (const u8 *)&gentry;
3936         }
3937
3938         switch (*bytes) {
3939         case 4:
3940                 gentry = *(const u32 *)new;
3941                 break;
3942         case 8:
3943                 gentry = *(const u64 *)new;
3944                 break;
3945         default:
3946                 gentry = 0;
3947                 break;
3948         }
3949
3950         return gentry;
3951 }
3952
3953 /*
3954  * If we're seeing too many writes to a page, it may no longer be a page table,
3955  * or we may be forking, in which case it is better to unmap the page.
3956  */
3957 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3958 {
3959         /*
3960          * Skip write-flooding detected for the sp whose level is 1, because
3961          * it can become unsync, then the guest page is not write-protected.
3962          */
3963         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3964                 return false;
3965
3966         return ++sp->write_flooding_count >= 3;
3967 }
3968
3969 /*
3970  * Misaligned accesses are too much trouble to fix up; also, they usually
3971  * indicate a page is not used as a page table.
3972  */
3973 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3974                                     int bytes)
3975 {
3976         unsigned offset, pte_size, misaligned;
3977
3978         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3979                  gpa, bytes, sp->role.word);
3980
3981         offset = offset_in_page(gpa);
3982         pte_size = sp->role.cr4_pae ? 8 : 4;
3983
3984         /*
3985          * Sometimes, the OS only writes the last one bytes to update status
3986          * bits, for example, in linux, andb instruction is used in clear_bit().
3987          */
3988         if (!(offset & (pte_size - 1)) && bytes == 1)
3989                 return false;
3990
3991         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3992         misaligned |= bytes < 4;
3993
3994         return misaligned;
3995 }
3996
3997 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3998 {
3999         unsigned page_offset, quadrant;
4000         u64 *spte;
4001         int level;
4002
4003         page_offset = offset_in_page(gpa);
4004         level = sp->role.level;
4005         *nspte = 1;
4006         if (!sp->role.cr4_pae) {
4007                 page_offset <<= 1;      /* 32->64 */
4008                 /*
4009                  * A 32-bit pde maps 4MB while the shadow pdes map
4010                  * only 2MB.  So we need to double the offset again
4011                  * and zap two pdes instead of one.
4012                  */
4013                 if (level == PT32_ROOT_LEVEL) {
4014                         page_offset &= ~7; /* kill rounding error */
4015                         page_offset <<= 1;
4016                         *nspte = 2;
4017                 }
4018                 quadrant = page_offset >> PAGE_SHIFT;
4019                 page_offset &= ~PAGE_MASK;
4020                 if (quadrant != sp->role.quadrant)
4021                         return NULL;
4022         }
4023
4024         spte = &sp->spt[page_offset / sizeof(*spte)];
4025         return spte;
4026 }
4027
4028 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4029                        const u8 *new, int bytes)
4030 {
4031         gfn_t gfn = gpa >> PAGE_SHIFT;
4032         union kvm_mmu_page_role mask = { .word = 0 };
4033         struct kvm_mmu_page *sp;
4034         LIST_HEAD(invalid_list);
4035         u64 entry, gentry, *spte;
4036         int npte;
4037         bool remote_flush, local_flush, zap_page;
4038
4039         /*
4040          * If we don't have indirect shadow pages, it means no page is
4041          * write-protected, so we can exit simply.
4042          */
4043         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4044                 return;
4045
4046         zap_page = remote_flush = local_flush = false;
4047
4048         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4049
4050         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4051
4052         /*
4053          * No need to care whether allocation memory is successful
4054          * or not since pte prefetch is skiped if it does not have
4055          * enough objects in the cache.
4056          */
4057         mmu_topup_memory_caches(vcpu);
4058
4059         spin_lock(&vcpu->kvm->mmu_lock);
4060         ++vcpu->kvm->stat.mmu_pte_write;
4061         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4062
4063         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4064         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4065                 if (detect_write_misaligned(sp, gpa, bytes) ||
4066                       detect_write_flooding(sp)) {
4067                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4068                                                      &invalid_list);
4069                         ++vcpu->kvm->stat.mmu_flooded;
4070                         continue;
4071                 }
4072
4073                 spte = get_written_sptes(sp, gpa, &npte);
4074                 if (!spte)
4075                         continue;
4076
4077                 local_flush = true;
4078                 while (npte--) {
4079                         entry = *spte;
4080                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4081                         if (gentry &&
4082                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4083                               & mask.word) && rmap_can_add(vcpu))
4084                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4085                         if (need_remote_flush(entry, *spte))
4086                                 remote_flush = true;
4087                         ++spte;
4088                 }
4089         }
4090         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4091         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4092         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4093         spin_unlock(&vcpu->kvm->mmu_lock);
4094 }
4095
4096 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4097 {
4098         gpa_t gpa;
4099         int r;
4100
4101         if (vcpu->arch.mmu.direct_map)
4102                 return 0;
4103
4104         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4105
4106         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4107
4108         return r;
4109 }
4110 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4111
4112 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4113 {
4114         LIST_HEAD(invalid_list);
4115
4116         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4117                 return;
4118
4119         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4120                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4121                         break;
4122
4123                 ++vcpu->kvm->stat.mmu_recycled;
4124         }
4125         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4126 }
4127
4128 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4129 {
4130         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4131                 return vcpu_match_mmio_gpa(vcpu, addr);
4132
4133         return vcpu_match_mmio_gva(vcpu, addr);
4134 }
4135
4136 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4137                        void *insn, int insn_len)
4138 {
4139         int r, emulation_type = EMULTYPE_RETRY;
4140         enum emulation_result er;
4141
4142         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4143         if (r < 0)
4144                 goto out;
4145
4146         if (!r) {
4147                 r = 1;
4148                 goto out;
4149         }
4150
4151         if (is_mmio_page_fault(vcpu, cr2))
4152                 emulation_type = 0;
4153
4154         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4155
4156         switch (er) {
4157         case EMULATE_DONE:
4158                 return 1;
4159         case EMULATE_DO_MMIO:
4160                 ++vcpu->stat.mmio_exits;
4161                 /* fall through */
4162         case EMULATE_FAIL:
4163                 return 0;
4164         default:
4165                 BUG();
4166         }
4167 out:
4168         return r;
4169 }
4170 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4171
4172 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4173 {
4174         vcpu->arch.mmu.invlpg(vcpu, gva);
4175         kvm_mmu_flush_tlb(vcpu);
4176         ++vcpu->stat.invlpg;
4177 }
4178 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4179
4180 void kvm_enable_tdp(void)
4181 {
4182         tdp_enabled = true;
4183 }
4184 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4185
4186 void kvm_disable_tdp(void)
4187 {
4188         tdp_enabled = false;
4189 }
4190 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4191
4192 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4193 {
4194         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4195         if (vcpu->arch.mmu.lm_root != NULL)
4196                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4197 }
4198
4199 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4200 {
4201         struct page *page;
4202         int i;
4203
4204         ASSERT(vcpu);
4205
4206         /*
4207          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4208          * Therefore we need to allocate shadow page tables in the first
4209          * 4GB of memory, which happens to fit the DMA32 zone.
4210          */
4211         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4212         if (!page)
4213                 return -ENOMEM;
4214
4215         vcpu->arch.mmu.pae_root = page_address(page);
4216         for (i = 0; i < 4; ++i)
4217                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4218
4219         return 0;
4220 }
4221
4222 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4223 {
4224         ASSERT(vcpu);
4225
4226         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4227         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4228         vcpu->arch.mmu.translate_gpa = translate_gpa;
4229         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4230
4231         return alloc_mmu_pages(vcpu);
4232 }
4233
4234 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4235 {
4236         ASSERT(vcpu);
4237         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4238
4239         return init_kvm_mmu(vcpu);
4240 }
4241
4242 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4243 {
4244         struct kvm_memory_slot *memslot;
4245         gfn_t last_gfn;
4246         int i;
4247
4248         memslot = id_to_memslot(kvm->memslots, slot);
4249         last_gfn = memslot->base_gfn + memslot->npages - 1;
4250
4251         spin_lock(&kvm->mmu_lock);
4252
4253         for (i = PT_PAGE_TABLE_LEVEL;
4254              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4255                 unsigned long *rmapp;
4256                 unsigned long last_index, index;
4257
4258                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4259                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4260
4261                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4262                         if (*rmapp)
4263                                 __rmap_write_protect(kvm, rmapp, false);
4264
4265                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4266                                 kvm_flush_remote_tlbs(kvm);
4267                                 cond_resched_lock(&kvm->mmu_lock);
4268                         }
4269                 }
4270         }
4271
4272         kvm_flush_remote_tlbs(kvm);
4273         spin_unlock(&kvm->mmu_lock);
4274 }
4275
4276 #define BATCH_ZAP_PAGES 10
4277 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4278 {
4279         struct kvm_mmu_page *sp, *node;
4280         int batch = 0;
4281
4282 restart:
4283         list_for_each_entry_safe_reverse(sp, node,
4284               &kvm->arch.active_mmu_pages, link) {
4285                 int ret;
4286
4287                 /*
4288                  * No obsolete page exists before new created page since
4289                  * active_mmu_pages is the FIFO list.
4290                  */
4291                 if (!is_obsolete_sp(kvm, sp))
4292                         break;
4293
4294                 /*
4295                  * Since we are reversely walking the list and the invalid
4296                  * list will be moved to the head, skip the invalid page
4297                  * can help us to avoid the infinity list walking.
4298                  */
4299                 if (sp->role.invalid)
4300                         continue;
4301
4302                 /*
4303                  * Need not flush tlb since we only zap the sp with invalid
4304                  * generation number.
4305                  */
4306                 if (batch >= BATCH_ZAP_PAGES &&
4307                       cond_resched_lock(&kvm->mmu_lock)) {
4308                         batch = 0;
4309                         goto restart;
4310                 }
4311
4312                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4313                                 &kvm->arch.zapped_obsolete_pages);
4314                 batch += ret;
4315
4316                 if (ret)
4317                         goto restart;
4318         }
4319
4320         /*
4321          * Should flush tlb before free page tables since lockless-walking
4322          * may use the pages.
4323          */
4324         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4325 }
4326
4327 /*
4328  * Fast invalidate all shadow pages and use lock-break technique
4329  * to zap obsolete pages.
4330  *
4331  * It's required when memslot is being deleted or VM is being
4332  * destroyed, in these cases, we should ensure that KVM MMU does
4333  * not use any resource of the being-deleted slot or all slots
4334  * after calling the function.
4335  */
4336 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4337 {
4338         spin_lock(&kvm->mmu_lock);
4339         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4340         kvm->arch.mmu_valid_gen++;
4341
4342         /*
4343          * Notify all vcpus to reload its shadow page table
4344          * and flush TLB. Then all vcpus will switch to new
4345          * shadow page table with the new mmu_valid_gen.
4346          *
4347          * Note: we should do this under the protection of
4348          * mmu-lock, otherwise, vcpu would purge shadow page
4349          * but miss tlb flush.
4350          */
4351         kvm_reload_remote_mmus(kvm);
4352
4353         kvm_zap_obsolete_pages(kvm);
4354         spin_unlock(&kvm->mmu_lock);
4355 }
4356
4357 static void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4358 {
4359         struct kvm_mmu_page *sp, *node;
4360         LIST_HEAD(invalid_list);
4361
4362         spin_lock(&kvm->mmu_lock);
4363 restart:
4364         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4365                 if (!sp->mmio_cached)
4366                         continue;
4367                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4368                         goto restart;
4369         }
4370
4371         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4372         spin_unlock(&kvm->mmu_lock);
4373 }
4374
4375 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4376 {
4377         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4378 }
4379
4380 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4381 {
4382         /*
4383          * The very rare case: if the generation-number is round,
4384          * zap all shadow pages.
4385          *
4386          * The max value is MMIO_MAX_GEN - 1 since it is not called
4387          * when mark memslot invalid.
4388          */
4389         if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1)))
4390                 kvm_mmu_zap_mmio_sptes(kvm);
4391 }
4392
4393 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4394 {
4395         struct kvm *kvm;
4396         int nr_to_scan = sc->nr_to_scan;
4397
4398         if (nr_to_scan == 0)
4399                 goto out;
4400
4401         raw_spin_lock(&kvm_lock);
4402
4403         list_for_each_entry(kvm, &vm_list, vm_list) {
4404                 int idx;
4405                 LIST_HEAD(invalid_list);
4406
4407                 /*
4408                  * Never scan more than sc->nr_to_scan VM instances.
4409                  * Will not hit this condition practically since we do not try
4410                  * to shrink more than one VM and it is very unlikely to see
4411                  * !n_used_mmu_pages so many times.
4412                  */
4413                 if (!nr_to_scan--)
4414                         break;
4415                 /*
4416                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4417                  * here. We may skip a VM instance errorneosly, but we do not
4418                  * want to shrink a VM that only started to populate its MMU
4419                  * anyway.
4420                  */
4421                 if (!kvm->arch.n_used_mmu_pages &&
4422                       !kvm_has_zapped_obsolete_pages(kvm))
4423                         continue;
4424
4425                 idx = srcu_read_lock(&kvm->srcu);
4426                 spin_lock(&kvm->mmu_lock);
4427
4428                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4429                         kvm_mmu_commit_zap_page(kvm,
4430                               &kvm->arch.zapped_obsolete_pages);
4431                         goto unlock;
4432                 }
4433
4434                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4435                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4436
4437 unlock:
4438                 spin_unlock(&kvm->mmu_lock);
4439                 srcu_read_unlock(&kvm->srcu, idx);
4440
4441                 list_move_tail(&kvm->vm_list, &vm_list);
4442                 break;
4443         }
4444
4445         raw_spin_unlock(&kvm_lock);
4446
4447 out:
4448         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4449 }
4450
4451 static struct shrinker mmu_shrinker = {
4452         .shrink = mmu_shrink,
4453         .seeks = DEFAULT_SEEKS * 10,
4454 };
4455
4456 static void mmu_destroy_caches(void)
4457 {
4458         if (pte_list_desc_cache)
4459                 kmem_cache_destroy(pte_list_desc_cache);
4460         if (mmu_page_header_cache)
4461                 kmem_cache_destroy(mmu_page_header_cache);
4462 }
4463
4464 int kvm_mmu_module_init(void)
4465 {
4466         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4467                                             sizeof(struct pte_list_desc),
4468                                             0, 0, NULL);
4469         if (!pte_list_desc_cache)
4470                 goto nomem;
4471
4472         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4473                                                   sizeof(struct kvm_mmu_page),
4474                                                   0, 0, NULL);
4475         if (!mmu_page_header_cache)
4476                 goto nomem;
4477
4478         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4479                 goto nomem;
4480
4481         register_shrinker(&mmu_shrinker);
4482
4483         return 0;
4484
4485 nomem:
4486         mmu_destroy_caches();
4487         return -ENOMEM;
4488 }
4489
4490 /*
4491  * Caculate mmu pages needed for kvm.
4492  */
4493 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4494 {
4495         unsigned int nr_mmu_pages;
4496         unsigned int  nr_pages = 0;
4497         struct kvm_memslots *slots;
4498         struct kvm_memory_slot *memslot;
4499
4500         slots = kvm_memslots(kvm);
4501
4502         kvm_for_each_memslot(memslot, slots)
4503                 nr_pages += memslot->npages;
4504
4505         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4506         nr_mmu_pages = max(nr_mmu_pages,
4507                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4508
4509         return nr_mmu_pages;
4510 }
4511
4512 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4513 {
4514         struct kvm_shadow_walk_iterator iterator;
4515         u64 spte;
4516         int nr_sptes = 0;
4517
4518         walk_shadow_page_lockless_begin(vcpu);
4519         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4520                 sptes[iterator.level-1] = spte;
4521                 nr_sptes++;
4522                 if (!is_shadow_present_pte(spte))
4523                         break;
4524         }
4525         walk_shadow_page_lockless_end(vcpu);
4526
4527         return nr_sptes;
4528 }
4529 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4530
4531 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4532 {
4533         ASSERT(vcpu);
4534
4535         destroy_kvm_mmu(vcpu);
4536         free_mmu_pages(vcpu);
4537         mmu_free_memory_caches(vcpu);
4538 }
4539
4540 void kvm_mmu_module_exit(void)
4541 {
4542         mmu_destroy_caches();
4543         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4544         unregister_shrinker(&mmu_shrinker);
4545         mmu_audit_disable();
4546 }