]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/mmu.c
KVM: MMU: collapse TLB flushes when zap all pages
[~andy/linux] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
203
204         access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
206         sp->mmio_cached = true;
207         trace_mark_mmio_spte(sptep, gfn, access);
208         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209 }
210
211 static bool is_mmio_spte(u64 spte)
212 {
213         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214 }
215
216 static gfn_t get_mmio_spte_gfn(u64 spte)
217 {
218         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219 }
220
221 static unsigned get_mmio_spte_access(u64 spte)
222 {
223         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224 }
225
226 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227 {
228         if (unlikely(is_noslot_pfn(pfn))) {
229                 mark_mmio_spte(sptep, gfn, access);
230                 return true;
231         }
232
233         return false;
234 }
235
236 static inline u64 rsvd_bits(int s, int e)
237 {
238         return ((1ULL << (e - s + 1)) - 1) << s;
239 }
240
241 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
242                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
243 {
244         shadow_user_mask = user_mask;
245         shadow_accessed_mask = accessed_mask;
246         shadow_dirty_mask = dirty_mask;
247         shadow_nx_mask = nx_mask;
248         shadow_x_mask = x_mask;
249 }
250 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
252 static int is_cpuid_PSE36(void)
253 {
254         return 1;
255 }
256
257 static int is_nx(struct kvm_vcpu *vcpu)
258 {
259         return vcpu->arch.efer & EFER_NX;
260 }
261
262 static int is_shadow_present_pte(u64 pte)
263 {
264         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
265 }
266
267 static int is_large_pte(u64 pte)
268 {
269         return pte & PT_PAGE_SIZE_MASK;
270 }
271
272 static int is_dirty_gpte(unsigned long pte)
273 {
274         return pte & PT_DIRTY_MASK;
275 }
276
277 static int is_rmap_spte(u64 pte)
278 {
279         return is_shadow_present_pte(pte);
280 }
281
282 static int is_last_spte(u64 pte, int level)
283 {
284         if (level == PT_PAGE_TABLE_LEVEL)
285                 return 1;
286         if (is_large_pte(pte))
287                 return 1;
288         return 0;
289 }
290
291 static pfn_t spte_to_pfn(u64 pte)
292 {
293         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
294 }
295
296 static gfn_t pse36_gfn_delta(u32 gpte)
297 {
298         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300         return (gpte & PT32_DIR_PSE36_MASK) << shift;
301 }
302
303 #ifdef CONFIG_X86_64
304 static void __set_spte(u64 *sptep, u64 spte)
305 {
306         *sptep = spte;
307 }
308
309 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
310 {
311         *sptep = spte;
312 }
313
314 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315 {
316         return xchg(sptep, spte);
317 }
318
319 static u64 __get_spte_lockless(u64 *sptep)
320 {
321         return ACCESS_ONCE(*sptep);
322 }
323
324 static bool __check_direct_spte_mmio_pf(u64 spte)
325 {
326         /* It is valid if the spte is zapped. */
327         return spte == 0ull;
328 }
329 #else
330 union split_spte {
331         struct {
332                 u32 spte_low;
333                 u32 spte_high;
334         };
335         u64 spte;
336 };
337
338 static void count_spte_clear(u64 *sptep, u64 spte)
339 {
340         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
341
342         if (is_shadow_present_pte(spte))
343                 return;
344
345         /* Ensure the spte is completely set before we increase the count */
346         smp_wmb();
347         sp->clear_spte_count++;
348 }
349
350 static void __set_spte(u64 *sptep, u64 spte)
351 {
352         union split_spte *ssptep, sspte;
353
354         ssptep = (union split_spte *)sptep;
355         sspte = (union split_spte)spte;
356
357         ssptep->spte_high = sspte.spte_high;
358
359         /*
360          * If we map the spte from nonpresent to present, We should store
361          * the high bits firstly, then set present bit, so cpu can not
362          * fetch this spte while we are setting the spte.
363          */
364         smp_wmb();
365
366         ssptep->spte_low = sspte.spte_low;
367 }
368
369 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370 {
371         union split_spte *ssptep, sspte;
372
373         ssptep = (union split_spte *)sptep;
374         sspte = (union split_spte)spte;
375
376         ssptep->spte_low = sspte.spte_low;
377
378         /*
379          * If we map the spte from present to nonpresent, we should clear
380          * present bit firstly to avoid vcpu fetch the old high bits.
381          */
382         smp_wmb();
383
384         ssptep->spte_high = sspte.spte_high;
385         count_spte_clear(sptep, spte);
386 }
387
388 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389 {
390         union split_spte *ssptep, sspte, orig;
391
392         ssptep = (union split_spte *)sptep;
393         sspte = (union split_spte)spte;
394
395         /* xchg acts as a barrier before the setting of the high bits */
396         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
397         orig.spte_high = ssptep->spte_high;
398         ssptep->spte_high = sspte.spte_high;
399         count_spte_clear(sptep, spte);
400
401         return orig.spte;
402 }
403
404 /*
405  * The idea using the light way get the spte on x86_32 guest is from
406  * gup_get_pte(arch/x86/mm/gup.c).
407  * The difference is we can not catch the spte tlb flush if we leave
408  * guest mode, so we emulate it by increase clear_spte_count when spte
409  * is cleared.
410  */
411 static u64 __get_spte_lockless(u64 *sptep)
412 {
413         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
414         union split_spte spte, *orig = (union split_spte *)sptep;
415         int count;
416
417 retry:
418         count = sp->clear_spte_count;
419         smp_rmb();
420
421         spte.spte_low = orig->spte_low;
422         smp_rmb();
423
424         spte.spte_high = orig->spte_high;
425         smp_rmb();
426
427         if (unlikely(spte.spte_low != orig->spte_low ||
428               count != sp->clear_spte_count))
429                 goto retry;
430
431         return spte.spte;
432 }
433
434 static bool __check_direct_spte_mmio_pf(u64 spte)
435 {
436         union split_spte sspte = (union split_spte)spte;
437         u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439         /* It is valid if the spte is zapped. */
440         if (spte == 0ull)
441                 return true;
442
443         /* It is valid if the spte is being zapped. */
444         if (sspte.spte_low == 0ull &&
445             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446                 return true;
447
448         return false;
449 }
450 #endif
451
452 static bool spte_is_locklessly_modifiable(u64 spte)
453 {
454         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
456 }
457
458 static bool spte_has_volatile_bits(u64 spte)
459 {
460         /*
461          * Always atomicly update spte if it can be updated
462          * out of mmu-lock, it can ensure dirty bit is not lost,
463          * also, it can help us to get a stable is_writable_pte()
464          * to ensure tlb flush is not missed.
465          */
466         if (spte_is_locklessly_modifiable(spte))
467                 return true;
468
469         if (!shadow_accessed_mask)
470                 return false;
471
472         if (!is_shadow_present_pte(spte))
473                 return false;
474
475         if ((spte & shadow_accessed_mask) &&
476               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
477                 return false;
478
479         return true;
480 }
481
482 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483 {
484         return (old_spte & bit_mask) && !(new_spte & bit_mask);
485 }
486
487 /* Rules for using mmu_spte_set:
488  * Set the sptep from nonpresent to present.
489  * Note: the sptep being assigned *must* be either not present
490  * or in a state where the hardware will not attempt to update
491  * the spte.
492  */
493 static void mmu_spte_set(u64 *sptep, u64 new_spte)
494 {
495         WARN_ON(is_shadow_present_pte(*sptep));
496         __set_spte(sptep, new_spte);
497 }
498
499 /* Rules for using mmu_spte_update:
500  * Update the state bits, it means the mapped pfn is not changged.
501  *
502  * Whenever we overwrite a writable spte with a read-only one we
503  * should flush remote TLBs. Otherwise rmap_write_protect
504  * will find a read-only spte, even though the writable spte
505  * might be cached on a CPU's TLB, the return value indicates this
506  * case.
507  */
508 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
509 {
510         u64 old_spte = *sptep;
511         bool ret = false;
512
513         WARN_ON(!is_rmap_spte(new_spte));
514
515         if (!is_shadow_present_pte(old_spte)) {
516                 mmu_spte_set(sptep, new_spte);
517                 return ret;
518         }
519
520         if (!spte_has_volatile_bits(old_spte))
521                 __update_clear_spte_fast(sptep, new_spte);
522         else
523                 old_spte = __update_clear_spte_slow(sptep, new_spte);
524
525         /*
526          * For the spte updated out of mmu-lock is safe, since
527          * we always atomicly update it, see the comments in
528          * spte_has_volatile_bits().
529          */
530         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531                 ret = true;
532
533         if (!shadow_accessed_mask)
534                 return ret;
535
536         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
540
541         return ret;
542 }
543
544 /*
545  * Rules for using mmu_spte_clear_track_bits:
546  * It sets the sptep from present to nonpresent, and track the
547  * state bits, it is used to clear the last level sptep.
548  */
549 static int mmu_spte_clear_track_bits(u64 *sptep)
550 {
551         pfn_t pfn;
552         u64 old_spte = *sptep;
553
554         if (!spte_has_volatile_bits(old_spte))
555                 __update_clear_spte_fast(sptep, 0ull);
556         else
557                 old_spte = __update_clear_spte_slow(sptep, 0ull);
558
559         if (!is_rmap_spte(old_spte))
560                 return 0;
561
562         pfn = spte_to_pfn(old_spte);
563
564         /*
565          * KVM does not hold the refcount of the page used by
566          * kvm mmu, before reclaiming the page, we should
567          * unmap it from mmu first.
568          */
569         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
571         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572                 kvm_set_pfn_accessed(pfn);
573         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574                 kvm_set_pfn_dirty(pfn);
575         return 1;
576 }
577
578 /*
579  * Rules for using mmu_spte_clear_no_track:
580  * Directly clear spte without caring the state bits of sptep,
581  * it is used to set the upper level spte.
582  */
583 static void mmu_spte_clear_no_track(u64 *sptep)
584 {
585         __update_clear_spte_fast(sptep, 0ull);
586 }
587
588 static u64 mmu_spte_get_lockless(u64 *sptep)
589 {
590         return __get_spte_lockless(sptep);
591 }
592
593 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594 {
595         /*
596          * Prevent page table teardown by making any free-er wait during
597          * kvm_flush_remote_tlbs() IPI to all active vcpus.
598          */
599         local_irq_disable();
600         vcpu->mode = READING_SHADOW_PAGE_TABLES;
601         /*
602          * Make sure a following spte read is not reordered ahead of the write
603          * to vcpu->mode.
604          */
605         smp_mb();
606 }
607
608 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609 {
610         /*
611          * Make sure the write to vcpu->mode is not reordered in front of
612          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
613          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614          */
615         smp_mb();
616         vcpu->mode = OUTSIDE_GUEST_MODE;
617         local_irq_enable();
618 }
619
620 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
621                                   struct kmem_cache *base_cache, int min)
622 {
623         void *obj;
624
625         if (cache->nobjs >= min)
626                 return 0;
627         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
628                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
629                 if (!obj)
630                         return -ENOMEM;
631                 cache->objects[cache->nobjs++] = obj;
632         }
633         return 0;
634 }
635
636 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637 {
638         return cache->nobjs;
639 }
640
641 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642                                   struct kmem_cache *cache)
643 {
644         while (mc->nobjs)
645                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
646 }
647
648 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
649                                        int min)
650 {
651         void *page;
652
653         if (cache->nobjs >= min)
654                 return 0;
655         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
656                 page = (void *)__get_free_page(GFP_KERNEL);
657                 if (!page)
658                         return -ENOMEM;
659                 cache->objects[cache->nobjs++] = page;
660         }
661         return 0;
662 }
663
664 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665 {
666         while (mc->nobjs)
667                 free_page((unsigned long)mc->objects[--mc->nobjs]);
668 }
669
670 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
671 {
672         int r;
673
674         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
675                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
676         if (r)
677                 goto out;
678         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
679         if (r)
680                 goto out;
681         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
682                                    mmu_page_header_cache, 4);
683 out:
684         return r;
685 }
686
687 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688 {
689         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690                                 pte_list_desc_cache);
691         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
692         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693                                 mmu_page_header_cache);
694 }
695
696 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
697 {
698         void *p;
699
700         BUG_ON(!mc->nobjs);
701         p = mc->objects[--mc->nobjs];
702         return p;
703 }
704
705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
706 {
707         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
708 }
709
710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714
715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716 {
717         if (!sp->role.direct)
718                 return sp->gfns[index];
719
720         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722
723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725         if (sp->role.direct)
726                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727         else
728                 sp->gfns[index] = gfn;
729 }
730
731 /*
732  * Return the pointer to the large page information for a given gfn,
733  * handling slots that are not large page aligned.
734  */
735 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736                                               struct kvm_memory_slot *slot,
737                                               int level)
738 {
739         unsigned long idx;
740
741         idx = gfn_to_index(gfn, slot->base_gfn, level);
742         return &slot->arch.lpage_info[level - 2][idx];
743 }
744
745 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746 {
747         struct kvm_memory_slot *slot;
748         struct kvm_lpage_info *linfo;
749         int i;
750
751         slot = gfn_to_memslot(kvm, gfn);
752         for (i = PT_DIRECTORY_LEVEL;
753              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
754                 linfo = lpage_info_slot(gfn, slot, i);
755                 linfo->write_count += 1;
756         }
757         kvm->arch.indirect_shadow_pages++;
758 }
759
760 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761 {
762         struct kvm_memory_slot *slot;
763         struct kvm_lpage_info *linfo;
764         int i;
765
766         slot = gfn_to_memslot(kvm, gfn);
767         for (i = PT_DIRECTORY_LEVEL;
768              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
769                 linfo = lpage_info_slot(gfn, slot, i);
770                 linfo->write_count -= 1;
771                 WARN_ON(linfo->write_count < 0);
772         }
773         kvm->arch.indirect_shadow_pages--;
774 }
775
776 static int has_wrprotected_page(struct kvm *kvm,
777                                 gfn_t gfn,
778                                 int level)
779 {
780         struct kvm_memory_slot *slot;
781         struct kvm_lpage_info *linfo;
782
783         slot = gfn_to_memslot(kvm, gfn);
784         if (slot) {
785                 linfo = lpage_info_slot(gfn, slot, level);
786                 return linfo->write_count;
787         }
788
789         return 1;
790 }
791
792 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
793 {
794         unsigned long page_size;
795         int i, ret = 0;
796
797         page_size = kvm_host_page_size(kvm, gfn);
798
799         for (i = PT_PAGE_TABLE_LEVEL;
800              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801                 if (page_size >= KVM_HPAGE_SIZE(i))
802                         ret = i;
803                 else
804                         break;
805         }
806
807         return ret;
808 }
809
810 static struct kvm_memory_slot *
811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812                             bool no_dirty_log)
813 {
814         struct kvm_memory_slot *slot;
815
816         slot = gfn_to_memslot(vcpu->kvm, gfn);
817         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818               (no_dirty_log && slot->dirty_bitmap))
819                 slot = NULL;
820
821         return slot;
822 }
823
824 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825 {
826         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
827 }
828
829 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830 {
831         int host_level, level, max_level;
832
833         host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835         if (host_level == PT_PAGE_TABLE_LEVEL)
836                 return host_level;
837
838         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
839
840         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
841                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842                         break;
843
844         return level - 1;
845 }
846
847 /*
848  * Pte mapping structures:
849  *
850  * If pte_list bit zero is zero, then pte_list point to the spte.
851  *
852  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853  * pte_list_desc containing more mappings.
854  *
855  * Returns the number of pte entries before the spte was added or zero if
856  * the spte was not added.
857  *
858  */
859 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860                         unsigned long *pte_list)
861 {
862         struct pte_list_desc *desc;
863         int i, count = 0;
864
865         if (!*pte_list) {
866                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867                 *pte_list = (unsigned long)spte;
868         } else if (!(*pte_list & 1)) {
869                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870                 desc = mmu_alloc_pte_list_desc(vcpu);
871                 desc->sptes[0] = (u64 *)*pte_list;
872                 desc->sptes[1] = spte;
873                 *pte_list = (unsigned long)desc | 1;
874                 ++count;
875         } else {
876                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
879                         desc = desc->more;
880                         count += PTE_LIST_EXT;
881                 }
882                 if (desc->sptes[PTE_LIST_EXT-1]) {
883                         desc->more = mmu_alloc_pte_list_desc(vcpu);
884                         desc = desc->more;
885                 }
886                 for (i = 0; desc->sptes[i]; ++i)
887                         ++count;
888                 desc->sptes[i] = spte;
889         }
890         return count;
891 }
892
893 static void
894 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895                            int i, struct pte_list_desc *prev_desc)
896 {
897         int j;
898
899         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
900                 ;
901         desc->sptes[i] = desc->sptes[j];
902         desc->sptes[j] = NULL;
903         if (j != 0)
904                 return;
905         if (!prev_desc && !desc->more)
906                 *pte_list = (unsigned long)desc->sptes[0];
907         else
908                 if (prev_desc)
909                         prev_desc->more = desc->more;
910                 else
911                         *pte_list = (unsigned long)desc->more | 1;
912         mmu_free_pte_list_desc(desc);
913 }
914
915 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
916 {
917         struct pte_list_desc *desc;
918         struct pte_list_desc *prev_desc;
919         int i;
920
921         if (!*pte_list) {
922                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
923                 BUG();
924         } else if (!(*pte_list & 1)) {
925                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
926                 if ((u64 *)*pte_list != spte) {
927                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
928                         BUG();
929                 }
930                 *pte_list = 0;
931         } else {
932                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
933                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
934                 prev_desc = NULL;
935                 while (desc) {
936                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
937                                 if (desc->sptes[i] == spte) {
938                                         pte_list_desc_remove_entry(pte_list,
939                                                                desc, i,
940                                                                prev_desc);
941                                         return;
942                                 }
943                         prev_desc = desc;
944                         desc = desc->more;
945                 }
946                 pr_err("pte_list_remove: %p many->many\n", spte);
947                 BUG();
948         }
949 }
950
951 typedef void (*pte_list_walk_fn) (u64 *spte);
952 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953 {
954         struct pte_list_desc *desc;
955         int i;
956
957         if (!*pte_list)
958                 return;
959
960         if (!(*pte_list & 1))
961                 return fn((u64 *)*pte_list);
962
963         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964         while (desc) {
965                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966                         fn(desc->sptes[i]);
967                 desc = desc->more;
968         }
969 }
970
971 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
972                                     struct kvm_memory_slot *slot)
973 {
974         unsigned long idx;
975
976         idx = gfn_to_index(gfn, slot->base_gfn, level);
977         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
978 }
979
980 /*
981  * Take gfn and return the reverse mapping to it.
982  */
983 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984 {
985         struct kvm_memory_slot *slot;
986
987         slot = gfn_to_memslot(kvm, gfn);
988         return __gfn_to_rmap(gfn, level, slot);
989 }
990
991 static bool rmap_can_add(struct kvm_vcpu *vcpu)
992 {
993         struct kvm_mmu_memory_cache *cache;
994
995         cache = &vcpu->arch.mmu_pte_list_desc_cache;
996         return mmu_memory_cache_free_objects(cache);
997 }
998
999 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000 {
1001         struct kvm_mmu_page *sp;
1002         unsigned long *rmapp;
1003
1004         sp = page_header(__pa(spte));
1005         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007         return pte_list_add(vcpu, spte, rmapp);
1008 }
1009
1010 static void rmap_remove(struct kvm *kvm, u64 *spte)
1011 {
1012         struct kvm_mmu_page *sp;
1013         gfn_t gfn;
1014         unsigned long *rmapp;
1015
1016         sp = page_header(__pa(spte));
1017         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019         pte_list_remove(spte, rmapp);
1020 }
1021
1022 /*
1023  * Used by the following functions to iterate through the sptes linked by a
1024  * rmap.  All fields are private and not assumed to be used outside.
1025  */
1026 struct rmap_iterator {
1027         /* private fields */
1028         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1029         int pos;                        /* index of the sptep */
1030 };
1031
1032 /*
1033  * Iteration must be started by this function.  This should also be used after
1034  * removing/dropping sptes from the rmap link because in such cases the
1035  * information in the itererator may not be valid.
1036  *
1037  * Returns sptep if found, NULL otherwise.
1038  */
1039 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040 {
1041         if (!rmap)
1042                 return NULL;
1043
1044         if (!(rmap & 1)) {
1045                 iter->desc = NULL;
1046                 return (u64 *)rmap;
1047         }
1048
1049         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050         iter->pos = 0;
1051         return iter->desc->sptes[iter->pos];
1052 }
1053
1054 /*
1055  * Must be used with a valid iterator: e.g. after rmap_get_first().
1056  *
1057  * Returns sptep if found, NULL otherwise.
1058  */
1059 static u64 *rmap_get_next(struct rmap_iterator *iter)
1060 {
1061         if (iter->desc) {
1062                 if (iter->pos < PTE_LIST_EXT - 1) {
1063                         u64 *sptep;
1064
1065                         ++iter->pos;
1066                         sptep = iter->desc->sptes[iter->pos];
1067                         if (sptep)
1068                                 return sptep;
1069                 }
1070
1071                 iter->desc = iter->desc->more;
1072
1073                 if (iter->desc) {
1074                         iter->pos = 0;
1075                         /* desc->sptes[0] cannot be NULL */
1076                         return iter->desc->sptes[iter->pos];
1077                 }
1078         }
1079
1080         return NULL;
1081 }
1082
1083 static void drop_spte(struct kvm *kvm, u64 *sptep)
1084 {
1085         if (mmu_spte_clear_track_bits(sptep))
1086                 rmap_remove(kvm, sptep);
1087 }
1088
1089
1090 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091 {
1092         if (is_large_pte(*sptep)) {
1093                 WARN_ON(page_header(__pa(sptep))->role.level ==
1094                         PT_PAGE_TABLE_LEVEL);
1095                 drop_spte(kvm, sptep);
1096                 --kvm->stat.lpages;
1097                 return true;
1098         }
1099
1100         return false;
1101 }
1102
1103 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104 {
1105         if (__drop_large_spte(vcpu->kvm, sptep))
1106                 kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108
1109 /*
1110  * Write-protect on the specified @sptep, @pt_protect indicates whether
1111  * spte writ-protection is caused by protecting shadow page table.
1112  * @flush indicates whether tlb need be flushed.
1113  *
1114  * Note: write protection is difference between drity logging and spte
1115  * protection:
1116  * - for dirty logging, the spte can be set to writable at anytime if
1117  *   its dirty bitmap is properly set.
1118  * - for spte protection, the spte can be writable only after unsync-ing
1119  *   shadow page.
1120  *
1121  * Return true if the spte is dropped.
1122  */
1123 static bool
1124 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1125 {
1126         u64 spte = *sptep;
1127
1128         if (!is_writable_pte(spte) &&
1129               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1130                 return false;
1131
1132         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
1134         if (__drop_large_spte(kvm, sptep)) {
1135                 *flush |= true;
1136                 return true;
1137         }
1138
1139         if (pt_protect)
1140                 spte &= ~SPTE_MMU_WRITEABLE;
1141         spte = spte & ~PT_WRITABLE_MASK;
1142
1143         *flush |= mmu_spte_update(sptep, spte);
1144         return false;
1145 }
1146
1147 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148                                  bool pt_protect)
1149 {
1150         u64 *sptep;
1151         struct rmap_iterator iter;
1152         bool flush = false;
1153
1154         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1156                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157                         sptep = rmap_get_first(*rmapp, &iter);
1158                         continue;
1159                 }
1160
1161                 sptep = rmap_get_next(&iter);
1162         }
1163
1164         return flush;
1165 }
1166
1167 /**
1168  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169  * @kvm: kvm instance
1170  * @slot: slot to protect
1171  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172  * @mask: indicates which pages we should protect
1173  *
1174  * Used when we do not need to care about huge page mappings: e.g. during dirty
1175  * logging we do not have any such mappings.
1176  */
1177 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178                                      struct kvm_memory_slot *slot,
1179                                      gfn_t gfn_offset, unsigned long mask)
1180 {
1181         unsigned long *rmapp;
1182
1183         while (mask) {
1184                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185                                       PT_PAGE_TABLE_LEVEL, slot);
1186                 __rmap_write_protect(kvm, rmapp, false);
1187
1188                 /* clear the first set bit */
1189                 mask &= mask - 1;
1190         }
1191 }
1192
1193 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1194 {
1195         struct kvm_memory_slot *slot;
1196         unsigned long *rmapp;
1197         int i;
1198         bool write_protected = false;
1199
1200         slot = gfn_to_memslot(kvm, gfn);
1201
1202         for (i = PT_PAGE_TABLE_LEVEL;
1203              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204                 rmapp = __gfn_to_rmap(gfn, i, slot);
1205                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1206         }
1207
1208         return write_protected;
1209 }
1210
1211 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1212                            struct kvm_memory_slot *slot, unsigned long data)
1213 {
1214         u64 *sptep;
1215         struct rmap_iterator iter;
1216         int need_tlb_flush = 0;
1217
1218         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222                 drop_spte(kvm, sptep);
1223                 need_tlb_flush = 1;
1224         }
1225
1226         return need_tlb_flush;
1227 }
1228
1229 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1230                              struct kvm_memory_slot *slot, unsigned long data)
1231 {
1232         u64 *sptep;
1233         struct rmap_iterator iter;
1234         int need_flush = 0;
1235         u64 new_spte;
1236         pte_t *ptep = (pte_t *)data;
1237         pfn_t new_pfn;
1238
1239         WARN_ON(pte_huge(*ptep));
1240         new_pfn = pte_pfn(*ptep);
1241
1242         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243                 BUG_ON(!is_shadow_present_pte(*sptep));
1244                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
1246                 need_flush = 1;
1247
1248                 if (pte_write(*ptep)) {
1249                         drop_spte(kvm, sptep);
1250                         sptep = rmap_get_first(*rmapp, &iter);
1251                 } else {
1252                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1253                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255                         new_spte &= ~PT_WRITABLE_MASK;
1256                         new_spte &= ~SPTE_HOST_WRITEABLE;
1257                         new_spte &= ~shadow_accessed_mask;
1258
1259                         mmu_spte_clear_track_bits(sptep);
1260                         mmu_spte_set(sptep, new_spte);
1261                         sptep = rmap_get_next(&iter);
1262                 }
1263         }
1264
1265         if (need_flush)
1266                 kvm_flush_remote_tlbs(kvm);
1267
1268         return 0;
1269 }
1270
1271 static int kvm_handle_hva_range(struct kvm *kvm,
1272                                 unsigned long start,
1273                                 unsigned long end,
1274                                 unsigned long data,
1275                                 int (*handler)(struct kvm *kvm,
1276                                                unsigned long *rmapp,
1277                                                struct kvm_memory_slot *slot,
1278                                                unsigned long data))
1279 {
1280         int j;
1281         int ret = 0;
1282         struct kvm_memslots *slots;
1283         struct kvm_memory_slot *memslot;
1284
1285         slots = kvm_memslots(kvm);
1286
1287         kvm_for_each_memslot(memslot, slots) {
1288                 unsigned long hva_start, hva_end;
1289                 gfn_t gfn_start, gfn_end;
1290
1291                 hva_start = max(start, memslot->userspace_addr);
1292                 hva_end = min(end, memslot->userspace_addr +
1293                                         (memslot->npages << PAGE_SHIFT));
1294                 if (hva_start >= hva_end)
1295                         continue;
1296                 /*
1297                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1298                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1299                  */
1300                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1301                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1302
1303                 for (j = PT_PAGE_TABLE_LEVEL;
1304                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305                         unsigned long idx, idx_end;
1306                         unsigned long *rmapp;
1307
1308                         /*
1309                          * {idx(page_j) | page_j intersects with
1310                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311                          */
1312                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1314
1315                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1316
1317                         for (; idx <= idx_end; ++idx)
1318                                 ret |= handler(kvm, rmapp++, memslot, data);
1319                 }
1320         }
1321
1322         return ret;
1323 }
1324
1325 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326                           unsigned long data,
1327                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1328                                          struct kvm_memory_slot *slot,
1329                                          unsigned long data))
1330 {
1331         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1332 }
1333
1334 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335 {
1336         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337 }
1338
1339 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340 {
1341         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342 }
1343
1344 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345 {
1346         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1347 }
1348
1349 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1350                          struct kvm_memory_slot *slot, unsigned long data)
1351 {
1352         u64 *sptep;
1353         struct rmap_iterator uninitialized_var(iter);
1354         int young = 0;
1355
1356         /*
1357          * In case of absence of EPT Access and Dirty Bits supports,
1358          * emulate the accessed bit for EPT, by checking if this page has
1359          * an EPT mapping, and clearing it if it does. On the next access,
1360          * a new EPT mapping will be established.
1361          * This has some overhead, but not as much as the cost of swapping
1362          * out actively used pages or breaking up actively used hugepages.
1363          */
1364         if (!shadow_accessed_mask) {
1365                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366                 goto out;
1367         }
1368
1369         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370              sptep = rmap_get_next(&iter)) {
1371                 BUG_ON(!is_shadow_present_pte(*sptep));
1372
1373                 if (*sptep & shadow_accessed_mask) {
1374                         young = 1;
1375                         clear_bit((ffs(shadow_accessed_mask) - 1),
1376                                  (unsigned long *)sptep);
1377                 }
1378         }
1379 out:
1380         /* @data has hva passed to kvm_age_hva(). */
1381         trace_kvm_age_page(data, slot, young);
1382         return young;
1383 }
1384
1385 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1386                               struct kvm_memory_slot *slot, unsigned long data)
1387 {
1388         u64 *sptep;
1389         struct rmap_iterator iter;
1390         int young = 0;
1391
1392         /*
1393          * If there's no access bit in the secondary pte set by the
1394          * hardware it's up to gup-fast/gup to set the access bit in
1395          * the primary pte or in the page structure.
1396          */
1397         if (!shadow_accessed_mask)
1398                 goto out;
1399
1400         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401              sptep = rmap_get_next(&iter)) {
1402                 BUG_ON(!is_shadow_present_pte(*sptep));
1403
1404                 if (*sptep & shadow_accessed_mask) {
1405                         young = 1;
1406                         break;
1407                 }
1408         }
1409 out:
1410         return young;
1411 }
1412
1413 #define RMAP_RECYCLE_THRESHOLD 1000
1414
1415 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1416 {
1417         unsigned long *rmapp;
1418         struct kvm_mmu_page *sp;
1419
1420         sp = page_header(__pa(spte));
1421
1422         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1423
1424         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1425         kvm_flush_remote_tlbs(vcpu->kvm);
1426 }
1427
1428 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429 {
1430         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1431 }
1432
1433 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434 {
1435         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436 }
1437
1438 #ifdef MMU_DEBUG
1439 static int is_empty_shadow_page(u64 *spt)
1440 {
1441         u64 *pos;
1442         u64 *end;
1443
1444         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1445                 if (is_shadow_present_pte(*pos)) {
1446                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1447                                pos, *pos);
1448                         return 0;
1449                 }
1450         return 1;
1451 }
1452 #endif
1453
1454 /*
1455  * This value is the sum of all of the kvm instances's
1456  * kvm->arch.n_used_mmu_pages values.  We need a global,
1457  * aggregate version in order to make the slab shrinker
1458  * faster
1459  */
1460 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461 {
1462         kvm->arch.n_used_mmu_pages += nr;
1463         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464 }
1465
1466 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1467 {
1468         ASSERT(is_empty_shadow_page(sp->spt));
1469         hlist_del(&sp->hash_link);
1470         list_del(&sp->link);
1471         free_page((unsigned long)sp->spt);
1472         if (!sp->role.direct)
1473                 free_page((unsigned long)sp->gfns);
1474         kmem_cache_free(mmu_page_header_cache, sp);
1475 }
1476
1477 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478 {
1479         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1480 }
1481
1482 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1483                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1484 {
1485         if (!parent_pte)
1486                 return;
1487
1488         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1489 }
1490
1491 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1492                                        u64 *parent_pte)
1493 {
1494         pte_list_remove(parent_pte, &sp->parent_ptes);
1495 }
1496
1497 static void drop_parent_pte(struct kvm_mmu_page *sp,
1498                             u64 *parent_pte)
1499 {
1500         mmu_page_remove_parent_pte(sp, parent_pte);
1501         mmu_spte_clear_no_track(parent_pte);
1502 }
1503
1504 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505                                                u64 *parent_pte, int direct)
1506 {
1507         struct kvm_mmu_page *sp;
1508
1509         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1510         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1511         if (!direct)
1512                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1513         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1514
1515         /*
1516          * The active_mmu_pages list is the FIFO list, do not move the
1517          * page until it is zapped. kvm_zap_obsolete_pages depends on
1518          * this feature. See the comments in kvm_zap_obsolete_pages().
1519          */
1520         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1521         sp->parent_ptes = 0;
1522         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1523         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1524         return sp;
1525 }
1526
1527 static void mark_unsync(u64 *spte);
1528 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1529 {
1530         pte_list_walk(&sp->parent_ptes, mark_unsync);
1531 }
1532
1533 static void mark_unsync(u64 *spte)
1534 {
1535         struct kvm_mmu_page *sp;
1536         unsigned int index;
1537
1538         sp = page_header(__pa(spte));
1539         index = spte - sp->spt;
1540         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1541                 return;
1542         if (sp->unsync_children++)
1543                 return;
1544         kvm_mmu_mark_parents_unsync(sp);
1545 }
1546
1547 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1548                                struct kvm_mmu_page *sp)
1549 {
1550         return 1;
1551 }
1552
1553 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1554 {
1555 }
1556
1557 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1558                                  struct kvm_mmu_page *sp, u64 *spte,
1559                                  const void *pte)
1560 {
1561         WARN_ON(1);
1562 }
1563
1564 #define KVM_PAGE_ARRAY_NR 16
1565
1566 struct kvm_mmu_pages {
1567         struct mmu_page_and_offset {
1568                 struct kvm_mmu_page *sp;
1569                 unsigned int idx;
1570         } page[KVM_PAGE_ARRAY_NR];
1571         unsigned int nr;
1572 };
1573
1574 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1575                          int idx)
1576 {
1577         int i;
1578
1579         if (sp->unsync)
1580                 for (i=0; i < pvec->nr; i++)
1581                         if (pvec->page[i].sp == sp)
1582                                 return 0;
1583
1584         pvec->page[pvec->nr].sp = sp;
1585         pvec->page[pvec->nr].idx = idx;
1586         pvec->nr++;
1587         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1588 }
1589
1590 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1591                            struct kvm_mmu_pages *pvec)
1592 {
1593         int i, ret, nr_unsync_leaf = 0;
1594
1595         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1596                 struct kvm_mmu_page *child;
1597                 u64 ent = sp->spt[i];
1598
1599                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1600                         goto clear_child_bitmap;
1601
1602                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1603
1604                 if (child->unsync_children) {
1605                         if (mmu_pages_add(pvec, child, i))
1606                                 return -ENOSPC;
1607
1608                         ret = __mmu_unsync_walk(child, pvec);
1609                         if (!ret)
1610                                 goto clear_child_bitmap;
1611                         else if (ret > 0)
1612                                 nr_unsync_leaf += ret;
1613                         else
1614                                 return ret;
1615                 } else if (child->unsync) {
1616                         nr_unsync_leaf++;
1617                         if (mmu_pages_add(pvec, child, i))
1618                                 return -ENOSPC;
1619                 } else
1620                          goto clear_child_bitmap;
1621
1622                 continue;
1623
1624 clear_child_bitmap:
1625                 __clear_bit(i, sp->unsync_child_bitmap);
1626                 sp->unsync_children--;
1627                 WARN_ON((int)sp->unsync_children < 0);
1628         }
1629
1630
1631         return nr_unsync_leaf;
1632 }
1633
1634 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1635                            struct kvm_mmu_pages *pvec)
1636 {
1637         if (!sp->unsync_children)
1638                 return 0;
1639
1640         mmu_pages_add(pvec, sp, 0);
1641         return __mmu_unsync_walk(sp, pvec);
1642 }
1643
1644 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1645 {
1646         WARN_ON(!sp->unsync);
1647         trace_kvm_mmu_sync_page(sp);
1648         sp->unsync = 0;
1649         --kvm->stat.mmu_unsync;
1650 }
1651
1652 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1653                                     struct list_head *invalid_list);
1654 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1655                                     struct list_head *invalid_list);
1656
1657 /*
1658  * NOTE: we should pay more attention on the zapped-obsolete page
1659  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1660  * since it has been deleted from active_mmu_pages but still can be found
1661  * at hast list.
1662  *
1663  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1664  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1665  * all the obsolete pages.
1666  */
1667 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1668         hlist_for_each_entry(_sp,                                       \
1669           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1670                 if ((_sp)->gfn != (_gfn)) {} else
1671
1672 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1673         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1674                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1675
1676 /* @sp->gfn should be write-protected at the call site */
1677 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1678                            struct list_head *invalid_list, bool clear_unsync)
1679 {
1680         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1681                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1682                 return 1;
1683         }
1684
1685         if (clear_unsync)
1686                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1687
1688         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1689                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1690                 return 1;
1691         }
1692
1693         kvm_mmu_flush_tlb(vcpu);
1694         return 0;
1695 }
1696
1697 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1698                                    struct kvm_mmu_page *sp)
1699 {
1700         LIST_HEAD(invalid_list);
1701         int ret;
1702
1703         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1704         if (ret)
1705                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1706
1707         return ret;
1708 }
1709
1710 #ifdef CONFIG_KVM_MMU_AUDIT
1711 #include "mmu_audit.c"
1712 #else
1713 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1714 static void mmu_audit_disable(void) { }
1715 #endif
1716
1717 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1718                          struct list_head *invalid_list)
1719 {
1720         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1721 }
1722
1723 /* @gfn should be write-protected at the call site */
1724 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1725 {
1726         struct kvm_mmu_page *s;
1727         LIST_HEAD(invalid_list);
1728         bool flush = false;
1729
1730         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1731                 if (!s->unsync)
1732                         continue;
1733
1734                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1735                 kvm_unlink_unsync_page(vcpu->kvm, s);
1736                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1737                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1738                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1739                         continue;
1740                 }
1741                 flush = true;
1742         }
1743
1744         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1745         if (flush)
1746                 kvm_mmu_flush_tlb(vcpu);
1747 }
1748
1749 struct mmu_page_path {
1750         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1751         unsigned int idx[PT64_ROOT_LEVEL-1];
1752 };
1753
1754 #define for_each_sp(pvec, sp, parents, i)                       \
1755                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1756                         sp = pvec.page[i].sp;                   \
1757                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1758                         i = mmu_pages_next(&pvec, &parents, i))
1759
1760 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1761                           struct mmu_page_path *parents,
1762                           int i)
1763 {
1764         int n;
1765
1766         for (n = i+1; n < pvec->nr; n++) {
1767                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1768
1769                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1770                         parents->idx[0] = pvec->page[n].idx;
1771                         return n;
1772                 }
1773
1774                 parents->parent[sp->role.level-2] = sp;
1775                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1776         }
1777
1778         return n;
1779 }
1780
1781 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1782 {
1783         struct kvm_mmu_page *sp;
1784         unsigned int level = 0;
1785
1786         do {
1787                 unsigned int idx = parents->idx[level];
1788
1789                 sp = parents->parent[level];
1790                 if (!sp)
1791                         return;
1792
1793                 --sp->unsync_children;
1794                 WARN_ON((int)sp->unsync_children < 0);
1795                 __clear_bit(idx, sp->unsync_child_bitmap);
1796                 level++;
1797         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1798 }
1799
1800 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1801                                struct mmu_page_path *parents,
1802                                struct kvm_mmu_pages *pvec)
1803 {
1804         parents->parent[parent->role.level-1] = NULL;
1805         pvec->nr = 0;
1806 }
1807
1808 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1809                               struct kvm_mmu_page *parent)
1810 {
1811         int i;
1812         struct kvm_mmu_page *sp;
1813         struct mmu_page_path parents;
1814         struct kvm_mmu_pages pages;
1815         LIST_HEAD(invalid_list);
1816
1817         kvm_mmu_pages_init(parent, &parents, &pages);
1818         while (mmu_unsync_walk(parent, &pages)) {
1819                 bool protected = false;
1820
1821                 for_each_sp(pages, sp, parents, i)
1822                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1823
1824                 if (protected)
1825                         kvm_flush_remote_tlbs(vcpu->kvm);
1826
1827                 for_each_sp(pages, sp, parents, i) {
1828                         kvm_sync_page(vcpu, sp, &invalid_list);
1829                         mmu_pages_clear_parents(&parents);
1830                 }
1831                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1832                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1833                 kvm_mmu_pages_init(parent, &parents, &pages);
1834         }
1835 }
1836
1837 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1838 {
1839         int i;
1840
1841         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1842                 sp->spt[i] = 0ull;
1843 }
1844
1845 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1846 {
1847         sp->write_flooding_count = 0;
1848 }
1849
1850 static void clear_sp_write_flooding_count(u64 *spte)
1851 {
1852         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1853
1854         __clear_sp_write_flooding_count(sp);
1855 }
1856
1857 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1858 {
1859         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1860 }
1861
1862 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1863                                              gfn_t gfn,
1864                                              gva_t gaddr,
1865                                              unsigned level,
1866                                              int direct,
1867                                              unsigned access,
1868                                              u64 *parent_pte)
1869 {
1870         union kvm_mmu_page_role role;
1871         unsigned quadrant;
1872         struct kvm_mmu_page *sp;
1873         bool need_sync = false;
1874
1875         role = vcpu->arch.mmu.base_role;
1876         role.level = level;
1877         role.direct = direct;
1878         if (role.direct)
1879                 role.cr4_pae = 0;
1880         role.access = access;
1881         if (!vcpu->arch.mmu.direct_map
1882             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1883                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1884                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1885                 role.quadrant = quadrant;
1886         }
1887         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1888                 if (is_obsolete_sp(vcpu->kvm, sp))
1889                         continue;
1890
1891                 if (!need_sync && sp->unsync)
1892                         need_sync = true;
1893
1894                 if (sp->role.word != role.word)
1895                         continue;
1896
1897                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1898                         break;
1899
1900                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1901                 if (sp->unsync_children) {
1902                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1903                         kvm_mmu_mark_parents_unsync(sp);
1904                 } else if (sp->unsync)
1905                         kvm_mmu_mark_parents_unsync(sp);
1906
1907                 __clear_sp_write_flooding_count(sp);
1908                 trace_kvm_mmu_get_page(sp, false);
1909                 return sp;
1910         }
1911         ++vcpu->kvm->stat.mmu_cache_miss;
1912         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1913         if (!sp)
1914                 return sp;
1915         sp->gfn = gfn;
1916         sp->role = role;
1917         hlist_add_head(&sp->hash_link,
1918                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1919         if (!direct) {
1920                 if (rmap_write_protect(vcpu->kvm, gfn))
1921                         kvm_flush_remote_tlbs(vcpu->kvm);
1922                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1923                         kvm_sync_pages(vcpu, gfn);
1924
1925                 account_shadowed(vcpu->kvm, gfn);
1926         }
1927         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1928         init_shadow_page_table(sp);
1929         trace_kvm_mmu_get_page(sp, true);
1930         return sp;
1931 }
1932
1933 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1934                              struct kvm_vcpu *vcpu, u64 addr)
1935 {
1936         iterator->addr = addr;
1937         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1938         iterator->level = vcpu->arch.mmu.shadow_root_level;
1939
1940         if (iterator->level == PT64_ROOT_LEVEL &&
1941             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1942             !vcpu->arch.mmu.direct_map)
1943                 --iterator->level;
1944
1945         if (iterator->level == PT32E_ROOT_LEVEL) {
1946                 iterator->shadow_addr
1947                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1948                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1949                 --iterator->level;
1950                 if (!iterator->shadow_addr)
1951                         iterator->level = 0;
1952         }
1953 }
1954
1955 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1956 {
1957         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1958                 return false;
1959
1960         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1961         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1962         return true;
1963 }
1964
1965 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1966                                u64 spte)
1967 {
1968         if (is_last_spte(spte, iterator->level)) {
1969                 iterator->level = 0;
1970                 return;
1971         }
1972
1973         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1974         --iterator->level;
1975 }
1976
1977 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1978 {
1979         return __shadow_walk_next(iterator, *iterator->sptep);
1980 }
1981
1982 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1983 {
1984         u64 spte;
1985
1986         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1987                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1988
1989         mmu_spte_set(sptep, spte);
1990 }
1991
1992 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1993                                    unsigned direct_access)
1994 {
1995         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1996                 struct kvm_mmu_page *child;
1997
1998                 /*
1999                  * For the direct sp, if the guest pte's dirty bit
2000                  * changed form clean to dirty, it will corrupt the
2001                  * sp's access: allow writable in the read-only sp,
2002                  * so we should update the spte at this point to get
2003                  * a new sp with the correct access.
2004                  */
2005                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2006                 if (child->role.access == direct_access)
2007                         return;
2008
2009                 drop_parent_pte(child, sptep);
2010                 kvm_flush_remote_tlbs(vcpu->kvm);
2011         }
2012 }
2013
2014 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2015                              u64 *spte)
2016 {
2017         u64 pte;
2018         struct kvm_mmu_page *child;
2019
2020         pte = *spte;
2021         if (is_shadow_present_pte(pte)) {
2022                 if (is_last_spte(pte, sp->role.level)) {
2023                         drop_spte(kvm, spte);
2024                         if (is_large_pte(pte))
2025                                 --kvm->stat.lpages;
2026                 } else {
2027                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2028                         drop_parent_pte(child, spte);
2029                 }
2030                 return true;
2031         }
2032
2033         if (is_mmio_spte(pte))
2034                 mmu_spte_clear_no_track(spte);
2035
2036         return false;
2037 }
2038
2039 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2040                                          struct kvm_mmu_page *sp)
2041 {
2042         unsigned i;
2043
2044         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2045                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2046 }
2047
2048 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2049 {
2050         mmu_page_remove_parent_pte(sp, parent_pte);
2051 }
2052
2053 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2054 {
2055         u64 *sptep;
2056         struct rmap_iterator iter;
2057
2058         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2059                 drop_parent_pte(sp, sptep);
2060 }
2061
2062 static int mmu_zap_unsync_children(struct kvm *kvm,
2063                                    struct kvm_mmu_page *parent,
2064                                    struct list_head *invalid_list)
2065 {
2066         int i, zapped = 0;
2067         struct mmu_page_path parents;
2068         struct kvm_mmu_pages pages;
2069
2070         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2071                 return 0;
2072
2073         kvm_mmu_pages_init(parent, &parents, &pages);
2074         while (mmu_unsync_walk(parent, &pages)) {
2075                 struct kvm_mmu_page *sp;
2076
2077                 for_each_sp(pages, sp, parents, i) {
2078                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2079                         mmu_pages_clear_parents(&parents);
2080                         zapped++;
2081                 }
2082                 kvm_mmu_pages_init(parent, &parents, &pages);
2083         }
2084
2085         return zapped;
2086 }
2087
2088 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2089                                     struct list_head *invalid_list)
2090 {
2091         int ret;
2092
2093         trace_kvm_mmu_prepare_zap_page(sp);
2094         ++kvm->stat.mmu_shadow_zapped;
2095         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2096         kvm_mmu_page_unlink_children(kvm, sp);
2097         kvm_mmu_unlink_parents(kvm, sp);
2098
2099         if (!sp->role.invalid && !sp->role.direct)
2100                 unaccount_shadowed(kvm, sp->gfn);
2101
2102         if (sp->unsync)
2103                 kvm_unlink_unsync_page(kvm, sp);
2104         if (!sp->root_count) {
2105                 /* Count self */
2106                 ret++;
2107                 list_move(&sp->link, invalid_list);
2108                 kvm_mod_used_mmu_pages(kvm, -1);
2109         } else {
2110                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2111                 kvm_reload_remote_mmus(kvm);
2112         }
2113
2114         sp->role.invalid = 1;
2115         return ret;
2116 }
2117
2118 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2119                                     struct list_head *invalid_list)
2120 {
2121         struct kvm_mmu_page *sp, *nsp;
2122
2123         if (list_empty(invalid_list))
2124                 return;
2125
2126         /*
2127          * wmb: make sure everyone sees our modifications to the page tables
2128          * rmb: make sure we see changes to vcpu->mode
2129          */
2130         smp_mb();
2131
2132         /*
2133          * Wait for all vcpus to exit guest mode and/or lockless shadow
2134          * page table walks.
2135          */
2136         kvm_flush_remote_tlbs(kvm);
2137
2138         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2139                 WARN_ON(!sp->role.invalid || sp->root_count);
2140                 kvm_mmu_free_page(sp);
2141         }
2142 }
2143
2144 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2145                                         struct list_head *invalid_list)
2146 {
2147         struct kvm_mmu_page *sp;
2148
2149         if (list_empty(&kvm->arch.active_mmu_pages))
2150                 return false;
2151
2152         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2153                         struct kvm_mmu_page, link);
2154         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2155
2156         return true;
2157 }
2158
2159 /*
2160  * Changing the number of mmu pages allocated to the vm
2161  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2162  */
2163 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2164 {
2165         LIST_HEAD(invalid_list);
2166
2167         spin_lock(&kvm->mmu_lock);
2168
2169         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2170                 /* Need to free some mmu pages to achieve the goal. */
2171                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2172                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2173                                 break;
2174
2175                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2176                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2177         }
2178
2179         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2180
2181         spin_unlock(&kvm->mmu_lock);
2182 }
2183
2184 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2185 {
2186         struct kvm_mmu_page *sp;
2187         LIST_HEAD(invalid_list);
2188         int r;
2189
2190         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2191         r = 0;
2192         spin_lock(&kvm->mmu_lock);
2193         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2194                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2195                          sp->role.word);
2196                 r = 1;
2197                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2198         }
2199         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2200         spin_unlock(&kvm->mmu_lock);
2201
2202         return r;
2203 }
2204 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2205
2206 /*
2207  * The function is based on mtrr_type_lookup() in
2208  * arch/x86/kernel/cpu/mtrr/generic.c
2209  */
2210 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2211                          u64 start, u64 end)
2212 {
2213         int i;
2214         u64 base, mask;
2215         u8 prev_match, curr_match;
2216         int num_var_ranges = KVM_NR_VAR_MTRR;
2217
2218         if (!mtrr_state->enabled)
2219                 return 0xFF;
2220
2221         /* Make end inclusive end, instead of exclusive */
2222         end--;
2223
2224         /* Look in fixed ranges. Just return the type as per start */
2225         if (mtrr_state->have_fixed && (start < 0x100000)) {
2226                 int idx;
2227
2228                 if (start < 0x80000) {
2229                         idx = 0;
2230                         idx += (start >> 16);
2231                         return mtrr_state->fixed_ranges[idx];
2232                 } else if (start < 0xC0000) {
2233                         idx = 1 * 8;
2234                         idx += ((start - 0x80000) >> 14);
2235                         return mtrr_state->fixed_ranges[idx];
2236                 } else if (start < 0x1000000) {
2237                         idx = 3 * 8;
2238                         idx += ((start - 0xC0000) >> 12);
2239                         return mtrr_state->fixed_ranges[idx];
2240                 }
2241         }
2242
2243         /*
2244          * Look in variable ranges
2245          * Look of multiple ranges matching this address and pick type
2246          * as per MTRR precedence
2247          */
2248         if (!(mtrr_state->enabled & 2))
2249                 return mtrr_state->def_type;
2250
2251         prev_match = 0xFF;
2252         for (i = 0; i < num_var_ranges; ++i) {
2253                 unsigned short start_state, end_state;
2254
2255                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2256                         continue;
2257
2258                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2259                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2260                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2261                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2262
2263                 start_state = ((start & mask) == (base & mask));
2264                 end_state = ((end & mask) == (base & mask));
2265                 if (start_state != end_state)
2266                         return 0xFE;
2267
2268                 if ((start & mask) != (base & mask))
2269                         continue;
2270
2271                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2272                 if (prev_match == 0xFF) {
2273                         prev_match = curr_match;
2274                         continue;
2275                 }
2276
2277                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2278                     curr_match == MTRR_TYPE_UNCACHABLE)
2279                         return MTRR_TYPE_UNCACHABLE;
2280
2281                 if ((prev_match == MTRR_TYPE_WRBACK &&
2282                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2283                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2284                      curr_match == MTRR_TYPE_WRBACK)) {
2285                         prev_match = MTRR_TYPE_WRTHROUGH;
2286                         curr_match = MTRR_TYPE_WRTHROUGH;
2287                 }
2288
2289                 if (prev_match != curr_match)
2290                         return MTRR_TYPE_UNCACHABLE;
2291         }
2292
2293         if (prev_match != 0xFF)
2294                 return prev_match;
2295
2296         return mtrr_state->def_type;
2297 }
2298
2299 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2300 {
2301         u8 mtrr;
2302
2303         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2304                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2305         if (mtrr == 0xfe || mtrr == 0xff)
2306                 mtrr = MTRR_TYPE_WRBACK;
2307         return mtrr;
2308 }
2309 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2310
2311 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2312 {
2313         trace_kvm_mmu_unsync_page(sp);
2314         ++vcpu->kvm->stat.mmu_unsync;
2315         sp->unsync = 1;
2316
2317         kvm_mmu_mark_parents_unsync(sp);
2318 }
2319
2320 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2321 {
2322         struct kvm_mmu_page *s;
2323
2324         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2325                 if (s->unsync)
2326                         continue;
2327                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2328                 __kvm_unsync_page(vcpu, s);
2329         }
2330 }
2331
2332 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2333                                   bool can_unsync)
2334 {
2335         struct kvm_mmu_page *s;
2336         bool need_unsync = false;
2337
2338         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2339                 if (!can_unsync)
2340                         return 1;
2341
2342                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2343                         return 1;
2344
2345                 if (!s->unsync)
2346                         need_unsync = true;
2347         }
2348         if (need_unsync)
2349                 kvm_unsync_pages(vcpu, gfn);
2350         return 0;
2351 }
2352
2353 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2354                     unsigned pte_access, int level,
2355                     gfn_t gfn, pfn_t pfn, bool speculative,
2356                     bool can_unsync, bool host_writable)
2357 {
2358         u64 spte;
2359         int ret = 0;
2360
2361         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2362                 return 0;
2363
2364         spte = PT_PRESENT_MASK;
2365         if (!speculative)
2366                 spte |= shadow_accessed_mask;
2367
2368         if (pte_access & ACC_EXEC_MASK)
2369                 spte |= shadow_x_mask;
2370         else
2371                 spte |= shadow_nx_mask;
2372
2373         if (pte_access & ACC_USER_MASK)
2374                 spte |= shadow_user_mask;
2375
2376         if (level > PT_PAGE_TABLE_LEVEL)
2377                 spte |= PT_PAGE_SIZE_MASK;
2378         if (tdp_enabled)
2379                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2380                         kvm_is_mmio_pfn(pfn));
2381
2382         if (host_writable)
2383                 spte |= SPTE_HOST_WRITEABLE;
2384         else
2385                 pte_access &= ~ACC_WRITE_MASK;
2386
2387         spte |= (u64)pfn << PAGE_SHIFT;
2388
2389         if (pte_access & ACC_WRITE_MASK) {
2390
2391                 /*
2392                  * Other vcpu creates new sp in the window between
2393                  * mapping_level() and acquiring mmu-lock. We can
2394                  * allow guest to retry the access, the mapping can
2395                  * be fixed if guest refault.
2396                  */
2397                 if (level > PT_PAGE_TABLE_LEVEL &&
2398                     has_wrprotected_page(vcpu->kvm, gfn, level))
2399                         goto done;
2400
2401                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2402
2403                 /*
2404                  * Optimization: for pte sync, if spte was writable the hash
2405                  * lookup is unnecessary (and expensive). Write protection
2406                  * is responsibility of mmu_get_page / kvm_sync_page.
2407                  * Same reasoning can be applied to dirty page accounting.
2408                  */
2409                 if (!can_unsync && is_writable_pte(*sptep))
2410                         goto set_pte;
2411
2412                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2413                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2414                                  __func__, gfn);
2415                         ret = 1;
2416                         pte_access &= ~ACC_WRITE_MASK;
2417                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2418                 }
2419         }
2420
2421         if (pte_access & ACC_WRITE_MASK)
2422                 mark_page_dirty(vcpu->kvm, gfn);
2423
2424 set_pte:
2425         if (mmu_spte_update(sptep, spte))
2426                 kvm_flush_remote_tlbs(vcpu->kvm);
2427 done:
2428         return ret;
2429 }
2430
2431 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2432                          unsigned pte_access, int write_fault, int *emulate,
2433                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2434                          bool host_writable)
2435 {
2436         int was_rmapped = 0;
2437         int rmap_count;
2438
2439         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2440                  *sptep, write_fault, gfn);
2441
2442         if (is_rmap_spte(*sptep)) {
2443                 /*
2444                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2445                  * the parent of the now unreachable PTE.
2446                  */
2447                 if (level > PT_PAGE_TABLE_LEVEL &&
2448                     !is_large_pte(*sptep)) {
2449                         struct kvm_mmu_page *child;
2450                         u64 pte = *sptep;
2451
2452                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2453                         drop_parent_pte(child, sptep);
2454                         kvm_flush_remote_tlbs(vcpu->kvm);
2455                 } else if (pfn != spte_to_pfn(*sptep)) {
2456                         pgprintk("hfn old %llx new %llx\n",
2457                                  spte_to_pfn(*sptep), pfn);
2458                         drop_spte(vcpu->kvm, sptep);
2459                         kvm_flush_remote_tlbs(vcpu->kvm);
2460                 } else
2461                         was_rmapped = 1;
2462         }
2463
2464         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2465               true, host_writable)) {
2466                 if (write_fault)
2467                         *emulate = 1;
2468                 kvm_mmu_flush_tlb(vcpu);
2469         }
2470
2471         if (unlikely(is_mmio_spte(*sptep) && emulate))
2472                 *emulate = 1;
2473
2474         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2475         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2476                  is_large_pte(*sptep)? "2MB" : "4kB",
2477                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2478                  *sptep, sptep);
2479         if (!was_rmapped && is_large_pte(*sptep))
2480                 ++vcpu->kvm->stat.lpages;
2481
2482         if (is_shadow_present_pte(*sptep)) {
2483                 if (!was_rmapped) {
2484                         rmap_count = rmap_add(vcpu, sptep, gfn);
2485                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2486                                 rmap_recycle(vcpu, sptep, gfn);
2487                 }
2488         }
2489
2490         kvm_release_pfn_clean(pfn);
2491 }
2492
2493 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2494 {
2495         mmu_free_roots(vcpu);
2496 }
2497
2498 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2499 {
2500         int bit7;
2501
2502         bit7 = (gpte >> 7) & 1;
2503         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2504 }
2505
2506 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2507                                      bool no_dirty_log)
2508 {
2509         struct kvm_memory_slot *slot;
2510
2511         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2512         if (!slot)
2513                 return KVM_PFN_ERR_FAULT;
2514
2515         return gfn_to_pfn_memslot_atomic(slot, gfn);
2516 }
2517
2518 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2519                                   struct kvm_mmu_page *sp, u64 *spte,
2520                                   u64 gpte)
2521 {
2522         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2523                 goto no_present;
2524
2525         if (!is_present_gpte(gpte))
2526                 goto no_present;
2527
2528         if (!(gpte & PT_ACCESSED_MASK))
2529                 goto no_present;
2530
2531         return false;
2532
2533 no_present:
2534         drop_spte(vcpu->kvm, spte);
2535         return true;
2536 }
2537
2538 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2539                                     struct kvm_mmu_page *sp,
2540                                     u64 *start, u64 *end)
2541 {
2542         struct page *pages[PTE_PREFETCH_NUM];
2543         unsigned access = sp->role.access;
2544         int i, ret;
2545         gfn_t gfn;
2546
2547         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2548         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2549                 return -1;
2550
2551         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2552         if (ret <= 0)
2553                 return -1;
2554
2555         for (i = 0; i < ret; i++, gfn++, start++)
2556                 mmu_set_spte(vcpu, start, access, 0, NULL,
2557                              sp->role.level, gfn, page_to_pfn(pages[i]),
2558                              true, true);
2559
2560         return 0;
2561 }
2562
2563 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2564                                   struct kvm_mmu_page *sp, u64 *sptep)
2565 {
2566         u64 *spte, *start = NULL;
2567         int i;
2568
2569         WARN_ON(!sp->role.direct);
2570
2571         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2572         spte = sp->spt + i;
2573
2574         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2575                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2576                         if (!start)
2577                                 continue;
2578                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2579                                 break;
2580                         start = NULL;
2581                 } else if (!start)
2582                         start = spte;
2583         }
2584 }
2585
2586 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2587 {
2588         struct kvm_mmu_page *sp;
2589
2590         /*
2591          * Since it's no accessed bit on EPT, it's no way to
2592          * distinguish between actually accessed translations
2593          * and prefetched, so disable pte prefetch if EPT is
2594          * enabled.
2595          */
2596         if (!shadow_accessed_mask)
2597                 return;
2598
2599         sp = page_header(__pa(sptep));
2600         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2601                 return;
2602
2603         __direct_pte_prefetch(vcpu, sp, sptep);
2604 }
2605
2606 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2607                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2608                         bool prefault)
2609 {
2610         struct kvm_shadow_walk_iterator iterator;
2611         struct kvm_mmu_page *sp;
2612         int emulate = 0;
2613         gfn_t pseudo_gfn;
2614
2615         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2616                 if (iterator.level == level) {
2617                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2618                                      write, &emulate, level, gfn, pfn,
2619                                      prefault, map_writable);
2620                         direct_pte_prefetch(vcpu, iterator.sptep);
2621                         ++vcpu->stat.pf_fixed;
2622                         break;
2623                 }
2624
2625                 if (!is_shadow_present_pte(*iterator.sptep)) {
2626                         u64 base_addr = iterator.addr;
2627
2628                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2629                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2630                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2631                                               iterator.level - 1,
2632                                               1, ACC_ALL, iterator.sptep);
2633
2634                         link_shadow_page(iterator.sptep, sp);
2635                 }
2636         }
2637         return emulate;
2638 }
2639
2640 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2641 {
2642         siginfo_t info;
2643
2644         info.si_signo   = SIGBUS;
2645         info.si_errno   = 0;
2646         info.si_code    = BUS_MCEERR_AR;
2647         info.si_addr    = (void __user *)address;
2648         info.si_addr_lsb = PAGE_SHIFT;
2649
2650         send_sig_info(SIGBUS, &info, tsk);
2651 }
2652
2653 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2654 {
2655         /*
2656          * Do not cache the mmio info caused by writing the readonly gfn
2657          * into the spte otherwise read access on readonly gfn also can
2658          * caused mmio page fault and treat it as mmio access.
2659          * Return 1 to tell kvm to emulate it.
2660          */
2661         if (pfn == KVM_PFN_ERR_RO_FAULT)
2662                 return 1;
2663
2664         if (pfn == KVM_PFN_ERR_HWPOISON) {
2665                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2666                 return 0;
2667         }
2668
2669         return -EFAULT;
2670 }
2671
2672 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2673                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2674 {
2675         pfn_t pfn = *pfnp;
2676         gfn_t gfn = *gfnp;
2677         int level = *levelp;
2678
2679         /*
2680          * Check if it's a transparent hugepage. If this would be an
2681          * hugetlbfs page, level wouldn't be set to
2682          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2683          * here.
2684          */
2685         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2686             level == PT_PAGE_TABLE_LEVEL &&
2687             PageTransCompound(pfn_to_page(pfn)) &&
2688             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2689                 unsigned long mask;
2690                 /*
2691                  * mmu_notifier_retry was successful and we hold the
2692                  * mmu_lock here, so the pmd can't become splitting
2693                  * from under us, and in turn
2694                  * __split_huge_page_refcount() can't run from under
2695                  * us and we can safely transfer the refcount from
2696                  * PG_tail to PG_head as we switch the pfn to tail to
2697                  * head.
2698                  */
2699                 *levelp = level = PT_DIRECTORY_LEVEL;
2700                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2701                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2702                 if (pfn & mask) {
2703                         gfn &= ~mask;
2704                         *gfnp = gfn;
2705                         kvm_release_pfn_clean(pfn);
2706                         pfn &= ~mask;
2707                         kvm_get_pfn(pfn);
2708                         *pfnp = pfn;
2709                 }
2710         }
2711 }
2712
2713 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2714                                 pfn_t pfn, unsigned access, int *ret_val)
2715 {
2716         bool ret = true;
2717
2718         /* The pfn is invalid, report the error! */
2719         if (unlikely(is_error_pfn(pfn))) {
2720                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2721                 goto exit;
2722         }
2723
2724         if (unlikely(is_noslot_pfn(pfn)))
2725                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2726
2727         ret = false;
2728 exit:
2729         return ret;
2730 }
2731
2732 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2733 {
2734         /*
2735          * #PF can be fast only if the shadow page table is present and it
2736          * is caused by write-protect, that means we just need change the
2737          * W bit of the spte which can be done out of mmu-lock.
2738          */
2739         if (!(error_code & PFERR_PRESENT_MASK) ||
2740               !(error_code & PFERR_WRITE_MASK))
2741                 return false;
2742
2743         return true;
2744 }
2745
2746 static bool
2747 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2748 {
2749         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2750         gfn_t gfn;
2751
2752         WARN_ON(!sp->role.direct);
2753
2754         /*
2755          * The gfn of direct spte is stable since it is calculated
2756          * by sp->gfn.
2757          */
2758         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2759
2760         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2761                 mark_page_dirty(vcpu->kvm, gfn);
2762
2763         return true;
2764 }
2765
2766 /*
2767  * Return value:
2768  * - true: let the vcpu to access on the same address again.
2769  * - false: let the real page fault path to fix it.
2770  */
2771 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2772                             u32 error_code)
2773 {
2774         struct kvm_shadow_walk_iterator iterator;
2775         bool ret = false;
2776         u64 spte = 0ull;
2777
2778         if (!page_fault_can_be_fast(vcpu, error_code))
2779                 return false;
2780
2781         walk_shadow_page_lockless_begin(vcpu);
2782         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2783                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2784                         break;
2785
2786         /*
2787          * If the mapping has been changed, let the vcpu fault on the
2788          * same address again.
2789          */
2790         if (!is_rmap_spte(spte)) {
2791                 ret = true;
2792                 goto exit;
2793         }
2794
2795         if (!is_last_spte(spte, level))
2796                 goto exit;
2797
2798         /*
2799          * Check if it is a spurious fault caused by TLB lazily flushed.
2800          *
2801          * Need not check the access of upper level table entries since
2802          * they are always ACC_ALL.
2803          */
2804          if (is_writable_pte(spte)) {
2805                 ret = true;
2806                 goto exit;
2807         }
2808
2809         /*
2810          * Currently, to simplify the code, only the spte write-protected
2811          * by dirty-log can be fast fixed.
2812          */
2813         if (!spte_is_locklessly_modifiable(spte))
2814                 goto exit;
2815
2816         /*
2817          * Currently, fast page fault only works for direct mapping since
2818          * the gfn is not stable for indirect shadow page.
2819          * See Documentation/virtual/kvm/locking.txt to get more detail.
2820          */
2821         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2822 exit:
2823         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2824                               spte, ret);
2825         walk_shadow_page_lockless_end(vcpu);
2826
2827         return ret;
2828 }
2829
2830 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2831                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2832 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2833
2834 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2835                          gfn_t gfn, bool prefault)
2836 {
2837         int r;
2838         int level;
2839         int force_pt_level;
2840         pfn_t pfn;
2841         unsigned long mmu_seq;
2842         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2843
2844         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2845         if (likely(!force_pt_level)) {
2846                 level = mapping_level(vcpu, gfn);
2847                 /*
2848                  * This path builds a PAE pagetable - so we can map
2849                  * 2mb pages at maximum. Therefore check if the level
2850                  * is larger than that.
2851                  */
2852                 if (level > PT_DIRECTORY_LEVEL)
2853                         level = PT_DIRECTORY_LEVEL;
2854
2855                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2856         } else
2857                 level = PT_PAGE_TABLE_LEVEL;
2858
2859         if (fast_page_fault(vcpu, v, level, error_code))
2860                 return 0;
2861
2862         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2863         smp_rmb();
2864
2865         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2866                 return 0;
2867
2868         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2869                 return r;
2870
2871         spin_lock(&vcpu->kvm->mmu_lock);
2872         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2873                 goto out_unlock;
2874         make_mmu_pages_available(vcpu);
2875         if (likely(!force_pt_level))
2876                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2877         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2878                          prefault);
2879         spin_unlock(&vcpu->kvm->mmu_lock);
2880
2881
2882         return r;
2883
2884 out_unlock:
2885         spin_unlock(&vcpu->kvm->mmu_lock);
2886         kvm_release_pfn_clean(pfn);
2887         return 0;
2888 }
2889
2890
2891 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2892 {
2893         int i;
2894         struct kvm_mmu_page *sp;
2895         LIST_HEAD(invalid_list);
2896
2897         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2898                 return;
2899
2900         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2901             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2902              vcpu->arch.mmu.direct_map)) {
2903                 hpa_t root = vcpu->arch.mmu.root_hpa;
2904
2905                 spin_lock(&vcpu->kvm->mmu_lock);
2906                 sp = page_header(root);
2907                 --sp->root_count;
2908                 if (!sp->root_count && sp->role.invalid) {
2909                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2910                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2911                 }
2912                 spin_unlock(&vcpu->kvm->mmu_lock);
2913                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2914                 return;
2915         }
2916
2917         spin_lock(&vcpu->kvm->mmu_lock);
2918         for (i = 0; i < 4; ++i) {
2919                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2920
2921                 if (root) {
2922                         root &= PT64_BASE_ADDR_MASK;
2923                         sp = page_header(root);
2924                         --sp->root_count;
2925                         if (!sp->root_count && sp->role.invalid)
2926                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2927                                                          &invalid_list);
2928                 }
2929                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2930         }
2931         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2932         spin_unlock(&vcpu->kvm->mmu_lock);
2933         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2934 }
2935
2936 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2937 {
2938         int ret = 0;
2939
2940         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2941                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2942                 ret = 1;
2943         }
2944
2945         return ret;
2946 }
2947
2948 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2949 {
2950         struct kvm_mmu_page *sp;
2951         unsigned i;
2952
2953         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2954                 spin_lock(&vcpu->kvm->mmu_lock);
2955                 make_mmu_pages_available(vcpu);
2956                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2957                                       1, ACC_ALL, NULL);
2958                 ++sp->root_count;
2959                 spin_unlock(&vcpu->kvm->mmu_lock);
2960                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2961         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2962                 for (i = 0; i < 4; ++i) {
2963                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2964
2965                         ASSERT(!VALID_PAGE(root));
2966                         spin_lock(&vcpu->kvm->mmu_lock);
2967                         make_mmu_pages_available(vcpu);
2968                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2969                                               i << 30,
2970                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2971                                               NULL);
2972                         root = __pa(sp->spt);
2973                         ++sp->root_count;
2974                         spin_unlock(&vcpu->kvm->mmu_lock);
2975                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2976                 }
2977                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2978         } else
2979                 BUG();
2980
2981         return 0;
2982 }
2983
2984 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2985 {
2986         struct kvm_mmu_page *sp;
2987         u64 pdptr, pm_mask;
2988         gfn_t root_gfn;
2989         int i;
2990
2991         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2992
2993         if (mmu_check_root(vcpu, root_gfn))
2994                 return 1;
2995
2996         /*
2997          * Do we shadow a long mode page table? If so we need to
2998          * write-protect the guests page table root.
2999          */
3000         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3001                 hpa_t root = vcpu->arch.mmu.root_hpa;
3002
3003                 ASSERT(!VALID_PAGE(root));
3004
3005                 spin_lock(&vcpu->kvm->mmu_lock);
3006                 make_mmu_pages_available(vcpu);
3007                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3008                                       0, ACC_ALL, NULL);
3009                 root = __pa(sp->spt);
3010                 ++sp->root_count;
3011                 spin_unlock(&vcpu->kvm->mmu_lock);
3012                 vcpu->arch.mmu.root_hpa = root;
3013                 return 0;
3014         }
3015
3016         /*
3017          * We shadow a 32 bit page table. This may be a legacy 2-level
3018          * or a PAE 3-level page table. In either case we need to be aware that
3019          * the shadow page table may be a PAE or a long mode page table.
3020          */
3021         pm_mask = PT_PRESENT_MASK;
3022         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3023                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3024
3025         for (i = 0; i < 4; ++i) {
3026                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3027
3028                 ASSERT(!VALID_PAGE(root));
3029                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3030                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3031                         if (!is_present_gpte(pdptr)) {
3032                                 vcpu->arch.mmu.pae_root[i] = 0;
3033                                 continue;
3034                         }
3035                         root_gfn = pdptr >> PAGE_SHIFT;
3036                         if (mmu_check_root(vcpu, root_gfn))
3037                                 return 1;
3038                 }
3039                 spin_lock(&vcpu->kvm->mmu_lock);
3040                 make_mmu_pages_available(vcpu);
3041                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3042                                       PT32_ROOT_LEVEL, 0,
3043                                       ACC_ALL, NULL);
3044                 root = __pa(sp->spt);
3045                 ++sp->root_count;
3046                 spin_unlock(&vcpu->kvm->mmu_lock);
3047
3048                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3049         }
3050         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3051
3052         /*
3053          * If we shadow a 32 bit page table with a long mode page
3054          * table we enter this path.
3055          */
3056         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3057                 if (vcpu->arch.mmu.lm_root == NULL) {
3058                         /*
3059                          * The additional page necessary for this is only
3060                          * allocated on demand.
3061                          */
3062
3063                         u64 *lm_root;
3064
3065                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3066                         if (lm_root == NULL)
3067                                 return 1;
3068
3069                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3070
3071                         vcpu->arch.mmu.lm_root = lm_root;
3072                 }
3073
3074                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3075         }
3076
3077         return 0;
3078 }
3079
3080 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3081 {
3082         if (vcpu->arch.mmu.direct_map)
3083                 return mmu_alloc_direct_roots(vcpu);
3084         else
3085                 return mmu_alloc_shadow_roots(vcpu);
3086 }
3087
3088 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3089 {
3090         int i;
3091         struct kvm_mmu_page *sp;
3092
3093         if (vcpu->arch.mmu.direct_map)
3094                 return;
3095
3096         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3097                 return;
3098
3099         vcpu_clear_mmio_info(vcpu, ~0ul);
3100         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3101         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3102                 hpa_t root = vcpu->arch.mmu.root_hpa;
3103                 sp = page_header(root);
3104                 mmu_sync_children(vcpu, sp);
3105                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3106                 return;
3107         }
3108         for (i = 0; i < 4; ++i) {
3109                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3110
3111                 if (root && VALID_PAGE(root)) {
3112                         root &= PT64_BASE_ADDR_MASK;
3113                         sp = page_header(root);
3114                         mmu_sync_children(vcpu, sp);
3115                 }
3116         }
3117         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3118 }
3119
3120 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3121 {
3122         spin_lock(&vcpu->kvm->mmu_lock);
3123         mmu_sync_roots(vcpu);
3124         spin_unlock(&vcpu->kvm->mmu_lock);
3125 }
3126
3127 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3128                                   u32 access, struct x86_exception *exception)
3129 {
3130         if (exception)
3131                 exception->error_code = 0;
3132         return vaddr;
3133 }
3134
3135 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3136                                          u32 access,
3137                                          struct x86_exception *exception)
3138 {
3139         if (exception)
3140                 exception->error_code = 0;
3141         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3142 }
3143
3144 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3145 {
3146         if (direct)
3147                 return vcpu_match_mmio_gpa(vcpu, addr);
3148
3149         return vcpu_match_mmio_gva(vcpu, addr);
3150 }
3151
3152
3153 /*
3154  * On direct hosts, the last spte is only allows two states
3155  * for mmio page fault:
3156  *   - It is the mmio spte
3157  *   - It is zapped or it is being zapped.
3158  *
3159  * This function completely checks the spte when the last spte
3160  * is not the mmio spte.
3161  */
3162 static bool check_direct_spte_mmio_pf(u64 spte)
3163 {
3164         return __check_direct_spte_mmio_pf(spte);
3165 }
3166
3167 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3168 {
3169         struct kvm_shadow_walk_iterator iterator;
3170         u64 spte = 0ull;
3171
3172         walk_shadow_page_lockless_begin(vcpu);
3173         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3174                 if (!is_shadow_present_pte(spte))
3175                         break;
3176         walk_shadow_page_lockless_end(vcpu);
3177
3178         return spte;
3179 }
3180
3181 /*
3182  * If it is a real mmio page fault, return 1 and emulat the instruction
3183  * directly, return 0 to let CPU fault again on the address, -1 is
3184  * returned if bug is detected.
3185  */
3186 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3187 {
3188         u64 spte;
3189
3190         if (quickly_check_mmio_pf(vcpu, addr, direct))
3191                 return 1;
3192
3193         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3194
3195         if (is_mmio_spte(spte)) {
3196                 gfn_t gfn = get_mmio_spte_gfn(spte);
3197                 unsigned access = get_mmio_spte_access(spte);
3198
3199                 if (direct)
3200                         addr = 0;
3201
3202                 trace_handle_mmio_page_fault(addr, gfn, access);
3203                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3204                 return 1;
3205         }
3206
3207         /*
3208          * It's ok if the gva is remapped by other cpus on shadow guest,
3209          * it's a BUG if the gfn is not a mmio page.
3210          */
3211         if (direct && !check_direct_spte_mmio_pf(spte))
3212                 return -1;
3213
3214         /*
3215          * If the page table is zapped by other cpus, let CPU fault again on
3216          * the address.
3217          */
3218         return 0;
3219 }
3220 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3221
3222 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3223                                   u32 error_code, bool direct)
3224 {
3225         int ret;
3226
3227         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3228         WARN_ON(ret < 0);
3229         return ret;
3230 }
3231
3232 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3233                                 u32 error_code, bool prefault)
3234 {
3235         gfn_t gfn;
3236         int r;
3237
3238         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3239
3240         if (unlikely(error_code & PFERR_RSVD_MASK))
3241                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3242
3243         r = mmu_topup_memory_caches(vcpu);
3244         if (r)
3245                 return r;
3246
3247         ASSERT(vcpu);
3248         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3249
3250         gfn = gva >> PAGE_SHIFT;
3251
3252         return nonpaging_map(vcpu, gva & PAGE_MASK,
3253                              error_code, gfn, prefault);
3254 }
3255
3256 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3257 {
3258         struct kvm_arch_async_pf arch;
3259
3260         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3261         arch.gfn = gfn;
3262         arch.direct_map = vcpu->arch.mmu.direct_map;
3263         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3264
3265         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3266 }
3267
3268 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3269 {
3270         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3271                      kvm_event_needs_reinjection(vcpu)))
3272                 return false;
3273
3274         return kvm_x86_ops->interrupt_allowed(vcpu);
3275 }
3276
3277 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3278                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3279 {
3280         bool async;
3281
3282         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3283
3284         if (!async)
3285                 return false; /* *pfn has correct page already */
3286
3287         if (!prefault && can_do_async_pf(vcpu)) {
3288                 trace_kvm_try_async_get_page(gva, gfn);
3289                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3290                         trace_kvm_async_pf_doublefault(gva, gfn);
3291                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3292                         return true;
3293                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3294                         return true;
3295         }
3296
3297         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3298
3299         return false;
3300 }
3301
3302 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3303                           bool prefault)
3304 {
3305         pfn_t pfn;
3306         int r;
3307         int level;
3308         int force_pt_level;
3309         gfn_t gfn = gpa >> PAGE_SHIFT;
3310         unsigned long mmu_seq;
3311         int write = error_code & PFERR_WRITE_MASK;
3312         bool map_writable;
3313
3314         ASSERT(vcpu);
3315         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3316
3317         if (unlikely(error_code & PFERR_RSVD_MASK))
3318                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3319
3320         r = mmu_topup_memory_caches(vcpu);
3321         if (r)
3322                 return r;
3323
3324         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3325         if (likely(!force_pt_level)) {
3326                 level = mapping_level(vcpu, gfn);
3327                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3328         } else
3329                 level = PT_PAGE_TABLE_LEVEL;
3330
3331         if (fast_page_fault(vcpu, gpa, level, error_code))
3332                 return 0;
3333
3334         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3335         smp_rmb();
3336
3337         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3338                 return 0;
3339
3340         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3341                 return r;
3342
3343         spin_lock(&vcpu->kvm->mmu_lock);
3344         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3345                 goto out_unlock;
3346         make_mmu_pages_available(vcpu);
3347         if (likely(!force_pt_level))
3348                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3349         r = __direct_map(vcpu, gpa, write, map_writable,
3350                          level, gfn, pfn, prefault);
3351         spin_unlock(&vcpu->kvm->mmu_lock);
3352
3353         return r;
3354
3355 out_unlock:
3356         spin_unlock(&vcpu->kvm->mmu_lock);
3357         kvm_release_pfn_clean(pfn);
3358         return 0;
3359 }
3360
3361 static void nonpaging_free(struct kvm_vcpu *vcpu)
3362 {
3363         mmu_free_roots(vcpu);
3364 }
3365
3366 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3367                                   struct kvm_mmu *context)
3368 {
3369         context->new_cr3 = nonpaging_new_cr3;
3370         context->page_fault = nonpaging_page_fault;
3371         context->gva_to_gpa = nonpaging_gva_to_gpa;
3372         context->free = nonpaging_free;
3373         context->sync_page = nonpaging_sync_page;
3374         context->invlpg = nonpaging_invlpg;
3375         context->update_pte = nonpaging_update_pte;
3376         context->root_level = 0;
3377         context->shadow_root_level = PT32E_ROOT_LEVEL;
3378         context->root_hpa = INVALID_PAGE;
3379         context->direct_map = true;
3380         context->nx = false;
3381         return 0;
3382 }
3383
3384 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3385 {
3386         ++vcpu->stat.tlb_flush;
3387         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3388 }
3389
3390 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3391 {
3392         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3393         mmu_free_roots(vcpu);
3394 }
3395
3396 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3397 {
3398         return kvm_read_cr3(vcpu);
3399 }
3400
3401 static void inject_page_fault(struct kvm_vcpu *vcpu,
3402                               struct x86_exception *fault)
3403 {
3404         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3405 }
3406
3407 static void paging_free(struct kvm_vcpu *vcpu)
3408 {
3409         nonpaging_free(vcpu);
3410 }
3411
3412 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3413 {
3414         unsigned mask;
3415
3416         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3417
3418         mask = (unsigned)~ACC_WRITE_MASK;
3419         /* Allow write access to dirty gptes */
3420         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3421         *access &= mask;
3422 }
3423
3424 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3425                            int *nr_present)
3426 {
3427         if (unlikely(is_mmio_spte(*sptep))) {
3428                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3429                         mmu_spte_clear_no_track(sptep);
3430                         return true;
3431                 }
3432
3433                 (*nr_present)++;
3434                 mark_mmio_spte(sptep, gfn, access);
3435                 return true;
3436         }
3437
3438         return false;
3439 }
3440
3441 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3442 {
3443         unsigned access;
3444
3445         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3446         access &= ~(gpte >> PT64_NX_SHIFT);
3447
3448         return access;
3449 }
3450
3451 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3452 {
3453         unsigned index;
3454
3455         index = level - 1;
3456         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3457         return mmu->last_pte_bitmap & (1 << index);
3458 }
3459
3460 #define PTTYPE 64
3461 #include "paging_tmpl.h"
3462 #undef PTTYPE
3463
3464 #define PTTYPE 32
3465 #include "paging_tmpl.h"
3466 #undef PTTYPE
3467
3468 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3469                                   struct kvm_mmu *context)
3470 {
3471         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3472         u64 exb_bit_rsvd = 0;
3473
3474         if (!context->nx)
3475                 exb_bit_rsvd = rsvd_bits(63, 63);
3476         switch (context->root_level) {
3477         case PT32_ROOT_LEVEL:
3478                 /* no rsvd bits for 2 level 4K page table entries */
3479                 context->rsvd_bits_mask[0][1] = 0;
3480                 context->rsvd_bits_mask[0][0] = 0;
3481                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3482
3483                 if (!is_pse(vcpu)) {
3484                         context->rsvd_bits_mask[1][1] = 0;
3485                         break;
3486                 }
3487
3488                 if (is_cpuid_PSE36())
3489                         /* 36bits PSE 4MB page */
3490                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3491                 else
3492                         /* 32 bits PSE 4MB page */
3493                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3494                 break;
3495         case PT32E_ROOT_LEVEL:
3496                 context->rsvd_bits_mask[0][2] =
3497                         rsvd_bits(maxphyaddr, 63) |
3498                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3499                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3500                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3501                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3502                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3503                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3504                         rsvd_bits(maxphyaddr, 62) |
3505                         rsvd_bits(13, 20);              /* large page */
3506                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3507                 break;
3508         case PT64_ROOT_LEVEL:
3509                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3510                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3511                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3512                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3513                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3514                         rsvd_bits(maxphyaddr, 51);
3515                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3516                         rsvd_bits(maxphyaddr, 51);
3517                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3518                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3519                         rsvd_bits(maxphyaddr, 51) |
3520                         rsvd_bits(13, 29);
3521                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3522                         rsvd_bits(maxphyaddr, 51) |
3523                         rsvd_bits(13, 20);              /* large page */
3524                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3525                 break;
3526         }
3527 }
3528
3529 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3530 {
3531         unsigned bit, byte, pfec;
3532         u8 map;
3533         bool fault, x, w, u, wf, uf, ff, smep;
3534
3535         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3536         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3537                 pfec = byte << 1;
3538                 map = 0;
3539                 wf = pfec & PFERR_WRITE_MASK;
3540                 uf = pfec & PFERR_USER_MASK;
3541                 ff = pfec & PFERR_FETCH_MASK;
3542                 for (bit = 0; bit < 8; ++bit) {
3543                         x = bit & ACC_EXEC_MASK;
3544                         w = bit & ACC_WRITE_MASK;
3545                         u = bit & ACC_USER_MASK;
3546
3547                         /* Not really needed: !nx will cause pte.nx to fault */
3548                         x |= !mmu->nx;
3549                         /* Allow supervisor writes if !cr0.wp */
3550                         w |= !is_write_protection(vcpu) && !uf;
3551                         /* Disallow supervisor fetches of user code if cr4.smep */
3552                         x &= !(smep && u && !uf);
3553
3554                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3555                         map |= fault << bit;
3556                 }
3557                 mmu->permissions[byte] = map;
3558         }
3559 }
3560
3561 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3562 {
3563         u8 map;
3564         unsigned level, root_level = mmu->root_level;
3565         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3566
3567         if (root_level == PT32E_ROOT_LEVEL)
3568                 --root_level;
3569         /* PT_PAGE_TABLE_LEVEL always terminates */
3570         map = 1 | (1 << ps_set_index);
3571         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3572                 if (level <= PT_PDPE_LEVEL
3573                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3574                         map |= 1 << (ps_set_index | (level - 1));
3575         }
3576         mmu->last_pte_bitmap = map;
3577 }
3578
3579 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3580                                         struct kvm_mmu *context,
3581                                         int level)
3582 {
3583         context->nx = is_nx(vcpu);
3584         context->root_level = level;
3585
3586         reset_rsvds_bits_mask(vcpu, context);
3587         update_permission_bitmask(vcpu, context);
3588         update_last_pte_bitmap(vcpu, context);
3589
3590         ASSERT(is_pae(vcpu));
3591         context->new_cr3 = paging_new_cr3;
3592         context->page_fault = paging64_page_fault;
3593         context->gva_to_gpa = paging64_gva_to_gpa;
3594         context->sync_page = paging64_sync_page;
3595         context->invlpg = paging64_invlpg;
3596         context->update_pte = paging64_update_pte;
3597         context->free = paging_free;
3598         context->shadow_root_level = level;
3599         context->root_hpa = INVALID_PAGE;
3600         context->direct_map = false;
3601         return 0;
3602 }
3603
3604 static int paging64_init_context(struct kvm_vcpu *vcpu,
3605                                  struct kvm_mmu *context)
3606 {
3607         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3608 }
3609
3610 static int paging32_init_context(struct kvm_vcpu *vcpu,
3611                                  struct kvm_mmu *context)
3612 {
3613         context->nx = false;
3614         context->root_level = PT32_ROOT_LEVEL;
3615
3616         reset_rsvds_bits_mask(vcpu, context);
3617         update_permission_bitmask(vcpu, context);
3618         update_last_pte_bitmap(vcpu, context);
3619
3620         context->new_cr3 = paging_new_cr3;
3621         context->page_fault = paging32_page_fault;
3622         context->gva_to_gpa = paging32_gva_to_gpa;
3623         context->free = paging_free;
3624         context->sync_page = paging32_sync_page;
3625         context->invlpg = paging32_invlpg;
3626         context->update_pte = paging32_update_pte;
3627         context->shadow_root_level = PT32E_ROOT_LEVEL;
3628         context->root_hpa = INVALID_PAGE;
3629         context->direct_map = false;
3630         return 0;
3631 }
3632
3633 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3634                                   struct kvm_mmu *context)
3635 {
3636         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3637 }
3638
3639 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3640 {
3641         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3642
3643         context->base_role.word = 0;
3644         context->new_cr3 = nonpaging_new_cr3;
3645         context->page_fault = tdp_page_fault;
3646         context->free = nonpaging_free;
3647         context->sync_page = nonpaging_sync_page;
3648         context->invlpg = nonpaging_invlpg;
3649         context->update_pte = nonpaging_update_pte;
3650         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3651         context->root_hpa = INVALID_PAGE;
3652         context->direct_map = true;
3653         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3654         context->get_cr3 = get_cr3;
3655         context->get_pdptr = kvm_pdptr_read;
3656         context->inject_page_fault = kvm_inject_page_fault;
3657
3658         if (!is_paging(vcpu)) {
3659                 context->nx = false;
3660                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3661                 context->root_level = 0;
3662         } else if (is_long_mode(vcpu)) {
3663                 context->nx = is_nx(vcpu);
3664                 context->root_level = PT64_ROOT_LEVEL;
3665                 reset_rsvds_bits_mask(vcpu, context);
3666                 context->gva_to_gpa = paging64_gva_to_gpa;
3667         } else if (is_pae(vcpu)) {
3668                 context->nx = is_nx(vcpu);
3669                 context->root_level = PT32E_ROOT_LEVEL;
3670                 reset_rsvds_bits_mask(vcpu, context);
3671                 context->gva_to_gpa = paging64_gva_to_gpa;
3672         } else {
3673                 context->nx = false;
3674                 context->root_level = PT32_ROOT_LEVEL;
3675                 reset_rsvds_bits_mask(vcpu, context);
3676                 context->gva_to_gpa = paging32_gva_to_gpa;
3677         }
3678
3679         update_permission_bitmask(vcpu, context);
3680         update_last_pte_bitmap(vcpu, context);
3681
3682         return 0;
3683 }
3684
3685 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3686 {
3687         int r;
3688         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3689         ASSERT(vcpu);
3690         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3691
3692         if (!is_paging(vcpu))
3693                 r = nonpaging_init_context(vcpu, context);
3694         else if (is_long_mode(vcpu))
3695                 r = paging64_init_context(vcpu, context);
3696         else if (is_pae(vcpu))
3697                 r = paging32E_init_context(vcpu, context);
3698         else
3699                 r = paging32_init_context(vcpu, context);
3700
3701         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3702         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3703         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3704         vcpu->arch.mmu.base_role.smep_andnot_wp
3705                 = smep && !is_write_protection(vcpu);
3706
3707         return r;
3708 }
3709 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3710
3711 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3712 {
3713         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3714
3715         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3716         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3717         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3718         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3719
3720         return r;
3721 }
3722
3723 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3724 {
3725         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3726
3727         g_context->get_cr3           = get_cr3;
3728         g_context->get_pdptr         = kvm_pdptr_read;
3729         g_context->inject_page_fault = kvm_inject_page_fault;
3730
3731         /*
3732          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3733          * translation of l2_gpa to l1_gpa addresses is done using the
3734          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3735          * functions between mmu and nested_mmu are swapped.
3736          */
3737         if (!is_paging(vcpu)) {
3738                 g_context->nx = false;
3739                 g_context->root_level = 0;
3740                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3741         } else if (is_long_mode(vcpu)) {
3742                 g_context->nx = is_nx(vcpu);
3743                 g_context->root_level = PT64_ROOT_LEVEL;
3744                 reset_rsvds_bits_mask(vcpu, g_context);
3745                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3746         } else if (is_pae(vcpu)) {
3747                 g_context->nx = is_nx(vcpu);
3748                 g_context->root_level = PT32E_ROOT_LEVEL;
3749                 reset_rsvds_bits_mask(vcpu, g_context);
3750                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3751         } else {
3752                 g_context->nx = false;
3753                 g_context->root_level = PT32_ROOT_LEVEL;
3754                 reset_rsvds_bits_mask(vcpu, g_context);
3755                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3756         }
3757
3758         update_permission_bitmask(vcpu, g_context);
3759         update_last_pte_bitmap(vcpu, g_context);
3760
3761         return 0;
3762 }
3763
3764 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3765 {
3766         if (mmu_is_nested(vcpu))
3767                 return init_kvm_nested_mmu(vcpu);
3768         else if (tdp_enabled)
3769                 return init_kvm_tdp_mmu(vcpu);
3770         else
3771                 return init_kvm_softmmu(vcpu);
3772 }
3773
3774 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3775 {
3776         ASSERT(vcpu);
3777         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3778                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3779                 vcpu->arch.mmu.free(vcpu);
3780 }
3781
3782 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3783 {
3784         destroy_kvm_mmu(vcpu);
3785         return init_kvm_mmu(vcpu);
3786 }
3787 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3788
3789 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3790 {
3791         int r;
3792
3793         r = mmu_topup_memory_caches(vcpu);
3794         if (r)
3795                 goto out;
3796         r = mmu_alloc_roots(vcpu);
3797         kvm_mmu_sync_roots(vcpu);
3798         if (r)
3799                 goto out;
3800         /* set_cr3() should ensure TLB has been flushed */
3801         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3802 out:
3803         return r;
3804 }
3805 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3806
3807 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3808 {
3809         mmu_free_roots(vcpu);
3810 }
3811 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3812
3813 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3814                                   struct kvm_mmu_page *sp, u64 *spte,
3815                                   const void *new)
3816 {
3817         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3818                 ++vcpu->kvm->stat.mmu_pde_zapped;
3819                 return;
3820         }
3821
3822         ++vcpu->kvm->stat.mmu_pte_updated;
3823         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3824 }
3825
3826 static bool need_remote_flush(u64 old, u64 new)
3827 {
3828         if (!is_shadow_present_pte(old))
3829                 return false;
3830         if (!is_shadow_present_pte(new))
3831                 return true;
3832         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3833                 return true;
3834         old ^= PT64_NX_MASK;
3835         new ^= PT64_NX_MASK;
3836         return (old & ~new & PT64_PERM_MASK) != 0;
3837 }
3838
3839 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3840                                     bool remote_flush, bool local_flush)
3841 {
3842         if (zap_page)
3843                 return;
3844
3845         if (remote_flush)
3846                 kvm_flush_remote_tlbs(vcpu->kvm);
3847         else if (local_flush)
3848                 kvm_mmu_flush_tlb(vcpu);
3849 }
3850
3851 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3852                                     const u8 *new, int *bytes)
3853 {
3854         u64 gentry;
3855         int r;
3856
3857         /*
3858          * Assume that the pte write on a page table of the same type
3859          * as the current vcpu paging mode since we update the sptes only
3860          * when they have the same mode.
3861          */
3862         if (is_pae(vcpu) && *bytes == 4) {
3863                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3864                 *gpa &= ~(gpa_t)7;
3865                 *bytes = 8;
3866                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3867                 if (r)
3868                         gentry = 0;
3869                 new = (const u8 *)&gentry;
3870         }
3871
3872         switch (*bytes) {
3873         case 4:
3874                 gentry = *(const u32 *)new;
3875                 break;
3876         case 8:
3877                 gentry = *(const u64 *)new;
3878                 break;
3879         default:
3880                 gentry = 0;
3881                 break;
3882         }
3883
3884         return gentry;
3885 }
3886
3887 /*
3888  * If we're seeing too many writes to a page, it may no longer be a page table,
3889  * or we may be forking, in which case it is better to unmap the page.
3890  */
3891 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3892 {
3893         /*
3894          * Skip write-flooding detected for the sp whose level is 1, because
3895          * it can become unsync, then the guest page is not write-protected.
3896          */
3897         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3898                 return false;
3899
3900         return ++sp->write_flooding_count >= 3;
3901 }
3902
3903 /*
3904  * Misaligned accesses are too much trouble to fix up; also, they usually
3905  * indicate a page is not used as a page table.
3906  */
3907 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3908                                     int bytes)
3909 {
3910         unsigned offset, pte_size, misaligned;
3911
3912         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3913                  gpa, bytes, sp->role.word);
3914
3915         offset = offset_in_page(gpa);
3916         pte_size = sp->role.cr4_pae ? 8 : 4;
3917
3918         /*
3919          * Sometimes, the OS only writes the last one bytes to update status
3920          * bits, for example, in linux, andb instruction is used in clear_bit().
3921          */
3922         if (!(offset & (pte_size - 1)) && bytes == 1)
3923                 return false;
3924
3925         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3926         misaligned |= bytes < 4;
3927
3928         return misaligned;
3929 }
3930
3931 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3932 {
3933         unsigned page_offset, quadrant;
3934         u64 *spte;
3935         int level;
3936
3937         page_offset = offset_in_page(gpa);
3938         level = sp->role.level;
3939         *nspte = 1;
3940         if (!sp->role.cr4_pae) {
3941                 page_offset <<= 1;      /* 32->64 */
3942                 /*
3943                  * A 32-bit pde maps 4MB while the shadow pdes map
3944                  * only 2MB.  So we need to double the offset again
3945                  * and zap two pdes instead of one.
3946                  */
3947                 if (level == PT32_ROOT_LEVEL) {
3948                         page_offset &= ~7; /* kill rounding error */
3949                         page_offset <<= 1;
3950                         *nspte = 2;
3951                 }
3952                 quadrant = page_offset >> PAGE_SHIFT;
3953                 page_offset &= ~PAGE_MASK;
3954                 if (quadrant != sp->role.quadrant)
3955                         return NULL;
3956         }
3957
3958         spte = &sp->spt[page_offset / sizeof(*spte)];
3959         return spte;
3960 }
3961
3962 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3963                        const u8 *new, int bytes)
3964 {
3965         gfn_t gfn = gpa >> PAGE_SHIFT;
3966         union kvm_mmu_page_role mask = { .word = 0 };
3967         struct kvm_mmu_page *sp;
3968         LIST_HEAD(invalid_list);
3969         u64 entry, gentry, *spte;
3970         int npte;
3971         bool remote_flush, local_flush, zap_page;
3972
3973         /*
3974          * If we don't have indirect shadow pages, it means no page is
3975          * write-protected, so we can exit simply.
3976          */
3977         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3978                 return;
3979
3980         zap_page = remote_flush = local_flush = false;
3981
3982         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3983
3984         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3985
3986         /*
3987          * No need to care whether allocation memory is successful
3988          * or not since pte prefetch is skiped if it does not have
3989          * enough objects in the cache.
3990          */
3991         mmu_topup_memory_caches(vcpu);
3992
3993         spin_lock(&vcpu->kvm->mmu_lock);
3994         ++vcpu->kvm->stat.mmu_pte_write;
3995         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3996
3997         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3998         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3999                 if (detect_write_misaligned(sp, gpa, bytes) ||
4000                       detect_write_flooding(sp)) {
4001                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4002                                                      &invalid_list);
4003                         ++vcpu->kvm->stat.mmu_flooded;
4004                         continue;
4005                 }
4006
4007                 spte = get_written_sptes(sp, gpa, &npte);
4008                 if (!spte)
4009                         continue;
4010
4011                 local_flush = true;
4012                 while (npte--) {
4013                         entry = *spte;
4014                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4015                         if (gentry &&
4016                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4017                               & mask.word) && rmap_can_add(vcpu))
4018                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4019                         if (need_remote_flush(entry, *spte))
4020                                 remote_flush = true;
4021                         ++spte;
4022                 }
4023         }
4024         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4025         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4026         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4027         spin_unlock(&vcpu->kvm->mmu_lock);
4028 }
4029
4030 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4031 {
4032         gpa_t gpa;
4033         int r;
4034
4035         if (vcpu->arch.mmu.direct_map)
4036                 return 0;
4037
4038         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4039
4040         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4041
4042         return r;
4043 }
4044 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4045
4046 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4047 {
4048         LIST_HEAD(invalid_list);
4049
4050         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4051                 return;
4052
4053         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4054                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4055                         break;
4056
4057                 ++vcpu->kvm->stat.mmu_recycled;
4058         }
4059         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4060 }
4061
4062 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4063 {
4064         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4065                 return vcpu_match_mmio_gpa(vcpu, addr);
4066
4067         return vcpu_match_mmio_gva(vcpu, addr);
4068 }
4069
4070 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4071                        void *insn, int insn_len)
4072 {
4073         int r, emulation_type = EMULTYPE_RETRY;
4074         enum emulation_result er;
4075
4076         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4077         if (r < 0)
4078                 goto out;
4079
4080         if (!r) {
4081                 r = 1;
4082                 goto out;
4083         }
4084
4085         if (is_mmio_page_fault(vcpu, cr2))
4086                 emulation_type = 0;
4087
4088         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4089
4090         switch (er) {
4091         case EMULATE_DONE:
4092                 return 1;
4093         case EMULATE_DO_MMIO:
4094                 ++vcpu->stat.mmio_exits;
4095                 /* fall through */
4096         case EMULATE_FAIL:
4097                 return 0;
4098         default:
4099                 BUG();
4100         }
4101 out:
4102         return r;
4103 }
4104 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4105
4106 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4107 {
4108         vcpu->arch.mmu.invlpg(vcpu, gva);
4109         kvm_mmu_flush_tlb(vcpu);
4110         ++vcpu->stat.invlpg;
4111 }
4112 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4113
4114 void kvm_enable_tdp(void)
4115 {
4116         tdp_enabled = true;
4117 }
4118 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4119
4120 void kvm_disable_tdp(void)
4121 {
4122         tdp_enabled = false;
4123 }
4124 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4125
4126 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4127 {
4128         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4129         if (vcpu->arch.mmu.lm_root != NULL)
4130                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4131 }
4132
4133 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4134 {
4135         struct page *page;
4136         int i;
4137
4138         ASSERT(vcpu);
4139
4140         /*
4141          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4142          * Therefore we need to allocate shadow page tables in the first
4143          * 4GB of memory, which happens to fit the DMA32 zone.
4144          */
4145         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4146         if (!page)
4147                 return -ENOMEM;
4148
4149         vcpu->arch.mmu.pae_root = page_address(page);
4150         for (i = 0; i < 4; ++i)
4151                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4152
4153         return 0;
4154 }
4155
4156 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4157 {
4158         ASSERT(vcpu);
4159
4160         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4161         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4162         vcpu->arch.mmu.translate_gpa = translate_gpa;
4163         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4164
4165         return alloc_mmu_pages(vcpu);
4166 }
4167
4168 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4169 {
4170         ASSERT(vcpu);
4171         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4172
4173         return init_kvm_mmu(vcpu);
4174 }
4175
4176 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4177 {
4178         struct kvm_memory_slot *memslot;
4179         gfn_t last_gfn;
4180         int i;
4181
4182         memslot = id_to_memslot(kvm->memslots, slot);
4183         last_gfn = memslot->base_gfn + memslot->npages - 1;
4184
4185         spin_lock(&kvm->mmu_lock);
4186
4187         for (i = PT_PAGE_TABLE_LEVEL;
4188              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4189                 unsigned long *rmapp;
4190                 unsigned long last_index, index;
4191
4192                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4193                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4194
4195                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4196                         if (*rmapp)
4197                                 __rmap_write_protect(kvm, rmapp, false);
4198
4199                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4200                                 kvm_flush_remote_tlbs(kvm);
4201                                 cond_resched_lock(&kvm->mmu_lock);
4202                         }
4203                 }
4204         }
4205
4206         kvm_flush_remote_tlbs(kvm);
4207         spin_unlock(&kvm->mmu_lock);
4208 }
4209
4210 #define BATCH_ZAP_PAGES 10
4211 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4212 {
4213         struct kvm_mmu_page *sp, *node;
4214         LIST_HEAD(invalid_list);
4215         int batch = 0;
4216
4217 restart:
4218         list_for_each_entry_safe_reverse(sp, node,
4219               &kvm->arch.active_mmu_pages, link) {
4220                 int ret;
4221
4222                 /*
4223                  * No obsolete page exists before new created page since
4224                  * active_mmu_pages is the FIFO list.
4225                  */
4226                 if (!is_obsolete_sp(kvm, sp))
4227                         break;
4228
4229                 /*
4230                  * Since we are reversely walking the list and the invalid
4231                  * list will be moved to the head, skip the invalid page
4232                  * can help us to avoid the infinity list walking.
4233                  */
4234                 if (sp->role.invalid)
4235                         continue;
4236
4237                 /*
4238                  * Need not flush tlb since we only zap the sp with invalid
4239                  * generation number.
4240                  */
4241                 if (batch >= BATCH_ZAP_PAGES &&
4242                       cond_resched_lock(&kvm->mmu_lock)) {
4243                         batch = 0;
4244                         goto restart;
4245                 }
4246
4247                 ret = kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
4248                 batch += ret;
4249
4250                 if (ret)
4251                         goto restart;
4252         }
4253
4254         /*
4255          * Should flush tlb before free page tables since lockless-walking
4256          * may use the pages.
4257          */
4258         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4259 }
4260
4261 /*
4262  * Fast invalidate all shadow pages and use lock-break technique
4263  * to zap obsolete pages.
4264  *
4265  * It's required when memslot is being deleted or VM is being
4266  * destroyed, in these cases, we should ensure that KVM MMU does
4267  * not use any resource of the being-deleted slot or all slots
4268  * after calling the function.
4269  */
4270 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4271 {
4272         spin_lock(&kvm->mmu_lock);
4273         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4274         kvm->arch.mmu_valid_gen++;
4275
4276         /*
4277          * Notify all vcpus to reload its shadow page table
4278          * and flush TLB. Then all vcpus will switch to new
4279          * shadow page table with the new mmu_valid_gen.
4280          *
4281          * Note: we should do this under the protection of
4282          * mmu-lock, otherwise, vcpu would purge shadow page
4283          * but miss tlb flush.
4284          */
4285         kvm_reload_remote_mmus(kvm);
4286
4287         kvm_zap_obsolete_pages(kvm);
4288         spin_unlock(&kvm->mmu_lock);
4289 }
4290
4291 void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4292 {
4293         struct kvm_mmu_page *sp, *node;
4294         LIST_HEAD(invalid_list);
4295
4296         spin_lock(&kvm->mmu_lock);
4297 restart:
4298         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4299                 if (!sp->mmio_cached)
4300                         continue;
4301                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4302                         goto restart;
4303         }
4304
4305         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4306         spin_unlock(&kvm->mmu_lock);
4307 }
4308
4309 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4310 {
4311         struct kvm *kvm;
4312         int nr_to_scan = sc->nr_to_scan;
4313
4314         if (nr_to_scan == 0)
4315                 goto out;
4316
4317         raw_spin_lock(&kvm_lock);
4318
4319         list_for_each_entry(kvm, &vm_list, vm_list) {
4320                 int idx;
4321                 LIST_HEAD(invalid_list);
4322
4323                 /*
4324                  * Never scan more than sc->nr_to_scan VM instances.
4325                  * Will not hit this condition practically since we do not try
4326                  * to shrink more than one VM and it is very unlikely to see
4327                  * !n_used_mmu_pages so many times.
4328                  */
4329                 if (!nr_to_scan--)
4330                         break;
4331                 /*
4332                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4333                  * here. We may skip a VM instance errorneosly, but we do not
4334                  * want to shrink a VM that only started to populate its MMU
4335                  * anyway.
4336                  */
4337                 if (!kvm->arch.n_used_mmu_pages)
4338                         continue;
4339
4340                 idx = srcu_read_lock(&kvm->srcu);
4341                 spin_lock(&kvm->mmu_lock);
4342
4343                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4344                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4345
4346                 spin_unlock(&kvm->mmu_lock);
4347                 srcu_read_unlock(&kvm->srcu, idx);
4348
4349                 list_move_tail(&kvm->vm_list, &vm_list);
4350                 break;
4351         }
4352
4353         raw_spin_unlock(&kvm_lock);
4354
4355 out:
4356         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4357 }
4358
4359 static struct shrinker mmu_shrinker = {
4360         .shrink = mmu_shrink,
4361         .seeks = DEFAULT_SEEKS * 10,
4362 };
4363
4364 static void mmu_destroy_caches(void)
4365 {
4366         if (pte_list_desc_cache)
4367                 kmem_cache_destroy(pte_list_desc_cache);
4368         if (mmu_page_header_cache)
4369                 kmem_cache_destroy(mmu_page_header_cache);
4370 }
4371
4372 int kvm_mmu_module_init(void)
4373 {
4374         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4375                                             sizeof(struct pte_list_desc),
4376                                             0, 0, NULL);
4377         if (!pte_list_desc_cache)
4378                 goto nomem;
4379
4380         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4381                                                   sizeof(struct kvm_mmu_page),
4382                                                   0, 0, NULL);
4383         if (!mmu_page_header_cache)
4384                 goto nomem;
4385
4386         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4387                 goto nomem;
4388
4389         register_shrinker(&mmu_shrinker);
4390
4391         return 0;
4392
4393 nomem:
4394         mmu_destroy_caches();
4395         return -ENOMEM;
4396 }
4397
4398 /*
4399  * Caculate mmu pages needed for kvm.
4400  */
4401 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4402 {
4403         unsigned int nr_mmu_pages;
4404         unsigned int  nr_pages = 0;
4405         struct kvm_memslots *slots;
4406         struct kvm_memory_slot *memslot;
4407
4408         slots = kvm_memslots(kvm);
4409
4410         kvm_for_each_memslot(memslot, slots)
4411                 nr_pages += memslot->npages;
4412
4413         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4414         nr_mmu_pages = max(nr_mmu_pages,
4415                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4416
4417         return nr_mmu_pages;
4418 }
4419
4420 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4421 {
4422         struct kvm_shadow_walk_iterator iterator;
4423         u64 spte;
4424         int nr_sptes = 0;
4425
4426         walk_shadow_page_lockless_begin(vcpu);
4427         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4428                 sptes[iterator.level-1] = spte;
4429                 nr_sptes++;
4430                 if (!is_shadow_present_pte(spte))
4431                         break;
4432         }
4433         walk_shadow_page_lockless_end(vcpu);
4434
4435         return nr_sptes;
4436 }
4437 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4438
4439 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4440 {
4441         ASSERT(vcpu);
4442
4443         destroy_kvm_mmu(vcpu);
4444         free_mmu_pages(vcpu);
4445         mmu_free_memory_caches(vcpu);
4446 }
4447
4448 void kvm_mmu_module_exit(void)
4449 {
4450         mmu_destroy_caches();
4451         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4452         unregister_shrinker(&mmu_shrinker);
4453         mmu_audit_disable();
4454 }