]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/mmu.c
KVM: MMU: drop kvm_mmu_zap_mmio_sptes
[~andy/linux] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 /*
201  * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202  * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203  * number.
204  */
205 #define MMIO_SPTE_GEN_LOW_SHIFT         3
206 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
207
208 #define MMIO_GEN_SHIFT                  19
209 #define MMIO_GEN_LOW_SHIFT              9
210 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
212 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
213
214 static u64 generation_mmio_spte_mask(unsigned int gen)
215 {
216         u64 mask;
217
218         WARN_ON(gen > MMIO_MAX_GEN);
219
220         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222         return mask;
223 }
224
225 static unsigned int get_mmio_spte_generation(u64 spte)
226 {
227         unsigned int gen;
228
229         spte &= ~shadow_mmio_mask;
230
231         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233         return gen;
234 }
235
236 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237 {
238         /*
239          * Init kvm generation close to MMIO_MAX_GEN to easily test the
240          * code of handling generation number wrap-around.
241          */
242         return (kvm_memslots(kvm)->generation +
243                       MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
244 }
245
246 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247                            unsigned access)
248 {
249         unsigned int gen = kvm_current_mmio_generation(kvm);
250         u64 mask = generation_mmio_spte_mask(gen);
251
252         access &= ACC_WRITE_MASK | ACC_USER_MASK;
253         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
254
255         trace_mark_mmio_spte(sptep, gfn, access, gen);
256         mmu_spte_set(sptep, mask);
257 }
258
259 static bool is_mmio_spte(u64 spte)
260 {
261         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262 }
263
264 static gfn_t get_mmio_spte_gfn(u64 spte)
265 {
266         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267         return (spte & ~mask) >> PAGE_SHIFT;
268 }
269
270 static unsigned get_mmio_spte_access(u64 spte)
271 {
272         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273         return (spte & ~mask) & ~PAGE_MASK;
274 }
275
276 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277                           pfn_t pfn, unsigned access)
278 {
279         if (unlikely(is_noslot_pfn(pfn))) {
280                 mark_mmio_spte(kvm, sptep, gfn, access);
281                 return true;
282         }
283
284         return false;
285 }
286
287 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288 {
289         unsigned int kvm_gen, spte_gen;
290
291         kvm_gen = kvm_current_mmio_generation(kvm);
292         spte_gen = get_mmio_spte_generation(spte);
293
294         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295         return likely(kvm_gen == spte_gen);
296 }
297
298 static inline u64 rsvd_bits(int s, int e)
299 {
300         return ((1ULL << (e - s + 1)) - 1) << s;
301 }
302
303 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
304                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
305 {
306         shadow_user_mask = user_mask;
307         shadow_accessed_mask = accessed_mask;
308         shadow_dirty_mask = dirty_mask;
309         shadow_nx_mask = nx_mask;
310         shadow_x_mask = x_mask;
311 }
312 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
313
314 static int is_cpuid_PSE36(void)
315 {
316         return 1;
317 }
318
319 static int is_nx(struct kvm_vcpu *vcpu)
320 {
321         return vcpu->arch.efer & EFER_NX;
322 }
323
324 static int is_shadow_present_pte(u64 pte)
325 {
326         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
327 }
328
329 static int is_large_pte(u64 pte)
330 {
331         return pte & PT_PAGE_SIZE_MASK;
332 }
333
334 static int is_dirty_gpte(unsigned long pte)
335 {
336         return pte & PT_DIRTY_MASK;
337 }
338
339 static int is_rmap_spte(u64 pte)
340 {
341         return is_shadow_present_pte(pte);
342 }
343
344 static int is_last_spte(u64 pte, int level)
345 {
346         if (level == PT_PAGE_TABLE_LEVEL)
347                 return 1;
348         if (is_large_pte(pte))
349                 return 1;
350         return 0;
351 }
352
353 static pfn_t spte_to_pfn(u64 pte)
354 {
355         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
356 }
357
358 static gfn_t pse36_gfn_delta(u32 gpte)
359 {
360         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
361
362         return (gpte & PT32_DIR_PSE36_MASK) << shift;
363 }
364
365 #ifdef CONFIG_X86_64
366 static void __set_spte(u64 *sptep, u64 spte)
367 {
368         *sptep = spte;
369 }
370
371 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
372 {
373         *sptep = spte;
374 }
375
376 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
377 {
378         return xchg(sptep, spte);
379 }
380
381 static u64 __get_spte_lockless(u64 *sptep)
382 {
383         return ACCESS_ONCE(*sptep);
384 }
385
386 static bool __check_direct_spte_mmio_pf(u64 spte)
387 {
388         /* It is valid if the spte is zapped. */
389         return spte == 0ull;
390 }
391 #else
392 union split_spte {
393         struct {
394                 u32 spte_low;
395                 u32 spte_high;
396         };
397         u64 spte;
398 };
399
400 static void count_spte_clear(u64 *sptep, u64 spte)
401 {
402         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
403
404         if (is_shadow_present_pte(spte))
405                 return;
406
407         /* Ensure the spte is completely set before we increase the count */
408         smp_wmb();
409         sp->clear_spte_count++;
410 }
411
412 static void __set_spte(u64 *sptep, u64 spte)
413 {
414         union split_spte *ssptep, sspte;
415
416         ssptep = (union split_spte *)sptep;
417         sspte = (union split_spte)spte;
418
419         ssptep->spte_high = sspte.spte_high;
420
421         /*
422          * If we map the spte from nonpresent to present, We should store
423          * the high bits firstly, then set present bit, so cpu can not
424          * fetch this spte while we are setting the spte.
425          */
426         smp_wmb();
427
428         ssptep->spte_low = sspte.spte_low;
429 }
430
431 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
432 {
433         union split_spte *ssptep, sspte;
434
435         ssptep = (union split_spte *)sptep;
436         sspte = (union split_spte)spte;
437
438         ssptep->spte_low = sspte.spte_low;
439
440         /*
441          * If we map the spte from present to nonpresent, we should clear
442          * present bit firstly to avoid vcpu fetch the old high bits.
443          */
444         smp_wmb();
445
446         ssptep->spte_high = sspte.spte_high;
447         count_spte_clear(sptep, spte);
448 }
449
450 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
451 {
452         union split_spte *ssptep, sspte, orig;
453
454         ssptep = (union split_spte *)sptep;
455         sspte = (union split_spte)spte;
456
457         /* xchg acts as a barrier before the setting of the high bits */
458         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
459         orig.spte_high = ssptep->spte_high;
460         ssptep->spte_high = sspte.spte_high;
461         count_spte_clear(sptep, spte);
462
463         return orig.spte;
464 }
465
466 /*
467  * The idea using the light way get the spte on x86_32 guest is from
468  * gup_get_pte(arch/x86/mm/gup.c).
469  * The difference is we can not catch the spte tlb flush if we leave
470  * guest mode, so we emulate it by increase clear_spte_count when spte
471  * is cleared.
472  */
473 static u64 __get_spte_lockless(u64 *sptep)
474 {
475         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
476         union split_spte spte, *orig = (union split_spte *)sptep;
477         int count;
478
479 retry:
480         count = sp->clear_spte_count;
481         smp_rmb();
482
483         spte.spte_low = orig->spte_low;
484         smp_rmb();
485
486         spte.spte_high = orig->spte_high;
487         smp_rmb();
488
489         if (unlikely(spte.spte_low != orig->spte_low ||
490               count != sp->clear_spte_count))
491                 goto retry;
492
493         return spte.spte;
494 }
495
496 static bool __check_direct_spte_mmio_pf(u64 spte)
497 {
498         union split_spte sspte = (union split_spte)spte;
499         u32 high_mmio_mask = shadow_mmio_mask >> 32;
500
501         /* It is valid if the spte is zapped. */
502         if (spte == 0ull)
503                 return true;
504
505         /* It is valid if the spte is being zapped. */
506         if (sspte.spte_low == 0ull &&
507             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
508                 return true;
509
510         return false;
511 }
512 #endif
513
514 static bool spte_is_locklessly_modifiable(u64 spte)
515 {
516         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
517                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
518 }
519
520 static bool spte_has_volatile_bits(u64 spte)
521 {
522         /*
523          * Always atomicly update spte if it can be updated
524          * out of mmu-lock, it can ensure dirty bit is not lost,
525          * also, it can help us to get a stable is_writable_pte()
526          * to ensure tlb flush is not missed.
527          */
528         if (spte_is_locklessly_modifiable(spte))
529                 return true;
530
531         if (!shadow_accessed_mask)
532                 return false;
533
534         if (!is_shadow_present_pte(spte))
535                 return false;
536
537         if ((spte & shadow_accessed_mask) &&
538               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
539                 return false;
540
541         return true;
542 }
543
544 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
545 {
546         return (old_spte & bit_mask) && !(new_spte & bit_mask);
547 }
548
549 /* Rules for using mmu_spte_set:
550  * Set the sptep from nonpresent to present.
551  * Note: the sptep being assigned *must* be either not present
552  * or in a state where the hardware will not attempt to update
553  * the spte.
554  */
555 static void mmu_spte_set(u64 *sptep, u64 new_spte)
556 {
557         WARN_ON(is_shadow_present_pte(*sptep));
558         __set_spte(sptep, new_spte);
559 }
560
561 /* Rules for using mmu_spte_update:
562  * Update the state bits, it means the mapped pfn is not changged.
563  *
564  * Whenever we overwrite a writable spte with a read-only one we
565  * should flush remote TLBs. Otherwise rmap_write_protect
566  * will find a read-only spte, even though the writable spte
567  * might be cached on a CPU's TLB, the return value indicates this
568  * case.
569  */
570 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
571 {
572         u64 old_spte = *sptep;
573         bool ret = false;
574
575         WARN_ON(!is_rmap_spte(new_spte));
576
577         if (!is_shadow_present_pte(old_spte)) {
578                 mmu_spte_set(sptep, new_spte);
579                 return ret;
580         }
581
582         if (!spte_has_volatile_bits(old_spte))
583                 __update_clear_spte_fast(sptep, new_spte);
584         else
585                 old_spte = __update_clear_spte_slow(sptep, new_spte);
586
587         /*
588          * For the spte updated out of mmu-lock is safe, since
589          * we always atomicly update it, see the comments in
590          * spte_has_volatile_bits().
591          */
592         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
593                 ret = true;
594
595         if (!shadow_accessed_mask)
596                 return ret;
597
598         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602
603         return ret;
604 }
605
606 /*
607  * Rules for using mmu_spte_clear_track_bits:
608  * It sets the sptep from present to nonpresent, and track the
609  * state bits, it is used to clear the last level sptep.
610  */
611 static int mmu_spte_clear_track_bits(u64 *sptep)
612 {
613         pfn_t pfn;
614         u64 old_spte = *sptep;
615
616         if (!spte_has_volatile_bits(old_spte))
617                 __update_clear_spte_fast(sptep, 0ull);
618         else
619                 old_spte = __update_clear_spte_slow(sptep, 0ull);
620
621         if (!is_rmap_spte(old_spte))
622                 return 0;
623
624         pfn = spte_to_pfn(old_spte);
625
626         /*
627          * KVM does not hold the refcount of the page used by
628          * kvm mmu, before reclaiming the page, we should
629          * unmap it from mmu first.
630          */
631         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632
633         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634                 kvm_set_pfn_accessed(pfn);
635         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636                 kvm_set_pfn_dirty(pfn);
637         return 1;
638 }
639
640 /*
641  * Rules for using mmu_spte_clear_no_track:
642  * Directly clear spte without caring the state bits of sptep,
643  * it is used to set the upper level spte.
644  */
645 static void mmu_spte_clear_no_track(u64 *sptep)
646 {
647         __update_clear_spte_fast(sptep, 0ull);
648 }
649
650 static u64 mmu_spte_get_lockless(u64 *sptep)
651 {
652         return __get_spte_lockless(sptep);
653 }
654
655 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656 {
657         /*
658          * Prevent page table teardown by making any free-er wait during
659          * kvm_flush_remote_tlbs() IPI to all active vcpus.
660          */
661         local_irq_disable();
662         vcpu->mode = READING_SHADOW_PAGE_TABLES;
663         /*
664          * Make sure a following spte read is not reordered ahead of the write
665          * to vcpu->mode.
666          */
667         smp_mb();
668 }
669
670 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671 {
672         /*
673          * Make sure the write to vcpu->mode is not reordered in front of
674          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
675          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676          */
677         smp_mb();
678         vcpu->mode = OUTSIDE_GUEST_MODE;
679         local_irq_enable();
680 }
681
682 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683                                   struct kmem_cache *base_cache, int min)
684 {
685         void *obj;
686
687         if (cache->nobjs >= min)
688                 return 0;
689         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691                 if (!obj)
692                         return -ENOMEM;
693                 cache->objects[cache->nobjs++] = obj;
694         }
695         return 0;
696 }
697
698 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699 {
700         return cache->nobjs;
701 }
702
703 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704                                   struct kmem_cache *cache)
705 {
706         while (mc->nobjs)
707                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 }
709
710 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711                                        int min)
712 {
713         void *page;
714
715         if (cache->nobjs >= min)
716                 return 0;
717         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718                 page = (void *)__get_free_page(GFP_KERNEL);
719                 if (!page)
720                         return -ENOMEM;
721                 cache->objects[cache->nobjs++] = page;
722         }
723         return 0;
724 }
725
726 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727 {
728         while (mc->nobjs)
729                 free_page((unsigned long)mc->objects[--mc->nobjs]);
730 }
731
732 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733 {
734         int r;
735
736         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738         if (r)
739                 goto out;
740         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741         if (r)
742                 goto out;
743         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744                                    mmu_page_header_cache, 4);
745 out:
746         return r;
747 }
748
749 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750 {
751         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752                                 pte_list_desc_cache);
753         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755                                 mmu_page_header_cache);
756 }
757
758 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 {
760         void *p;
761
762         BUG_ON(!mc->nobjs);
763         p = mc->objects[--mc->nobjs];
764         return p;
765 }
766
767 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768 {
769         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 }
771
772 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773 {
774         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 }
776
777 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778 {
779         if (!sp->role.direct)
780                 return sp->gfns[index];
781
782         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783 }
784
785 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786 {
787         if (sp->role.direct)
788                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789         else
790                 sp->gfns[index] = gfn;
791 }
792
793 /*
794  * Return the pointer to the large page information for a given gfn,
795  * handling slots that are not large page aligned.
796  */
797 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798                                               struct kvm_memory_slot *slot,
799                                               int level)
800 {
801         unsigned long idx;
802
803         idx = gfn_to_index(gfn, slot->base_gfn, level);
804         return &slot->arch.lpage_info[level - 2][idx];
805 }
806
807 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
808 {
809         struct kvm_memory_slot *slot;
810         struct kvm_lpage_info *linfo;
811         int i;
812
813         slot = gfn_to_memslot(kvm, gfn);
814         for (i = PT_DIRECTORY_LEVEL;
815              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
816                 linfo = lpage_info_slot(gfn, slot, i);
817                 linfo->write_count += 1;
818         }
819         kvm->arch.indirect_shadow_pages++;
820 }
821
822 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
823 {
824         struct kvm_memory_slot *slot;
825         struct kvm_lpage_info *linfo;
826         int i;
827
828         slot = gfn_to_memslot(kvm, gfn);
829         for (i = PT_DIRECTORY_LEVEL;
830              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
831                 linfo = lpage_info_slot(gfn, slot, i);
832                 linfo->write_count -= 1;
833                 WARN_ON(linfo->write_count < 0);
834         }
835         kvm->arch.indirect_shadow_pages--;
836 }
837
838 static int has_wrprotected_page(struct kvm *kvm,
839                                 gfn_t gfn,
840                                 int level)
841 {
842         struct kvm_memory_slot *slot;
843         struct kvm_lpage_info *linfo;
844
845         slot = gfn_to_memslot(kvm, gfn);
846         if (slot) {
847                 linfo = lpage_info_slot(gfn, slot, level);
848                 return linfo->write_count;
849         }
850
851         return 1;
852 }
853
854 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
855 {
856         unsigned long page_size;
857         int i, ret = 0;
858
859         page_size = kvm_host_page_size(kvm, gfn);
860
861         for (i = PT_PAGE_TABLE_LEVEL;
862              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
863                 if (page_size >= KVM_HPAGE_SIZE(i))
864                         ret = i;
865                 else
866                         break;
867         }
868
869         return ret;
870 }
871
872 static struct kvm_memory_slot *
873 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
874                             bool no_dirty_log)
875 {
876         struct kvm_memory_slot *slot;
877
878         slot = gfn_to_memslot(vcpu->kvm, gfn);
879         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
880               (no_dirty_log && slot->dirty_bitmap))
881                 slot = NULL;
882
883         return slot;
884 }
885
886 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
887 {
888         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
889 }
890
891 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
892 {
893         int host_level, level, max_level;
894
895         host_level = host_mapping_level(vcpu->kvm, large_gfn);
896
897         if (host_level == PT_PAGE_TABLE_LEVEL)
898                 return host_level;
899
900         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
901
902         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
903                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
904                         break;
905
906         return level - 1;
907 }
908
909 /*
910  * Pte mapping structures:
911  *
912  * If pte_list bit zero is zero, then pte_list point to the spte.
913  *
914  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
915  * pte_list_desc containing more mappings.
916  *
917  * Returns the number of pte entries before the spte was added or zero if
918  * the spte was not added.
919  *
920  */
921 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
922                         unsigned long *pte_list)
923 {
924         struct pte_list_desc *desc;
925         int i, count = 0;
926
927         if (!*pte_list) {
928                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
929                 *pte_list = (unsigned long)spte;
930         } else if (!(*pte_list & 1)) {
931                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
932                 desc = mmu_alloc_pte_list_desc(vcpu);
933                 desc->sptes[0] = (u64 *)*pte_list;
934                 desc->sptes[1] = spte;
935                 *pte_list = (unsigned long)desc | 1;
936                 ++count;
937         } else {
938                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
939                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
940                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
941                         desc = desc->more;
942                         count += PTE_LIST_EXT;
943                 }
944                 if (desc->sptes[PTE_LIST_EXT-1]) {
945                         desc->more = mmu_alloc_pte_list_desc(vcpu);
946                         desc = desc->more;
947                 }
948                 for (i = 0; desc->sptes[i]; ++i)
949                         ++count;
950                 desc->sptes[i] = spte;
951         }
952         return count;
953 }
954
955 static void
956 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
957                            int i, struct pte_list_desc *prev_desc)
958 {
959         int j;
960
961         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
962                 ;
963         desc->sptes[i] = desc->sptes[j];
964         desc->sptes[j] = NULL;
965         if (j != 0)
966                 return;
967         if (!prev_desc && !desc->more)
968                 *pte_list = (unsigned long)desc->sptes[0];
969         else
970                 if (prev_desc)
971                         prev_desc->more = desc->more;
972                 else
973                         *pte_list = (unsigned long)desc->more | 1;
974         mmu_free_pte_list_desc(desc);
975 }
976
977 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
978 {
979         struct pte_list_desc *desc;
980         struct pte_list_desc *prev_desc;
981         int i;
982
983         if (!*pte_list) {
984                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
985                 BUG();
986         } else if (!(*pte_list & 1)) {
987                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
988                 if ((u64 *)*pte_list != spte) {
989                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
990                         BUG();
991                 }
992                 *pte_list = 0;
993         } else {
994                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
995                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
996                 prev_desc = NULL;
997                 while (desc) {
998                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
999                                 if (desc->sptes[i] == spte) {
1000                                         pte_list_desc_remove_entry(pte_list,
1001                                                                desc, i,
1002                                                                prev_desc);
1003                                         return;
1004                                 }
1005                         prev_desc = desc;
1006                         desc = desc->more;
1007                 }
1008                 pr_err("pte_list_remove: %p many->many\n", spte);
1009                 BUG();
1010         }
1011 }
1012
1013 typedef void (*pte_list_walk_fn) (u64 *spte);
1014 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1015 {
1016         struct pte_list_desc *desc;
1017         int i;
1018
1019         if (!*pte_list)
1020                 return;
1021
1022         if (!(*pte_list & 1))
1023                 return fn((u64 *)*pte_list);
1024
1025         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1026         while (desc) {
1027                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1028                         fn(desc->sptes[i]);
1029                 desc = desc->more;
1030         }
1031 }
1032
1033 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1034                                     struct kvm_memory_slot *slot)
1035 {
1036         unsigned long idx;
1037
1038         idx = gfn_to_index(gfn, slot->base_gfn, level);
1039         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1040 }
1041
1042 /*
1043  * Take gfn and return the reverse mapping to it.
1044  */
1045 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1046 {
1047         struct kvm_memory_slot *slot;
1048
1049         slot = gfn_to_memslot(kvm, gfn);
1050         return __gfn_to_rmap(gfn, level, slot);
1051 }
1052
1053 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1054 {
1055         struct kvm_mmu_memory_cache *cache;
1056
1057         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1058         return mmu_memory_cache_free_objects(cache);
1059 }
1060
1061 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1062 {
1063         struct kvm_mmu_page *sp;
1064         unsigned long *rmapp;
1065
1066         sp = page_header(__pa(spte));
1067         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1068         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1069         return pte_list_add(vcpu, spte, rmapp);
1070 }
1071
1072 static void rmap_remove(struct kvm *kvm, u64 *spte)
1073 {
1074         struct kvm_mmu_page *sp;
1075         gfn_t gfn;
1076         unsigned long *rmapp;
1077
1078         sp = page_header(__pa(spte));
1079         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1080         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1081         pte_list_remove(spte, rmapp);
1082 }
1083
1084 /*
1085  * Used by the following functions to iterate through the sptes linked by a
1086  * rmap.  All fields are private and not assumed to be used outside.
1087  */
1088 struct rmap_iterator {
1089         /* private fields */
1090         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1091         int pos;                        /* index of the sptep */
1092 };
1093
1094 /*
1095  * Iteration must be started by this function.  This should also be used after
1096  * removing/dropping sptes from the rmap link because in such cases the
1097  * information in the itererator may not be valid.
1098  *
1099  * Returns sptep if found, NULL otherwise.
1100  */
1101 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1102 {
1103         if (!rmap)
1104                 return NULL;
1105
1106         if (!(rmap & 1)) {
1107                 iter->desc = NULL;
1108                 return (u64 *)rmap;
1109         }
1110
1111         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1112         iter->pos = 0;
1113         return iter->desc->sptes[iter->pos];
1114 }
1115
1116 /*
1117  * Must be used with a valid iterator: e.g. after rmap_get_first().
1118  *
1119  * Returns sptep if found, NULL otherwise.
1120  */
1121 static u64 *rmap_get_next(struct rmap_iterator *iter)
1122 {
1123         if (iter->desc) {
1124                 if (iter->pos < PTE_LIST_EXT - 1) {
1125                         u64 *sptep;
1126
1127                         ++iter->pos;
1128                         sptep = iter->desc->sptes[iter->pos];
1129                         if (sptep)
1130                                 return sptep;
1131                 }
1132
1133                 iter->desc = iter->desc->more;
1134
1135                 if (iter->desc) {
1136                         iter->pos = 0;
1137                         /* desc->sptes[0] cannot be NULL */
1138                         return iter->desc->sptes[iter->pos];
1139                 }
1140         }
1141
1142         return NULL;
1143 }
1144
1145 static void drop_spte(struct kvm *kvm, u64 *sptep)
1146 {
1147         if (mmu_spte_clear_track_bits(sptep))
1148                 rmap_remove(kvm, sptep);
1149 }
1150
1151
1152 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1153 {
1154         if (is_large_pte(*sptep)) {
1155                 WARN_ON(page_header(__pa(sptep))->role.level ==
1156                         PT_PAGE_TABLE_LEVEL);
1157                 drop_spte(kvm, sptep);
1158                 --kvm->stat.lpages;
1159                 return true;
1160         }
1161
1162         return false;
1163 }
1164
1165 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1166 {
1167         if (__drop_large_spte(vcpu->kvm, sptep))
1168                 kvm_flush_remote_tlbs(vcpu->kvm);
1169 }
1170
1171 /*
1172  * Write-protect on the specified @sptep, @pt_protect indicates whether
1173  * spte writ-protection is caused by protecting shadow page table.
1174  * @flush indicates whether tlb need be flushed.
1175  *
1176  * Note: write protection is difference between drity logging and spte
1177  * protection:
1178  * - for dirty logging, the spte can be set to writable at anytime if
1179  *   its dirty bitmap is properly set.
1180  * - for spte protection, the spte can be writable only after unsync-ing
1181  *   shadow page.
1182  *
1183  * Return true if the spte is dropped.
1184  */
1185 static bool
1186 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1187 {
1188         u64 spte = *sptep;
1189
1190         if (!is_writable_pte(spte) &&
1191               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1192                 return false;
1193
1194         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
1196         if (__drop_large_spte(kvm, sptep)) {
1197                 *flush |= true;
1198                 return true;
1199         }
1200
1201         if (pt_protect)
1202                 spte &= ~SPTE_MMU_WRITEABLE;
1203         spte = spte & ~PT_WRITABLE_MASK;
1204
1205         *flush |= mmu_spte_update(sptep, spte);
1206         return false;
1207 }
1208
1209 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1210                                  bool pt_protect)
1211 {
1212         u64 *sptep;
1213         struct rmap_iterator iter;
1214         bool flush = false;
1215
1216         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1217                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1218                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1219                         sptep = rmap_get_first(*rmapp, &iter);
1220                         continue;
1221                 }
1222
1223                 sptep = rmap_get_next(&iter);
1224         }
1225
1226         return flush;
1227 }
1228
1229 /**
1230  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1231  * @kvm: kvm instance
1232  * @slot: slot to protect
1233  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1234  * @mask: indicates which pages we should protect
1235  *
1236  * Used when we do not need to care about huge page mappings: e.g. during dirty
1237  * logging we do not have any such mappings.
1238  */
1239 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1240                                      struct kvm_memory_slot *slot,
1241                                      gfn_t gfn_offset, unsigned long mask)
1242 {
1243         unsigned long *rmapp;
1244
1245         while (mask) {
1246                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1247                                       PT_PAGE_TABLE_LEVEL, slot);
1248                 __rmap_write_protect(kvm, rmapp, false);
1249
1250                 /* clear the first set bit */
1251                 mask &= mask - 1;
1252         }
1253 }
1254
1255 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1256 {
1257         struct kvm_memory_slot *slot;
1258         unsigned long *rmapp;
1259         int i;
1260         bool write_protected = false;
1261
1262         slot = gfn_to_memslot(kvm, gfn);
1263
1264         for (i = PT_PAGE_TABLE_LEVEL;
1265              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1266                 rmapp = __gfn_to_rmap(gfn, i, slot);
1267                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1268         }
1269
1270         return write_protected;
1271 }
1272
1273 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1274                            struct kvm_memory_slot *slot, unsigned long data)
1275 {
1276         u64 *sptep;
1277         struct rmap_iterator iter;
1278         int need_tlb_flush = 0;
1279
1280         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1281                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1282                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1283
1284                 drop_spte(kvm, sptep);
1285                 need_tlb_flush = 1;
1286         }
1287
1288         return need_tlb_flush;
1289 }
1290
1291 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1292                              struct kvm_memory_slot *slot, unsigned long data)
1293 {
1294         u64 *sptep;
1295         struct rmap_iterator iter;
1296         int need_flush = 0;
1297         u64 new_spte;
1298         pte_t *ptep = (pte_t *)data;
1299         pfn_t new_pfn;
1300
1301         WARN_ON(pte_huge(*ptep));
1302         new_pfn = pte_pfn(*ptep);
1303
1304         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1305                 BUG_ON(!is_shadow_present_pte(*sptep));
1306                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1307
1308                 need_flush = 1;
1309
1310                 if (pte_write(*ptep)) {
1311                         drop_spte(kvm, sptep);
1312                         sptep = rmap_get_first(*rmapp, &iter);
1313                 } else {
1314                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1315                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1316
1317                         new_spte &= ~PT_WRITABLE_MASK;
1318                         new_spte &= ~SPTE_HOST_WRITEABLE;
1319                         new_spte &= ~shadow_accessed_mask;
1320
1321                         mmu_spte_clear_track_bits(sptep);
1322                         mmu_spte_set(sptep, new_spte);
1323                         sptep = rmap_get_next(&iter);
1324                 }
1325         }
1326
1327         if (need_flush)
1328                 kvm_flush_remote_tlbs(kvm);
1329
1330         return 0;
1331 }
1332
1333 static int kvm_handle_hva_range(struct kvm *kvm,
1334                                 unsigned long start,
1335                                 unsigned long end,
1336                                 unsigned long data,
1337                                 int (*handler)(struct kvm *kvm,
1338                                                unsigned long *rmapp,
1339                                                struct kvm_memory_slot *slot,
1340                                                unsigned long data))
1341 {
1342         int j;
1343         int ret = 0;
1344         struct kvm_memslots *slots;
1345         struct kvm_memory_slot *memslot;
1346
1347         slots = kvm_memslots(kvm);
1348
1349         kvm_for_each_memslot(memslot, slots) {
1350                 unsigned long hva_start, hva_end;
1351                 gfn_t gfn_start, gfn_end;
1352
1353                 hva_start = max(start, memslot->userspace_addr);
1354                 hva_end = min(end, memslot->userspace_addr +
1355                                         (memslot->npages << PAGE_SHIFT));
1356                 if (hva_start >= hva_end)
1357                         continue;
1358                 /*
1359                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1360                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1361                  */
1362                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1363                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1364
1365                 for (j = PT_PAGE_TABLE_LEVEL;
1366                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1367                         unsigned long idx, idx_end;
1368                         unsigned long *rmapp;
1369
1370                         /*
1371                          * {idx(page_j) | page_j intersects with
1372                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1373                          */
1374                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1375                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1376
1377                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1378
1379                         for (; idx <= idx_end; ++idx)
1380                                 ret |= handler(kvm, rmapp++, memslot, data);
1381                 }
1382         }
1383
1384         return ret;
1385 }
1386
1387 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1388                           unsigned long data,
1389                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1390                                          struct kvm_memory_slot *slot,
1391                                          unsigned long data))
1392 {
1393         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1394 }
1395
1396 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1397 {
1398         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1399 }
1400
1401 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1402 {
1403         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1404 }
1405
1406 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1407 {
1408         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1409 }
1410
1411 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1412                          struct kvm_memory_slot *slot, unsigned long data)
1413 {
1414         u64 *sptep;
1415         struct rmap_iterator uninitialized_var(iter);
1416         int young = 0;
1417
1418         /*
1419          * In case of absence of EPT Access and Dirty Bits supports,
1420          * emulate the accessed bit for EPT, by checking if this page has
1421          * an EPT mapping, and clearing it if it does. On the next access,
1422          * a new EPT mapping will be established.
1423          * This has some overhead, but not as much as the cost of swapping
1424          * out actively used pages or breaking up actively used hugepages.
1425          */
1426         if (!shadow_accessed_mask) {
1427                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1428                 goto out;
1429         }
1430
1431         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1432              sptep = rmap_get_next(&iter)) {
1433                 BUG_ON(!is_shadow_present_pte(*sptep));
1434
1435                 if (*sptep & shadow_accessed_mask) {
1436                         young = 1;
1437                         clear_bit((ffs(shadow_accessed_mask) - 1),
1438                                  (unsigned long *)sptep);
1439                 }
1440         }
1441 out:
1442         /* @data has hva passed to kvm_age_hva(). */
1443         trace_kvm_age_page(data, slot, young);
1444         return young;
1445 }
1446
1447 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1448                               struct kvm_memory_slot *slot, unsigned long data)
1449 {
1450         u64 *sptep;
1451         struct rmap_iterator iter;
1452         int young = 0;
1453
1454         /*
1455          * If there's no access bit in the secondary pte set by the
1456          * hardware it's up to gup-fast/gup to set the access bit in
1457          * the primary pte or in the page structure.
1458          */
1459         if (!shadow_accessed_mask)
1460                 goto out;
1461
1462         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1463              sptep = rmap_get_next(&iter)) {
1464                 BUG_ON(!is_shadow_present_pte(*sptep));
1465
1466                 if (*sptep & shadow_accessed_mask) {
1467                         young = 1;
1468                         break;
1469                 }
1470         }
1471 out:
1472         return young;
1473 }
1474
1475 #define RMAP_RECYCLE_THRESHOLD 1000
1476
1477 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1478 {
1479         unsigned long *rmapp;
1480         struct kvm_mmu_page *sp;
1481
1482         sp = page_header(__pa(spte));
1483
1484         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1485
1486         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1487         kvm_flush_remote_tlbs(vcpu->kvm);
1488 }
1489
1490 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1491 {
1492         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1493 }
1494
1495 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1496 {
1497         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1498 }
1499
1500 #ifdef MMU_DEBUG
1501 static int is_empty_shadow_page(u64 *spt)
1502 {
1503         u64 *pos;
1504         u64 *end;
1505
1506         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1507                 if (is_shadow_present_pte(*pos)) {
1508                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1509                                pos, *pos);
1510                         return 0;
1511                 }
1512         return 1;
1513 }
1514 #endif
1515
1516 /*
1517  * This value is the sum of all of the kvm instances's
1518  * kvm->arch.n_used_mmu_pages values.  We need a global,
1519  * aggregate version in order to make the slab shrinker
1520  * faster
1521  */
1522 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1523 {
1524         kvm->arch.n_used_mmu_pages += nr;
1525         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1526 }
1527
1528 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1529 {
1530         ASSERT(is_empty_shadow_page(sp->spt));
1531         hlist_del(&sp->hash_link);
1532         list_del(&sp->link);
1533         free_page((unsigned long)sp->spt);
1534         if (!sp->role.direct)
1535                 free_page((unsigned long)sp->gfns);
1536         kmem_cache_free(mmu_page_header_cache, sp);
1537 }
1538
1539 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1540 {
1541         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1542 }
1543
1544 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1545                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1546 {
1547         if (!parent_pte)
1548                 return;
1549
1550         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1551 }
1552
1553 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1554                                        u64 *parent_pte)
1555 {
1556         pte_list_remove(parent_pte, &sp->parent_ptes);
1557 }
1558
1559 static void drop_parent_pte(struct kvm_mmu_page *sp,
1560                             u64 *parent_pte)
1561 {
1562         mmu_page_remove_parent_pte(sp, parent_pte);
1563         mmu_spte_clear_no_track(parent_pte);
1564 }
1565
1566 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1567                                                u64 *parent_pte, int direct)
1568 {
1569         struct kvm_mmu_page *sp;
1570
1571         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1572         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1573         if (!direct)
1574                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1575         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1576
1577         /*
1578          * The active_mmu_pages list is the FIFO list, do not move the
1579          * page until it is zapped. kvm_zap_obsolete_pages depends on
1580          * this feature. See the comments in kvm_zap_obsolete_pages().
1581          */
1582         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1583         sp->parent_ptes = 0;
1584         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1585         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1586         return sp;
1587 }
1588
1589 static void mark_unsync(u64 *spte);
1590 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1591 {
1592         pte_list_walk(&sp->parent_ptes, mark_unsync);
1593 }
1594
1595 static void mark_unsync(u64 *spte)
1596 {
1597         struct kvm_mmu_page *sp;
1598         unsigned int index;
1599
1600         sp = page_header(__pa(spte));
1601         index = spte - sp->spt;
1602         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1603                 return;
1604         if (sp->unsync_children++)
1605                 return;
1606         kvm_mmu_mark_parents_unsync(sp);
1607 }
1608
1609 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1610                                struct kvm_mmu_page *sp)
1611 {
1612         return 1;
1613 }
1614
1615 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1616 {
1617 }
1618
1619 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1620                                  struct kvm_mmu_page *sp, u64 *spte,
1621                                  const void *pte)
1622 {
1623         WARN_ON(1);
1624 }
1625
1626 #define KVM_PAGE_ARRAY_NR 16
1627
1628 struct kvm_mmu_pages {
1629         struct mmu_page_and_offset {
1630                 struct kvm_mmu_page *sp;
1631                 unsigned int idx;
1632         } page[KVM_PAGE_ARRAY_NR];
1633         unsigned int nr;
1634 };
1635
1636 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1637                          int idx)
1638 {
1639         int i;
1640
1641         if (sp->unsync)
1642                 for (i=0; i < pvec->nr; i++)
1643                         if (pvec->page[i].sp == sp)
1644                                 return 0;
1645
1646         pvec->page[pvec->nr].sp = sp;
1647         pvec->page[pvec->nr].idx = idx;
1648         pvec->nr++;
1649         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1650 }
1651
1652 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1653                            struct kvm_mmu_pages *pvec)
1654 {
1655         int i, ret, nr_unsync_leaf = 0;
1656
1657         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1658                 struct kvm_mmu_page *child;
1659                 u64 ent = sp->spt[i];
1660
1661                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1662                         goto clear_child_bitmap;
1663
1664                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1665
1666                 if (child->unsync_children) {
1667                         if (mmu_pages_add(pvec, child, i))
1668                                 return -ENOSPC;
1669
1670                         ret = __mmu_unsync_walk(child, pvec);
1671                         if (!ret)
1672                                 goto clear_child_bitmap;
1673                         else if (ret > 0)
1674                                 nr_unsync_leaf += ret;
1675                         else
1676                                 return ret;
1677                 } else if (child->unsync) {
1678                         nr_unsync_leaf++;
1679                         if (mmu_pages_add(pvec, child, i))
1680                                 return -ENOSPC;
1681                 } else
1682                          goto clear_child_bitmap;
1683
1684                 continue;
1685
1686 clear_child_bitmap:
1687                 __clear_bit(i, sp->unsync_child_bitmap);
1688                 sp->unsync_children--;
1689                 WARN_ON((int)sp->unsync_children < 0);
1690         }
1691
1692
1693         return nr_unsync_leaf;
1694 }
1695
1696 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1697                            struct kvm_mmu_pages *pvec)
1698 {
1699         if (!sp->unsync_children)
1700                 return 0;
1701
1702         mmu_pages_add(pvec, sp, 0);
1703         return __mmu_unsync_walk(sp, pvec);
1704 }
1705
1706 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1707 {
1708         WARN_ON(!sp->unsync);
1709         trace_kvm_mmu_sync_page(sp);
1710         sp->unsync = 0;
1711         --kvm->stat.mmu_unsync;
1712 }
1713
1714 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1715                                     struct list_head *invalid_list);
1716 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1717                                     struct list_head *invalid_list);
1718
1719 /*
1720  * NOTE: we should pay more attention on the zapped-obsolete page
1721  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1722  * since it has been deleted from active_mmu_pages but still can be found
1723  * at hast list.
1724  *
1725  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1726  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1727  * all the obsolete pages.
1728  */
1729 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1730         hlist_for_each_entry(_sp,                                       \
1731           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1732                 if ((_sp)->gfn != (_gfn)) {} else
1733
1734 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1735         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1736                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1737
1738 /* @sp->gfn should be write-protected at the call site */
1739 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1740                            struct list_head *invalid_list, bool clear_unsync)
1741 {
1742         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1743                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1744                 return 1;
1745         }
1746
1747         if (clear_unsync)
1748                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1749
1750         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1751                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1752                 return 1;
1753         }
1754
1755         kvm_mmu_flush_tlb(vcpu);
1756         return 0;
1757 }
1758
1759 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1760                                    struct kvm_mmu_page *sp)
1761 {
1762         LIST_HEAD(invalid_list);
1763         int ret;
1764
1765         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1766         if (ret)
1767                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1768
1769         return ret;
1770 }
1771
1772 #ifdef CONFIG_KVM_MMU_AUDIT
1773 #include "mmu_audit.c"
1774 #else
1775 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1776 static void mmu_audit_disable(void) { }
1777 #endif
1778
1779 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1780                          struct list_head *invalid_list)
1781 {
1782         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1783 }
1784
1785 /* @gfn should be write-protected at the call site */
1786 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1787 {
1788         struct kvm_mmu_page *s;
1789         LIST_HEAD(invalid_list);
1790         bool flush = false;
1791
1792         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1793                 if (!s->unsync)
1794                         continue;
1795
1796                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1797                 kvm_unlink_unsync_page(vcpu->kvm, s);
1798                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1799                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1800                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1801                         continue;
1802                 }
1803                 flush = true;
1804         }
1805
1806         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1807         if (flush)
1808                 kvm_mmu_flush_tlb(vcpu);
1809 }
1810
1811 struct mmu_page_path {
1812         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1813         unsigned int idx[PT64_ROOT_LEVEL-1];
1814 };
1815
1816 #define for_each_sp(pvec, sp, parents, i)                       \
1817                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1818                         sp = pvec.page[i].sp;                   \
1819                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1820                         i = mmu_pages_next(&pvec, &parents, i))
1821
1822 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1823                           struct mmu_page_path *parents,
1824                           int i)
1825 {
1826         int n;
1827
1828         for (n = i+1; n < pvec->nr; n++) {
1829                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1830
1831                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1832                         parents->idx[0] = pvec->page[n].idx;
1833                         return n;
1834                 }
1835
1836                 parents->parent[sp->role.level-2] = sp;
1837                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1838         }
1839
1840         return n;
1841 }
1842
1843 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1844 {
1845         struct kvm_mmu_page *sp;
1846         unsigned int level = 0;
1847
1848         do {
1849                 unsigned int idx = parents->idx[level];
1850
1851                 sp = parents->parent[level];
1852                 if (!sp)
1853                         return;
1854
1855                 --sp->unsync_children;
1856                 WARN_ON((int)sp->unsync_children < 0);
1857                 __clear_bit(idx, sp->unsync_child_bitmap);
1858                 level++;
1859         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1860 }
1861
1862 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1863                                struct mmu_page_path *parents,
1864                                struct kvm_mmu_pages *pvec)
1865 {
1866         parents->parent[parent->role.level-1] = NULL;
1867         pvec->nr = 0;
1868 }
1869
1870 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1871                               struct kvm_mmu_page *parent)
1872 {
1873         int i;
1874         struct kvm_mmu_page *sp;
1875         struct mmu_page_path parents;
1876         struct kvm_mmu_pages pages;
1877         LIST_HEAD(invalid_list);
1878
1879         kvm_mmu_pages_init(parent, &parents, &pages);
1880         while (mmu_unsync_walk(parent, &pages)) {
1881                 bool protected = false;
1882
1883                 for_each_sp(pages, sp, parents, i)
1884                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1885
1886                 if (protected)
1887                         kvm_flush_remote_tlbs(vcpu->kvm);
1888
1889                 for_each_sp(pages, sp, parents, i) {
1890                         kvm_sync_page(vcpu, sp, &invalid_list);
1891                         mmu_pages_clear_parents(&parents);
1892                 }
1893                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1894                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1895                 kvm_mmu_pages_init(parent, &parents, &pages);
1896         }
1897 }
1898
1899 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1900 {
1901         int i;
1902
1903         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1904                 sp->spt[i] = 0ull;
1905 }
1906
1907 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1908 {
1909         sp->write_flooding_count = 0;
1910 }
1911
1912 static void clear_sp_write_flooding_count(u64 *spte)
1913 {
1914         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1915
1916         __clear_sp_write_flooding_count(sp);
1917 }
1918
1919 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1920 {
1921         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1922 }
1923
1924 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1925                                              gfn_t gfn,
1926                                              gva_t gaddr,
1927                                              unsigned level,
1928                                              int direct,
1929                                              unsigned access,
1930                                              u64 *parent_pte)
1931 {
1932         union kvm_mmu_page_role role;
1933         unsigned quadrant;
1934         struct kvm_mmu_page *sp;
1935         bool need_sync = false;
1936
1937         role = vcpu->arch.mmu.base_role;
1938         role.level = level;
1939         role.direct = direct;
1940         if (role.direct)
1941                 role.cr4_pae = 0;
1942         role.access = access;
1943         if (!vcpu->arch.mmu.direct_map
1944             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1945                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1946                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1947                 role.quadrant = quadrant;
1948         }
1949         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1950                 if (is_obsolete_sp(vcpu->kvm, sp))
1951                         continue;
1952
1953                 if (!need_sync && sp->unsync)
1954                         need_sync = true;
1955
1956                 if (sp->role.word != role.word)
1957                         continue;
1958
1959                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1960                         break;
1961
1962                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1963                 if (sp->unsync_children) {
1964                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1965                         kvm_mmu_mark_parents_unsync(sp);
1966                 } else if (sp->unsync)
1967                         kvm_mmu_mark_parents_unsync(sp);
1968
1969                 __clear_sp_write_flooding_count(sp);
1970                 trace_kvm_mmu_get_page(sp, false);
1971                 return sp;
1972         }
1973         ++vcpu->kvm->stat.mmu_cache_miss;
1974         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1975         if (!sp)
1976                 return sp;
1977         sp->gfn = gfn;
1978         sp->role = role;
1979         hlist_add_head(&sp->hash_link,
1980                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1981         if (!direct) {
1982                 if (rmap_write_protect(vcpu->kvm, gfn))
1983                         kvm_flush_remote_tlbs(vcpu->kvm);
1984                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1985                         kvm_sync_pages(vcpu, gfn);
1986
1987                 account_shadowed(vcpu->kvm, gfn);
1988         }
1989         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1990         init_shadow_page_table(sp);
1991         trace_kvm_mmu_get_page(sp, true);
1992         return sp;
1993 }
1994
1995 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1996                              struct kvm_vcpu *vcpu, u64 addr)
1997 {
1998         iterator->addr = addr;
1999         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2000         iterator->level = vcpu->arch.mmu.shadow_root_level;
2001
2002         if (iterator->level == PT64_ROOT_LEVEL &&
2003             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2004             !vcpu->arch.mmu.direct_map)
2005                 --iterator->level;
2006
2007         if (iterator->level == PT32E_ROOT_LEVEL) {
2008                 iterator->shadow_addr
2009                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2010                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2011                 --iterator->level;
2012                 if (!iterator->shadow_addr)
2013                         iterator->level = 0;
2014         }
2015 }
2016
2017 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2018 {
2019         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2020                 return false;
2021
2022         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2023         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2024         return true;
2025 }
2026
2027 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2028                                u64 spte)
2029 {
2030         if (is_last_spte(spte, iterator->level)) {
2031                 iterator->level = 0;
2032                 return;
2033         }
2034
2035         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2036         --iterator->level;
2037 }
2038
2039 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2040 {
2041         return __shadow_walk_next(iterator, *iterator->sptep);
2042 }
2043
2044 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2045 {
2046         u64 spte;
2047
2048         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2049                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2050
2051         mmu_spte_set(sptep, spte);
2052 }
2053
2054 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2055                                    unsigned direct_access)
2056 {
2057         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2058                 struct kvm_mmu_page *child;
2059
2060                 /*
2061                  * For the direct sp, if the guest pte's dirty bit
2062                  * changed form clean to dirty, it will corrupt the
2063                  * sp's access: allow writable in the read-only sp,
2064                  * so we should update the spte at this point to get
2065                  * a new sp with the correct access.
2066                  */
2067                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2068                 if (child->role.access == direct_access)
2069                         return;
2070
2071                 drop_parent_pte(child, sptep);
2072                 kvm_flush_remote_tlbs(vcpu->kvm);
2073         }
2074 }
2075
2076 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2077                              u64 *spte)
2078 {
2079         u64 pte;
2080         struct kvm_mmu_page *child;
2081
2082         pte = *spte;
2083         if (is_shadow_present_pte(pte)) {
2084                 if (is_last_spte(pte, sp->role.level)) {
2085                         drop_spte(kvm, spte);
2086                         if (is_large_pte(pte))
2087                                 --kvm->stat.lpages;
2088                 } else {
2089                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2090                         drop_parent_pte(child, spte);
2091                 }
2092                 return true;
2093         }
2094
2095         if (is_mmio_spte(pte))
2096                 mmu_spte_clear_no_track(spte);
2097
2098         return false;
2099 }
2100
2101 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2102                                          struct kvm_mmu_page *sp)
2103 {
2104         unsigned i;
2105
2106         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2107                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2108 }
2109
2110 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2111 {
2112         mmu_page_remove_parent_pte(sp, parent_pte);
2113 }
2114
2115 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2116 {
2117         u64 *sptep;
2118         struct rmap_iterator iter;
2119
2120         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2121                 drop_parent_pte(sp, sptep);
2122 }
2123
2124 static int mmu_zap_unsync_children(struct kvm *kvm,
2125                                    struct kvm_mmu_page *parent,
2126                                    struct list_head *invalid_list)
2127 {
2128         int i, zapped = 0;
2129         struct mmu_page_path parents;
2130         struct kvm_mmu_pages pages;
2131
2132         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2133                 return 0;
2134
2135         kvm_mmu_pages_init(parent, &parents, &pages);
2136         while (mmu_unsync_walk(parent, &pages)) {
2137                 struct kvm_mmu_page *sp;
2138
2139                 for_each_sp(pages, sp, parents, i) {
2140                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2141                         mmu_pages_clear_parents(&parents);
2142                         zapped++;
2143                 }
2144                 kvm_mmu_pages_init(parent, &parents, &pages);
2145         }
2146
2147         return zapped;
2148 }
2149
2150 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2151                                     struct list_head *invalid_list)
2152 {
2153         int ret;
2154
2155         trace_kvm_mmu_prepare_zap_page(sp);
2156         ++kvm->stat.mmu_shadow_zapped;
2157         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2158         kvm_mmu_page_unlink_children(kvm, sp);
2159         kvm_mmu_unlink_parents(kvm, sp);
2160
2161         if (!sp->role.invalid && !sp->role.direct)
2162                 unaccount_shadowed(kvm, sp->gfn);
2163
2164         if (sp->unsync)
2165                 kvm_unlink_unsync_page(kvm, sp);
2166         if (!sp->root_count) {
2167                 /* Count self */
2168                 ret++;
2169                 list_move(&sp->link, invalid_list);
2170                 kvm_mod_used_mmu_pages(kvm, -1);
2171         } else {
2172                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2173
2174                 /*
2175                  * The obsolete pages can not be used on any vcpus.
2176                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2177                  */
2178                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2179                         kvm_reload_remote_mmus(kvm);
2180         }
2181
2182         sp->role.invalid = 1;
2183         return ret;
2184 }
2185
2186 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2187                                     struct list_head *invalid_list)
2188 {
2189         struct kvm_mmu_page *sp, *nsp;
2190
2191         if (list_empty(invalid_list))
2192                 return;
2193
2194         /*
2195          * wmb: make sure everyone sees our modifications to the page tables
2196          * rmb: make sure we see changes to vcpu->mode
2197          */
2198         smp_mb();
2199
2200         /*
2201          * Wait for all vcpus to exit guest mode and/or lockless shadow
2202          * page table walks.
2203          */
2204         kvm_flush_remote_tlbs(kvm);
2205
2206         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2207                 WARN_ON(!sp->role.invalid || sp->root_count);
2208                 kvm_mmu_free_page(sp);
2209         }
2210 }
2211
2212 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2213                                         struct list_head *invalid_list)
2214 {
2215         struct kvm_mmu_page *sp;
2216
2217         if (list_empty(&kvm->arch.active_mmu_pages))
2218                 return false;
2219
2220         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2221                         struct kvm_mmu_page, link);
2222         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2223
2224         return true;
2225 }
2226
2227 /*
2228  * Changing the number of mmu pages allocated to the vm
2229  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2230  */
2231 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2232 {
2233         LIST_HEAD(invalid_list);
2234
2235         spin_lock(&kvm->mmu_lock);
2236
2237         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2238                 /* Need to free some mmu pages to achieve the goal. */
2239                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2240                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2241                                 break;
2242
2243                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2244                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2245         }
2246
2247         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2248
2249         spin_unlock(&kvm->mmu_lock);
2250 }
2251
2252 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2253 {
2254         struct kvm_mmu_page *sp;
2255         LIST_HEAD(invalid_list);
2256         int r;
2257
2258         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2259         r = 0;
2260         spin_lock(&kvm->mmu_lock);
2261         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2262                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2263                          sp->role.word);
2264                 r = 1;
2265                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2266         }
2267         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2268         spin_unlock(&kvm->mmu_lock);
2269
2270         return r;
2271 }
2272 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2273
2274 /*
2275  * The function is based on mtrr_type_lookup() in
2276  * arch/x86/kernel/cpu/mtrr/generic.c
2277  */
2278 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2279                          u64 start, u64 end)
2280 {
2281         int i;
2282         u64 base, mask;
2283         u8 prev_match, curr_match;
2284         int num_var_ranges = KVM_NR_VAR_MTRR;
2285
2286         if (!mtrr_state->enabled)
2287                 return 0xFF;
2288
2289         /* Make end inclusive end, instead of exclusive */
2290         end--;
2291
2292         /* Look in fixed ranges. Just return the type as per start */
2293         if (mtrr_state->have_fixed && (start < 0x100000)) {
2294                 int idx;
2295
2296                 if (start < 0x80000) {
2297                         idx = 0;
2298                         idx += (start >> 16);
2299                         return mtrr_state->fixed_ranges[idx];
2300                 } else if (start < 0xC0000) {
2301                         idx = 1 * 8;
2302                         idx += ((start - 0x80000) >> 14);
2303                         return mtrr_state->fixed_ranges[idx];
2304                 } else if (start < 0x1000000) {
2305                         idx = 3 * 8;
2306                         idx += ((start - 0xC0000) >> 12);
2307                         return mtrr_state->fixed_ranges[idx];
2308                 }
2309         }
2310
2311         /*
2312          * Look in variable ranges
2313          * Look of multiple ranges matching this address and pick type
2314          * as per MTRR precedence
2315          */
2316         if (!(mtrr_state->enabled & 2))
2317                 return mtrr_state->def_type;
2318
2319         prev_match = 0xFF;
2320         for (i = 0; i < num_var_ranges; ++i) {
2321                 unsigned short start_state, end_state;
2322
2323                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2324                         continue;
2325
2326                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2327                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2328                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2329                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2330
2331                 start_state = ((start & mask) == (base & mask));
2332                 end_state = ((end & mask) == (base & mask));
2333                 if (start_state != end_state)
2334                         return 0xFE;
2335
2336                 if ((start & mask) != (base & mask))
2337                         continue;
2338
2339                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2340                 if (prev_match == 0xFF) {
2341                         prev_match = curr_match;
2342                         continue;
2343                 }
2344
2345                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2346                     curr_match == MTRR_TYPE_UNCACHABLE)
2347                         return MTRR_TYPE_UNCACHABLE;
2348
2349                 if ((prev_match == MTRR_TYPE_WRBACK &&
2350                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2351                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2352                      curr_match == MTRR_TYPE_WRBACK)) {
2353                         prev_match = MTRR_TYPE_WRTHROUGH;
2354                         curr_match = MTRR_TYPE_WRTHROUGH;
2355                 }
2356
2357                 if (prev_match != curr_match)
2358                         return MTRR_TYPE_UNCACHABLE;
2359         }
2360
2361         if (prev_match != 0xFF)
2362                 return prev_match;
2363
2364         return mtrr_state->def_type;
2365 }
2366
2367 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2368 {
2369         u8 mtrr;
2370
2371         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2372                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2373         if (mtrr == 0xfe || mtrr == 0xff)
2374                 mtrr = MTRR_TYPE_WRBACK;
2375         return mtrr;
2376 }
2377 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2378
2379 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2380 {
2381         trace_kvm_mmu_unsync_page(sp);
2382         ++vcpu->kvm->stat.mmu_unsync;
2383         sp->unsync = 1;
2384
2385         kvm_mmu_mark_parents_unsync(sp);
2386 }
2387
2388 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2389 {
2390         struct kvm_mmu_page *s;
2391
2392         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2393                 if (s->unsync)
2394                         continue;
2395                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2396                 __kvm_unsync_page(vcpu, s);
2397         }
2398 }
2399
2400 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2401                                   bool can_unsync)
2402 {
2403         struct kvm_mmu_page *s;
2404         bool need_unsync = false;
2405
2406         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2407                 if (!can_unsync)
2408                         return 1;
2409
2410                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2411                         return 1;
2412
2413                 if (!s->unsync)
2414                         need_unsync = true;
2415         }
2416         if (need_unsync)
2417                 kvm_unsync_pages(vcpu, gfn);
2418         return 0;
2419 }
2420
2421 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2422                     unsigned pte_access, int level,
2423                     gfn_t gfn, pfn_t pfn, bool speculative,
2424                     bool can_unsync, bool host_writable)
2425 {
2426         u64 spte;
2427         int ret = 0;
2428
2429         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2430                 return 0;
2431
2432         spte = PT_PRESENT_MASK;
2433         if (!speculative)
2434                 spte |= shadow_accessed_mask;
2435
2436         if (pte_access & ACC_EXEC_MASK)
2437                 spte |= shadow_x_mask;
2438         else
2439                 spte |= shadow_nx_mask;
2440
2441         if (pte_access & ACC_USER_MASK)
2442                 spte |= shadow_user_mask;
2443
2444         if (level > PT_PAGE_TABLE_LEVEL)
2445                 spte |= PT_PAGE_SIZE_MASK;
2446         if (tdp_enabled)
2447                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2448                         kvm_is_mmio_pfn(pfn));
2449
2450         if (host_writable)
2451                 spte |= SPTE_HOST_WRITEABLE;
2452         else
2453                 pte_access &= ~ACC_WRITE_MASK;
2454
2455         spte |= (u64)pfn << PAGE_SHIFT;
2456
2457         if (pte_access & ACC_WRITE_MASK) {
2458
2459                 /*
2460                  * Other vcpu creates new sp in the window between
2461                  * mapping_level() and acquiring mmu-lock. We can
2462                  * allow guest to retry the access, the mapping can
2463                  * be fixed if guest refault.
2464                  */
2465                 if (level > PT_PAGE_TABLE_LEVEL &&
2466                     has_wrprotected_page(vcpu->kvm, gfn, level))
2467                         goto done;
2468
2469                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2470
2471                 /*
2472                  * Optimization: for pte sync, if spte was writable the hash
2473                  * lookup is unnecessary (and expensive). Write protection
2474                  * is responsibility of mmu_get_page / kvm_sync_page.
2475                  * Same reasoning can be applied to dirty page accounting.
2476                  */
2477                 if (!can_unsync && is_writable_pte(*sptep))
2478                         goto set_pte;
2479
2480                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2481                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2482                                  __func__, gfn);
2483                         ret = 1;
2484                         pte_access &= ~ACC_WRITE_MASK;
2485                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2486                 }
2487         }
2488
2489         if (pte_access & ACC_WRITE_MASK)
2490                 mark_page_dirty(vcpu->kvm, gfn);
2491
2492 set_pte:
2493         if (mmu_spte_update(sptep, spte))
2494                 kvm_flush_remote_tlbs(vcpu->kvm);
2495 done:
2496         return ret;
2497 }
2498
2499 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2500                          unsigned pte_access, int write_fault, int *emulate,
2501                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2502                          bool host_writable)
2503 {
2504         int was_rmapped = 0;
2505         int rmap_count;
2506
2507         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2508                  *sptep, write_fault, gfn);
2509
2510         if (is_rmap_spte(*sptep)) {
2511                 /*
2512                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2513                  * the parent of the now unreachable PTE.
2514                  */
2515                 if (level > PT_PAGE_TABLE_LEVEL &&
2516                     !is_large_pte(*sptep)) {
2517                         struct kvm_mmu_page *child;
2518                         u64 pte = *sptep;
2519
2520                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2521                         drop_parent_pte(child, sptep);
2522                         kvm_flush_remote_tlbs(vcpu->kvm);
2523                 } else if (pfn != spte_to_pfn(*sptep)) {
2524                         pgprintk("hfn old %llx new %llx\n",
2525                                  spte_to_pfn(*sptep), pfn);
2526                         drop_spte(vcpu->kvm, sptep);
2527                         kvm_flush_remote_tlbs(vcpu->kvm);
2528                 } else
2529                         was_rmapped = 1;
2530         }
2531
2532         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2533               true, host_writable)) {
2534                 if (write_fault)
2535                         *emulate = 1;
2536                 kvm_mmu_flush_tlb(vcpu);
2537         }
2538
2539         if (unlikely(is_mmio_spte(*sptep) && emulate))
2540                 *emulate = 1;
2541
2542         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2543         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2544                  is_large_pte(*sptep)? "2MB" : "4kB",
2545                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2546                  *sptep, sptep);
2547         if (!was_rmapped && is_large_pte(*sptep))
2548                 ++vcpu->kvm->stat.lpages;
2549
2550         if (is_shadow_present_pte(*sptep)) {
2551                 if (!was_rmapped) {
2552                         rmap_count = rmap_add(vcpu, sptep, gfn);
2553                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2554                                 rmap_recycle(vcpu, sptep, gfn);
2555                 }
2556         }
2557
2558         kvm_release_pfn_clean(pfn);
2559 }
2560
2561 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2562 {
2563         mmu_free_roots(vcpu);
2564 }
2565
2566 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2567 {
2568         int bit7;
2569
2570         bit7 = (gpte >> 7) & 1;
2571         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2572 }
2573
2574 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2575                                      bool no_dirty_log)
2576 {
2577         struct kvm_memory_slot *slot;
2578
2579         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2580         if (!slot)
2581                 return KVM_PFN_ERR_FAULT;
2582
2583         return gfn_to_pfn_memslot_atomic(slot, gfn);
2584 }
2585
2586 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2587                                   struct kvm_mmu_page *sp, u64 *spte,
2588                                   u64 gpte)
2589 {
2590         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2591                 goto no_present;
2592
2593         if (!is_present_gpte(gpte))
2594                 goto no_present;
2595
2596         if (!(gpte & PT_ACCESSED_MASK))
2597                 goto no_present;
2598
2599         return false;
2600
2601 no_present:
2602         drop_spte(vcpu->kvm, spte);
2603         return true;
2604 }
2605
2606 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2607                                     struct kvm_mmu_page *sp,
2608                                     u64 *start, u64 *end)
2609 {
2610         struct page *pages[PTE_PREFETCH_NUM];
2611         unsigned access = sp->role.access;
2612         int i, ret;
2613         gfn_t gfn;
2614
2615         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2616         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2617                 return -1;
2618
2619         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2620         if (ret <= 0)
2621                 return -1;
2622
2623         for (i = 0; i < ret; i++, gfn++, start++)
2624                 mmu_set_spte(vcpu, start, access, 0, NULL,
2625                              sp->role.level, gfn, page_to_pfn(pages[i]),
2626                              true, true);
2627
2628         return 0;
2629 }
2630
2631 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2632                                   struct kvm_mmu_page *sp, u64 *sptep)
2633 {
2634         u64 *spte, *start = NULL;
2635         int i;
2636
2637         WARN_ON(!sp->role.direct);
2638
2639         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2640         spte = sp->spt + i;
2641
2642         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2643                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2644                         if (!start)
2645                                 continue;
2646                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2647                                 break;
2648                         start = NULL;
2649                 } else if (!start)
2650                         start = spte;
2651         }
2652 }
2653
2654 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2655 {
2656         struct kvm_mmu_page *sp;
2657
2658         /*
2659          * Since it's no accessed bit on EPT, it's no way to
2660          * distinguish between actually accessed translations
2661          * and prefetched, so disable pte prefetch if EPT is
2662          * enabled.
2663          */
2664         if (!shadow_accessed_mask)
2665                 return;
2666
2667         sp = page_header(__pa(sptep));
2668         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2669                 return;
2670
2671         __direct_pte_prefetch(vcpu, sp, sptep);
2672 }
2673
2674 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2675                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2676                         bool prefault)
2677 {
2678         struct kvm_shadow_walk_iterator iterator;
2679         struct kvm_mmu_page *sp;
2680         int emulate = 0;
2681         gfn_t pseudo_gfn;
2682
2683         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2684                 if (iterator.level == level) {
2685                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2686                                      write, &emulate, level, gfn, pfn,
2687                                      prefault, map_writable);
2688                         direct_pte_prefetch(vcpu, iterator.sptep);
2689                         ++vcpu->stat.pf_fixed;
2690                         break;
2691                 }
2692
2693                 if (!is_shadow_present_pte(*iterator.sptep)) {
2694                         u64 base_addr = iterator.addr;
2695
2696                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2697                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2698                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2699                                               iterator.level - 1,
2700                                               1, ACC_ALL, iterator.sptep);
2701
2702                         link_shadow_page(iterator.sptep, sp);
2703                 }
2704         }
2705         return emulate;
2706 }
2707
2708 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2709 {
2710         siginfo_t info;
2711
2712         info.si_signo   = SIGBUS;
2713         info.si_errno   = 0;
2714         info.si_code    = BUS_MCEERR_AR;
2715         info.si_addr    = (void __user *)address;
2716         info.si_addr_lsb = PAGE_SHIFT;
2717
2718         send_sig_info(SIGBUS, &info, tsk);
2719 }
2720
2721 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2722 {
2723         /*
2724          * Do not cache the mmio info caused by writing the readonly gfn
2725          * into the spte otherwise read access on readonly gfn also can
2726          * caused mmio page fault and treat it as mmio access.
2727          * Return 1 to tell kvm to emulate it.
2728          */
2729         if (pfn == KVM_PFN_ERR_RO_FAULT)
2730                 return 1;
2731
2732         if (pfn == KVM_PFN_ERR_HWPOISON) {
2733                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2734                 return 0;
2735         }
2736
2737         return -EFAULT;
2738 }
2739
2740 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2741                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2742 {
2743         pfn_t pfn = *pfnp;
2744         gfn_t gfn = *gfnp;
2745         int level = *levelp;
2746
2747         /*
2748          * Check if it's a transparent hugepage. If this would be an
2749          * hugetlbfs page, level wouldn't be set to
2750          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2751          * here.
2752          */
2753         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2754             level == PT_PAGE_TABLE_LEVEL &&
2755             PageTransCompound(pfn_to_page(pfn)) &&
2756             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2757                 unsigned long mask;
2758                 /*
2759                  * mmu_notifier_retry was successful and we hold the
2760                  * mmu_lock here, so the pmd can't become splitting
2761                  * from under us, and in turn
2762                  * __split_huge_page_refcount() can't run from under
2763                  * us and we can safely transfer the refcount from
2764                  * PG_tail to PG_head as we switch the pfn to tail to
2765                  * head.
2766                  */
2767                 *levelp = level = PT_DIRECTORY_LEVEL;
2768                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2769                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2770                 if (pfn & mask) {
2771                         gfn &= ~mask;
2772                         *gfnp = gfn;
2773                         kvm_release_pfn_clean(pfn);
2774                         pfn &= ~mask;
2775                         kvm_get_pfn(pfn);
2776                         *pfnp = pfn;
2777                 }
2778         }
2779 }
2780
2781 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2782                                 pfn_t pfn, unsigned access, int *ret_val)
2783 {
2784         bool ret = true;
2785
2786         /* The pfn is invalid, report the error! */
2787         if (unlikely(is_error_pfn(pfn))) {
2788                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2789                 goto exit;
2790         }
2791
2792         if (unlikely(is_noslot_pfn(pfn)))
2793                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2794
2795         ret = false;
2796 exit:
2797         return ret;
2798 }
2799
2800 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2801 {
2802         /*
2803          * #PF can be fast only if the shadow page table is present and it
2804          * is caused by write-protect, that means we just need change the
2805          * W bit of the spte which can be done out of mmu-lock.
2806          */
2807         if (!(error_code & PFERR_PRESENT_MASK) ||
2808               !(error_code & PFERR_WRITE_MASK))
2809                 return false;
2810
2811         return true;
2812 }
2813
2814 static bool
2815 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2816 {
2817         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2818         gfn_t gfn;
2819
2820         WARN_ON(!sp->role.direct);
2821
2822         /*
2823          * The gfn of direct spte is stable since it is calculated
2824          * by sp->gfn.
2825          */
2826         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2827
2828         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2829                 mark_page_dirty(vcpu->kvm, gfn);
2830
2831         return true;
2832 }
2833
2834 /*
2835  * Return value:
2836  * - true: let the vcpu to access on the same address again.
2837  * - false: let the real page fault path to fix it.
2838  */
2839 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2840                             u32 error_code)
2841 {
2842         struct kvm_shadow_walk_iterator iterator;
2843         bool ret = false;
2844         u64 spte = 0ull;
2845
2846         if (!page_fault_can_be_fast(vcpu, error_code))
2847                 return false;
2848
2849         walk_shadow_page_lockless_begin(vcpu);
2850         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2851                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2852                         break;
2853
2854         /*
2855          * If the mapping has been changed, let the vcpu fault on the
2856          * same address again.
2857          */
2858         if (!is_rmap_spte(spte)) {
2859                 ret = true;
2860                 goto exit;
2861         }
2862
2863         if (!is_last_spte(spte, level))
2864                 goto exit;
2865
2866         /*
2867          * Check if it is a spurious fault caused by TLB lazily flushed.
2868          *
2869          * Need not check the access of upper level table entries since
2870          * they are always ACC_ALL.
2871          */
2872          if (is_writable_pte(spte)) {
2873                 ret = true;
2874                 goto exit;
2875         }
2876
2877         /*
2878          * Currently, to simplify the code, only the spte write-protected
2879          * by dirty-log can be fast fixed.
2880          */
2881         if (!spte_is_locklessly_modifiable(spte))
2882                 goto exit;
2883
2884         /*
2885          * Currently, fast page fault only works for direct mapping since
2886          * the gfn is not stable for indirect shadow page.
2887          * See Documentation/virtual/kvm/locking.txt to get more detail.
2888          */
2889         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2890 exit:
2891         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2892                               spte, ret);
2893         walk_shadow_page_lockless_end(vcpu);
2894
2895         return ret;
2896 }
2897
2898 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2899                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2900 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2901
2902 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2903                          gfn_t gfn, bool prefault)
2904 {
2905         int r;
2906         int level;
2907         int force_pt_level;
2908         pfn_t pfn;
2909         unsigned long mmu_seq;
2910         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2911
2912         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2913         if (likely(!force_pt_level)) {
2914                 level = mapping_level(vcpu, gfn);
2915                 /*
2916                  * This path builds a PAE pagetable - so we can map
2917                  * 2mb pages at maximum. Therefore check if the level
2918                  * is larger than that.
2919                  */
2920                 if (level > PT_DIRECTORY_LEVEL)
2921                         level = PT_DIRECTORY_LEVEL;
2922
2923                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2924         } else
2925                 level = PT_PAGE_TABLE_LEVEL;
2926
2927         if (fast_page_fault(vcpu, v, level, error_code))
2928                 return 0;
2929
2930         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2931         smp_rmb();
2932
2933         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2934                 return 0;
2935
2936         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2937                 return r;
2938
2939         spin_lock(&vcpu->kvm->mmu_lock);
2940         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2941                 goto out_unlock;
2942         make_mmu_pages_available(vcpu);
2943         if (likely(!force_pt_level))
2944                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2945         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2946                          prefault);
2947         spin_unlock(&vcpu->kvm->mmu_lock);
2948
2949
2950         return r;
2951
2952 out_unlock:
2953         spin_unlock(&vcpu->kvm->mmu_lock);
2954         kvm_release_pfn_clean(pfn);
2955         return 0;
2956 }
2957
2958
2959 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2960 {
2961         int i;
2962         struct kvm_mmu_page *sp;
2963         LIST_HEAD(invalid_list);
2964
2965         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2966                 return;
2967
2968         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2969             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2970              vcpu->arch.mmu.direct_map)) {
2971                 hpa_t root = vcpu->arch.mmu.root_hpa;
2972
2973                 spin_lock(&vcpu->kvm->mmu_lock);
2974                 sp = page_header(root);
2975                 --sp->root_count;
2976                 if (!sp->root_count && sp->role.invalid) {
2977                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2978                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2979                 }
2980                 spin_unlock(&vcpu->kvm->mmu_lock);
2981                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2982                 return;
2983         }
2984
2985         spin_lock(&vcpu->kvm->mmu_lock);
2986         for (i = 0; i < 4; ++i) {
2987                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2988
2989                 if (root) {
2990                         root &= PT64_BASE_ADDR_MASK;
2991                         sp = page_header(root);
2992                         --sp->root_count;
2993                         if (!sp->root_count && sp->role.invalid)
2994                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2995                                                          &invalid_list);
2996                 }
2997                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2998         }
2999         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3000         spin_unlock(&vcpu->kvm->mmu_lock);
3001         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3002 }
3003
3004 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3005 {
3006         int ret = 0;
3007
3008         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3009                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3010                 ret = 1;
3011         }
3012
3013         return ret;
3014 }
3015
3016 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3017 {
3018         struct kvm_mmu_page *sp;
3019         unsigned i;
3020
3021         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3022                 spin_lock(&vcpu->kvm->mmu_lock);
3023                 make_mmu_pages_available(vcpu);
3024                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3025                                       1, ACC_ALL, NULL);
3026                 ++sp->root_count;
3027                 spin_unlock(&vcpu->kvm->mmu_lock);
3028                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3029         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3030                 for (i = 0; i < 4; ++i) {
3031                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3032
3033                         ASSERT(!VALID_PAGE(root));
3034                         spin_lock(&vcpu->kvm->mmu_lock);
3035                         make_mmu_pages_available(vcpu);
3036                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3037                                               i << 30,
3038                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3039                                               NULL);
3040                         root = __pa(sp->spt);
3041                         ++sp->root_count;
3042                         spin_unlock(&vcpu->kvm->mmu_lock);
3043                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3044                 }
3045                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3046         } else
3047                 BUG();
3048
3049         return 0;
3050 }
3051
3052 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3053 {
3054         struct kvm_mmu_page *sp;
3055         u64 pdptr, pm_mask;
3056         gfn_t root_gfn;
3057         int i;
3058
3059         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3060
3061         if (mmu_check_root(vcpu, root_gfn))
3062                 return 1;
3063
3064         /*
3065          * Do we shadow a long mode page table? If so we need to
3066          * write-protect the guests page table root.
3067          */
3068         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3069                 hpa_t root = vcpu->arch.mmu.root_hpa;
3070
3071                 ASSERT(!VALID_PAGE(root));
3072
3073                 spin_lock(&vcpu->kvm->mmu_lock);
3074                 make_mmu_pages_available(vcpu);
3075                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3076                                       0, ACC_ALL, NULL);
3077                 root = __pa(sp->spt);
3078                 ++sp->root_count;
3079                 spin_unlock(&vcpu->kvm->mmu_lock);
3080                 vcpu->arch.mmu.root_hpa = root;
3081                 return 0;
3082         }
3083
3084         /*
3085          * We shadow a 32 bit page table. This may be a legacy 2-level
3086          * or a PAE 3-level page table. In either case we need to be aware that
3087          * the shadow page table may be a PAE or a long mode page table.
3088          */
3089         pm_mask = PT_PRESENT_MASK;
3090         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3091                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3092
3093         for (i = 0; i < 4; ++i) {
3094                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3095
3096                 ASSERT(!VALID_PAGE(root));
3097                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3098                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3099                         if (!is_present_gpte(pdptr)) {
3100                                 vcpu->arch.mmu.pae_root[i] = 0;
3101                                 continue;
3102                         }
3103                         root_gfn = pdptr >> PAGE_SHIFT;
3104                         if (mmu_check_root(vcpu, root_gfn))
3105                                 return 1;
3106                 }
3107                 spin_lock(&vcpu->kvm->mmu_lock);
3108                 make_mmu_pages_available(vcpu);
3109                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3110                                       PT32_ROOT_LEVEL, 0,
3111                                       ACC_ALL, NULL);
3112                 root = __pa(sp->spt);
3113                 ++sp->root_count;
3114                 spin_unlock(&vcpu->kvm->mmu_lock);
3115
3116                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3117         }
3118         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3119
3120         /*
3121          * If we shadow a 32 bit page table with a long mode page
3122          * table we enter this path.
3123          */
3124         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3125                 if (vcpu->arch.mmu.lm_root == NULL) {
3126                         /*
3127                          * The additional page necessary for this is only
3128                          * allocated on demand.
3129                          */
3130
3131                         u64 *lm_root;
3132
3133                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3134                         if (lm_root == NULL)
3135                                 return 1;
3136
3137                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3138
3139                         vcpu->arch.mmu.lm_root = lm_root;
3140                 }
3141
3142                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3143         }
3144
3145         return 0;
3146 }
3147
3148 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3149 {
3150         if (vcpu->arch.mmu.direct_map)
3151                 return mmu_alloc_direct_roots(vcpu);
3152         else
3153                 return mmu_alloc_shadow_roots(vcpu);
3154 }
3155
3156 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3157 {
3158         int i;
3159         struct kvm_mmu_page *sp;
3160
3161         if (vcpu->arch.mmu.direct_map)
3162                 return;
3163
3164         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3165                 return;
3166
3167         vcpu_clear_mmio_info(vcpu, ~0ul);
3168         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3169         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3170                 hpa_t root = vcpu->arch.mmu.root_hpa;
3171                 sp = page_header(root);
3172                 mmu_sync_children(vcpu, sp);
3173                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3174                 return;
3175         }
3176         for (i = 0; i < 4; ++i) {
3177                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3178
3179                 if (root && VALID_PAGE(root)) {
3180                         root &= PT64_BASE_ADDR_MASK;
3181                         sp = page_header(root);
3182                         mmu_sync_children(vcpu, sp);
3183                 }
3184         }
3185         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3186 }
3187
3188 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3189 {
3190         spin_lock(&vcpu->kvm->mmu_lock);
3191         mmu_sync_roots(vcpu);
3192         spin_unlock(&vcpu->kvm->mmu_lock);
3193 }
3194
3195 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3196                                   u32 access, struct x86_exception *exception)
3197 {
3198         if (exception)
3199                 exception->error_code = 0;
3200         return vaddr;
3201 }
3202
3203 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3204                                          u32 access,
3205                                          struct x86_exception *exception)
3206 {
3207         if (exception)
3208                 exception->error_code = 0;
3209         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3210 }
3211
3212 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3213 {
3214         if (direct)
3215                 return vcpu_match_mmio_gpa(vcpu, addr);
3216
3217         return vcpu_match_mmio_gva(vcpu, addr);
3218 }
3219
3220
3221 /*
3222  * On direct hosts, the last spte is only allows two states
3223  * for mmio page fault:
3224  *   - It is the mmio spte
3225  *   - It is zapped or it is being zapped.
3226  *
3227  * This function completely checks the spte when the last spte
3228  * is not the mmio spte.
3229  */
3230 static bool check_direct_spte_mmio_pf(u64 spte)
3231 {
3232         return __check_direct_spte_mmio_pf(spte);
3233 }
3234
3235 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3236 {
3237         struct kvm_shadow_walk_iterator iterator;
3238         u64 spte = 0ull;
3239
3240         walk_shadow_page_lockless_begin(vcpu);
3241         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3242                 if (!is_shadow_present_pte(spte))
3243                         break;
3244         walk_shadow_page_lockless_end(vcpu);
3245
3246         return spte;
3247 }
3248
3249 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3250 {
3251         u64 spte;
3252
3253         if (quickly_check_mmio_pf(vcpu, addr, direct))
3254                 return RET_MMIO_PF_EMULATE;
3255
3256         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3257
3258         if (is_mmio_spte(spte)) {
3259                 gfn_t gfn = get_mmio_spte_gfn(spte);
3260                 unsigned access = get_mmio_spte_access(spte);
3261
3262                 if (!check_mmio_spte(vcpu->kvm, spte))
3263                         return RET_MMIO_PF_INVALID;
3264
3265                 if (direct)
3266                         addr = 0;
3267
3268                 trace_handle_mmio_page_fault(addr, gfn, access);
3269                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3270                 return RET_MMIO_PF_EMULATE;
3271         }
3272
3273         /*
3274          * It's ok if the gva is remapped by other cpus on shadow guest,
3275          * it's a BUG if the gfn is not a mmio page.
3276          */
3277         if (direct && !check_direct_spte_mmio_pf(spte))
3278                 return RET_MMIO_PF_BUG;
3279
3280         /*
3281          * If the page table is zapped by other cpus, let CPU fault again on
3282          * the address.
3283          */
3284         return RET_MMIO_PF_RETRY;
3285 }
3286 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3287
3288 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3289                                   u32 error_code, bool direct)
3290 {
3291         int ret;
3292
3293         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3294         WARN_ON(ret == RET_MMIO_PF_BUG);
3295         return ret;
3296 }
3297
3298 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3299                                 u32 error_code, bool prefault)
3300 {
3301         gfn_t gfn;
3302         int r;
3303
3304         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3305
3306         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3307                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3308
3309                 if (likely(r != RET_MMIO_PF_INVALID))
3310                         return r;
3311         }
3312
3313         r = mmu_topup_memory_caches(vcpu);
3314         if (r)
3315                 return r;
3316
3317         ASSERT(vcpu);
3318         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3319
3320         gfn = gva >> PAGE_SHIFT;
3321
3322         return nonpaging_map(vcpu, gva & PAGE_MASK,
3323                              error_code, gfn, prefault);
3324 }
3325
3326 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3327 {
3328         struct kvm_arch_async_pf arch;
3329
3330         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3331         arch.gfn = gfn;
3332         arch.direct_map = vcpu->arch.mmu.direct_map;
3333         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3334
3335         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3336 }
3337
3338 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3339 {
3340         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3341                      kvm_event_needs_reinjection(vcpu)))
3342                 return false;
3343
3344         return kvm_x86_ops->interrupt_allowed(vcpu);
3345 }
3346
3347 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3348                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3349 {
3350         bool async;
3351
3352         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3353
3354         if (!async)
3355                 return false; /* *pfn has correct page already */
3356
3357         if (!prefault && can_do_async_pf(vcpu)) {
3358                 trace_kvm_try_async_get_page(gva, gfn);
3359                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3360                         trace_kvm_async_pf_doublefault(gva, gfn);
3361                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3362                         return true;
3363                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3364                         return true;
3365         }
3366
3367         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3368
3369         return false;
3370 }
3371
3372 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3373                           bool prefault)
3374 {
3375         pfn_t pfn;
3376         int r;
3377         int level;
3378         int force_pt_level;
3379         gfn_t gfn = gpa >> PAGE_SHIFT;
3380         unsigned long mmu_seq;
3381         int write = error_code & PFERR_WRITE_MASK;
3382         bool map_writable;
3383
3384         ASSERT(vcpu);
3385         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3386
3387         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3388                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3389
3390                 if (likely(r != RET_MMIO_PF_INVALID))
3391                         return r;
3392         }
3393
3394         r = mmu_topup_memory_caches(vcpu);
3395         if (r)
3396                 return r;
3397
3398         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3399         if (likely(!force_pt_level)) {
3400                 level = mapping_level(vcpu, gfn);
3401                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3402         } else
3403                 level = PT_PAGE_TABLE_LEVEL;
3404
3405         if (fast_page_fault(vcpu, gpa, level, error_code))
3406                 return 0;
3407
3408         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3409         smp_rmb();
3410
3411         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3412                 return 0;
3413
3414         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3415                 return r;
3416
3417         spin_lock(&vcpu->kvm->mmu_lock);
3418         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3419                 goto out_unlock;
3420         make_mmu_pages_available(vcpu);
3421         if (likely(!force_pt_level))
3422                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3423         r = __direct_map(vcpu, gpa, write, map_writable,
3424                          level, gfn, pfn, prefault);
3425         spin_unlock(&vcpu->kvm->mmu_lock);
3426
3427         return r;
3428
3429 out_unlock:
3430         spin_unlock(&vcpu->kvm->mmu_lock);
3431         kvm_release_pfn_clean(pfn);
3432         return 0;
3433 }
3434
3435 static void nonpaging_free(struct kvm_vcpu *vcpu)
3436 {
3437         mmu_free_roots(vcpu);
3438 }
3439
3440 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3441                                   struct kvm_mmu *context)
3442 {
3443         context->new_cr3 = nonpaging_new_cr3;
3444         context->page_fault = nonpaging_page_fault;
3445         context->gva_to_gpa = nonpaging_gva_to_gpa;
3446         context->free = nonpaging_free;
3447         context->sync_page = nonpaging_sync_page;
3448         context->invlpg = nonpaging_invlpg;
3449         context->update_pte = nonpaging_update_pte;
3450         context->root_level = 0;
3451         context->shadow_root_level = PT32E_ROOT_LEVEL;
3452         context->root_hpa = INVALID_PAGE;
3453         context->direct_map = true;
3454         context->nx = false;
3455         return 0;
3456 }
3457
3458 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3459 {
3460         ++vcpu->stat.tlb_flush;
3461         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3462 }
3463
3464 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3465 {
3466         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3467         mmu_free_roots(vcpu);
3468 }
3469
3470 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3471 {
3472         return kvm_read_cr3(vcpu);
3473 }
3474
3475 static void inject_page_fault(struct kvm_vcpu *vcpu,
3476                               struct x86_exception *fault)
3477 {
3478         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3479 }
3480
3481 static void paging_free(struct kvm_vcpu *vcpu)
3482 {
3483         nonpaging_free(vcpu);
3484 }
3485
3486 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3487 {
3488         unsigned mask;
3489
3490         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3491
3492         mask = (unsigned)~ACC_WRITE_MASK;
3493         /* Allow write access to dirty gptes */
3494         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3495         *access &= mask;
3496 }
3497
3498 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3499                            unsigned access, int *nr_present)
3500 {
3501         if (unlikely(is_mmio_spte(*sptep))) {
3502                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3503                         mmu_spte_clear_no_track(sptep);
3504                         return true;
3505                 }
3506
3507                 (*nr_present)++;
3508                 mark_mmio_spte(kvm, sptep, gfn, access);
3509                 return true;
3510         }
3511
3512         return false;
3513 }
3514
3515 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3516 {
3517         unsigned access;
3518
3519         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3520         access &= ~(gpte >> PT64_NX_SHIFT);
3521
3522         return access;
3523 }
3524
3525 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3526 {
3527         unsigned index;
3528
3529         index = level - 1;
3530         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3531         return mmu->last_pte_bitmap & (1 << index);
3532 }
3533
3534 #define PTTYPE 64
3535 #include "paging_tmpl.h"
3536 #undef PTTYPE
3537
3538 #define PTTYPE 32
3539 #include "paging_tmpl.h"
3540 #undef PTTYPE
3541
3542 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3543                                   struct kvm_mmu *context)
3544 {
3545         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3546         u64 exb_bit_rsvd = 0;
3547
3548         if (!context->nx)
3549                 exb_bit_rsvd = rsvd_bits(63, 63);
3550         switch (context->root_level) {
3551         case PT32_ROOT_LEVEL:
3552                 /* no rsvd bits for 2 level 4K page table entries */
3553                 context->rsvd_bits_mask[0][1] = 0;
3554                 context->rsvd_bits_mask[0][0] = 0;
3555                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3556
3557                 if (!is_pse(vcpu)) {
3558                         context->rsvd_bits_mask[1][1] = 0;
3559                         break;
3560                 }
3561
3562                 if (is_cpuid_PSE36())
3563                         /* 36bits PSE 4MB page */
3564                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3565                 else
3566                         /* 32 bits PSE 4MB page */
3567                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3568                 break;
3569         case PT32E_ROOT_LEVEL:
3570                 context->rsvd_bits_mask[0][2] =
3571                         rsvd_bits(maxphyaddr, 63) |
3572                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3573                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3574                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3575                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3576                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3577                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3578                         rsvd_bits(maxphyaddr, 62) |
3579                         rsvd_bits(13, 20);              /* large page */
3580                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3581                 break;
3582         case PT64_ROOT_LEVEL:
3583                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3584                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3585                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3586                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3587                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3588                         rsvd_bits(maxphyaddr, 51);
3589                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3590                         rsvd_bits(maxphyaddr, 51);
3591                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3592                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3593                         rsvd_bits(maxphyaddr, 51) |
3594                         rsvd_bits(13, 29);
3595                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3596                         rsvd_bits(maxphyaddr, 51) |
3597                         rsvd_bits(13, 20);              /* large page */
3598                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3599                 break;
3600         }
3601 }
3602
3603 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3604 {
3605         unsigned bit, byte, pfec;
3606         u8 map;
3607         bool fault, x, w, u, wf, uf, ff, smep;
3608
3609         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3610         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3611                 pfec = byte << 1;
3612                 map = 0;
3613                 wf = pfec & PFERR_WRITE_MASK;
3614                 uf = pfec & PFERR_USER_MASK;
3615                 ff = pfec & PFERR_FETCH_MASK;
3616                 for (bit = 0; bit < 8; ++bit) {
3617                         x = bit & ACC_EXEC_MASK;
3618                         w = bit & ACC_WRITE_MASK;
3619                         u = bit & ACC_USER_MASK;
3620
3621                         /* Not really needed: !nx will cause pte.nx to fault */
3622                         x |= !mmu->nx;
3623                         /* Allow supervisor writes if !cr0.wp */
3624                         w |= !is_write_protection(vcpu) && !uf;
3625                         /* Disallow supervisor fetches of user code if cr4.smep */
3626                         x &= !(smep && u && !uf);
3627
3628                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3629                         map |= fault << bit;
3630                 }
3631                 mmu->permissions[byte] = map;
3632         }
3633 }
3634
3635 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3636 {
3637         u8 map;
3638         unsigned level, root_level = mmu->root_level;
3639         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3640
3641         if (root_level == PT32E_ROOT_LEVEL)
3642                 --root_level;
3643         /* PT_PAGE_TABLE_LEVEL always terminates */
3644         map = 1 | (1 << ps_set_index);
3645         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3646                 if (level <= PT_PDPE_LEVEL
3647                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3648                         map |= 1 << (ps_set_index | (level - 1));
3649         }
3650         mmu->last_pte_bitmap = map;
3651 }
3652
3653 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3654                                         struct kvm_mmu *context,
3655                                         int level)
3656 {
3657         context->nx = is_nx(vcpu);
3658         context->root_level = level;
3659
3660         reset_rsvds_bits_mask(vcpu, context);
3661         update_permission_bitmask(vcpu, context);
3662         update_last_pte_bitmap(vcpu, context);
3663
3664         ASSERT(is_pae(vcpu));
3665         context->new_cr3 = paging_new_cr3;
3666         context->page_fault = paging64_page_fault;
3667         context->gva_to_gpa = paging64_gva_to_gpa;
3668         context->sync_page = paging64_sync_page;
3669         context->invlpg = paging64_invlpg;
3670         context->update_pte = paging64_update_pte;
3671         context->free = paging_free;
3672         context->shadow_root_level = level;
3673         context->root_hpa = INVALID_PAGE;
3674         context->direct_map = false;
3675         return 0;
3676 }
3677
3678 static int paging64_init_context(struct kvm_vcpu *vcpu,
3679                                  struct kvm_mmu *context)
3680 {
3681         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3682 }
3683
3684 static int paging32_init_context(struct kvm_vcpu *vcpu,
3685                                  struct kvm_mmu *context)
3686 {
3687         context->nx = false;
3688         context->root_level = PT32_ROOT_LEVEL;
3689
3690         reset_rsvds_bits_mask(vcpu, context);
3691         update_permission_bitmask(vcpu, context);
3692         update_last_pte_bitmap(vcpu, context);
3693
3694         context->new_cr3 = paging_new_cr3;
3695         context->page_fault = paging32_page_fault;
3696         context->gva_to_gpa = paging32_gva_to_gpa;
3697         context->free = paging_free;
3698         context->sync_page = paging32_sync_page;
3699         context->invlpg = paging32_invlpg;
3700         context->update_pte = paging32_update_pte;
3701         context->shadow_root_level = PT32E_ROOT_LEVEL;
3702         context->root_hpa = INVALID_PAGE;
3703         context->direct_map = false;
3704         return 0;
3705 }
3706
3707 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3708                                   struct kvm_mmu *context)
3709 {
3710         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3711 }
3712
3713 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3714 {
3715         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3716
3717         context->base_role.word = 0;
3718         context->new_cr3 = nonpaging_new_cr3;
3719         context->page_fault = tdp_page_fault;
3720         context->free = nonpaging_free;
3721         context->sync_page = nonpaging_sync_page;
3722         context->invlpg = nonpaging_invlpg;
3723         context->update_pte = nonpaging_update_pte;
3724         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3725         context->root_hpa = INVALID_PAGE;
3726         context->direct_map = true;
3727         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3728         context->get_cr3 = get_cr3;
3729         context->get_pdptr = kvm_pdptr_read;
3730         context->inject_page_fault = kvm_inject_page_fault;
3731
3732         if (!is_paging(vcpu)) {
3733                 context->nx = false;
3734                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3735                 context->root_level = 0;
3736         } else if (is_long_mode(vcpu)) {
3737                 context->nx = is_nx(vcpu);
3738                 context->root_level = PT64_ROOT_LEVEL;
3739                 reset_rsvds_bits_mask(vcpu, context);
3740                 context->gva_to_gpa = paging64_gva_to_gpa;
3741         } else if (is_pae(vcpu)) {
3742                 context->nx = is_nx(vcpu);
3743                 context->root_level = PT32E_ROOT_LEVEL;
3744                 reset_rsvds_bits_mask(vcpu, context);
3745                 context->gva_to_gpa = paging64_gva_to_gpa;
3746         } else {
3747                 context->nx = false;
3748                 context->root_level = PT32_ROOT_LEVEL;
3749                 reset_rsvds_bits_mask(vcpu, context);
3750                 context->gva_to_gpa = paging32_gva_to_gpa;
3751         }
3752
3753         update_permission_bitmask(vcpu, context);
3754         update_last_pte_bitmap(vcpu, context);
3755
3756         return 0;
3757 }
3758
3759 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3760 {
3761         int r;
3762         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3763         ASSERT(vcpu);
3764         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3765
3766         if (!is_paging(vcpu))
3767                 r = nonpaging_init_context(vcpu, context);
3768         else if (is_long_mode(vcpu))
3769                 r = paging64_init_context(vcpu, context);
3770         else if (is_pae(vcpu))
3771                 r = paging32E_init_context(vcpu, context);
3772         else
3773                 r = paging32_init_context(vcpu, context);
3774
3775         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3776         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3777         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3778         vcpu->arch.mmu.base_role.smep_andnot_wp
3779                 = smep && !is_write_protection(vcpu);
3780
3781         return r;
3782 }
3783 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3784
3785 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3786 {
3787         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3788
3789         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3790         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3791         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3792         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3793
3794         return r;
3795 }
3796
3797 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3798 {
3799         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3800
3801         g_context->get_cr3           = get_cr3;
3802         g_context->get_pdptr         = kvm_pdptr_read;
3803         g_context->inject_page_fault = kvm_inject_page_fault;
3804
3805         /*
3806          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3807          * translation of l2_gpa to l1_gpa addresses is done using the
3808          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3809          * functions between mmu and nested_mmu are swapped.
3810          */
3811         if (!is_paging(vcpu)) {
3812                 g_context->nx = false;
3813                 g_context->root_level = 0;
3814                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3815         } else if (is_long_mode(vcpu)) {
3816                 g_context->nx = is_nx(vcpu);
3817                 g_context->root_level = PT64_ROOT_LEVEL;
3818                 reset_rsvds_bits_mask(vcpu, g_context);
3819                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3820         } else if (is_pae(vcpu)) {
3821                 g_context->nx = is_nx(vcpu);
3822                 g_context->root_level = PT32E_ROOT_LEVEL;
3823                 reset_rsvds_bits_mask(vcpu, g_context);
3824                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3825         } else {
3826                 g_context->nx = false;
3827                 g_context->root_level = PT32_ROOT_LEVEL;
3828                 reset_rsvds_bits_mask(vcpu, g_context);
3829                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3830         }
3831
3832         update_permission_bitmask(vcpu, g_context);
3833         update_last_pte_bitmap(vcpu, g_context);
3834
3835         return 0;
3836 }
3837
3838 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3839 {
3840         if (mmu_is_nested(vcpu))
3841                 return init_kvm_nested_mmu(vcpu);
3842         else if (tdp_enabled)
3843                 return init_kvm_tdp_mmu(vcpu);
3844         else
3845                 return init_kvm_softmmu(vcpu);
3846 }
3847
3848 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3849 {
3850         ASSERT(vcpu);
3851         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3852                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3853                 vcpu->arch.mmu.free(vcpu);
3854 }
3855
3856 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3857 {
3858         destroy_kvm_mmu(vcpu);
3859         return init_kvm_mmu(vcpu);
3860 }
3861 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3862
3863 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3864 {
3865         int r;
3866
3867         r = mmu_topup_memory_caches(vcpu);
3868         if (r)
3869                 goto out;
3870         r = mmu_alloc_roots(vcpu);
3871         kvm_mmu_sync_roots(vcpu);
3872         if (r)
3873                 goto out;
3874         /* set_cr3() should ensure TLB has been flushed */
3875         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3876 out:
3877         return r;
3878 }
3879 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3880
3881 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3882 {
3883         mmu_free_roots(vcpu);
3884 }
3885 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3886
3887 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3888                                   struct kvm_mmu_page *sp, u64 *spte,
3889                                   const void *new)
3890 {
3891         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3892                 ++vcpu->kvm->stat.mmu_pde_zapped;
3893                 return;
3894         }
3895
3896         ++vcpu->kvm->stat.mmu_pte_updated;
3897         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3898 }
3899
3900 static bool need_remote_flush(u64 old, u64 new)
3901 {
3902         if (!is_shadow_present_pte(old))
3903                 return false;
3904         if (!is_shadow_present_pte(new))
3905                 return true;
3906         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3907                 return true;
3908         old ^= PT64_NX_MASK;
3909         new ^= PT64_NX_MASK;
3910         return (old & ~new & PT64_PERM_MASK) != 0;
3911 }
3912
3913 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3914                                     bool remote_flush, bool local_flush)
3915 {
3916         if (zap_page)
3917                 return;
3918
3919         if (remote_flush)
3920                 kvm_flush_remote_tlbs(vcpu->kvm);
3921         else if (local_flush)
3922                 kvm_mmu_flush_tlb(vcpu);
3923 }
3924
3925 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3926                                     const u8 *new, int *bytes)
3927 {
3928         u64 gentry;
3929         int r;
3930
3931         /*
3932          * Assume that the pte write on a page table of the same type
3933          * as the current vcpu paging mode since we update the sptes only
3934          * when they have the same mode.
3935          */
3936         if (is_pae(vcpu) && *bytes == 4) {
3937                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3938                 *gpa &= ~(gpa_t)7;
3939                 *bytes = 8;
3940                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3941                 if (r)
3942                         gentry = 0;
3943                 new = (const u8 *)&gentry;
3944         }
3945
3946         switch (*bytes) {
3947         case 4:
3948                 gentry = *(const u32 *)new;
3949                 break;
3950         case 8:
3951                 gentry = *(const u64 *)new;
3952                 break;
3953         default:
3954                 gentry = 0;
3955                 break;
3956         }
3957
3958         return gentry;
3959 }
3960
3961 /*
3962  * If we're seeing too many writes to a page, it may no longer be a page table,
3963  * or we may be forking, in which case it is better to unmap the page.
3964  */
3965 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3966 {
3967         /*
3968          * Skip write-flooding detected for the sp whose level is 1, because
3969          * it can become unsync, then the guest page is not write-protected.
3970          */
3971         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3972                 return false;
3973
3974         return ++sp->write_flooding_count >= 3;
3975 }
3976
3977 /*
3978  * Misaligned accesses are too much trouble to fix up; also, they usually
3979  * indicate a page is not used as a page table.
3980  */
3981 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3982                                     int bytes)
3983 {
3984         unsigned offset, pte_size, misaligned;
3985
3986         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3987                  gpa, bytes, sp->role.word);
3988
3989         offset = offset_in_page(gpa);
3990         pte_size = sp->role.cr4_pae ? 8 : 4;
3991
3992         /*
3993          * Sometimes, the OS only writes the last one bytes to update status
3994          * bits, for example, in linux, andb instruction is used in clear_bit().
3995          */
3996         if (!(offset & (pte_size - 1)) && bytes == 1)
3997                 return false;
3998
3999         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4000         misaligned |= bytes < 4;
4001
4002         return misaligned;
4003 }
4004
4005 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4006 {
4007         unsigned page_offset, quadrant;
4008         u64 *spte;
4009         int level;
4010
4011         page_offset = offset_in_page(gpa);
4012         level = sp->role.level;
4013         *nspte = 1;
4014         if (!sp->role.cr4_pae) {
4015                 page_offset <<= 1;      /* 32->64 */
4016                 /*
4017                  * A 32-bit pde maps 4MB while the shadow pdes map
4018                  * only 2MB.  So we need to double the offset again
4019                  * and zap two pdes instead of one.
4020                  */
4021                 if (level == PT32_ROOT_LEVEL) {
4022                         page_offset &= ~7; /* kill rounding error */
4023                         page_offset <<= 1;
4024                         *nspte = 2;
4025                 }
4026                 quadrant = page_offset >> PAGE_SHIFT;
4027                 page_offset &= ~PAGE_MASK;
4028                 if (quadrant != sp->role.quadrant)
4029                         return NULL;
4030         }
4031
4032         spte = &sp->spt[page_offset / sizeof(*spte)];
4033         return spte;
4034 }
4035
4036 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4037                        const u8 *new, int bytes)
4038 {
4039         gfn_t gfn = gpa >> PAGE_SHIFT;
4040         union kvm_mmu_page_role mask = { .word = 0 };
4041         struct kvm_mmu_page *sp;
4042         LIST_HEAD(invalid_list);
4043         u64 entry, gentry, *spte;
4044         int npte;
4045         bool remote_flush, local_flush, zap_page;
4046
4047         /*
4048          * If we don't have indirect shadow pages, it means no page is
4049          * write-protected, so we can exit simply.
4050          */
4051         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4052                 return;
4053
4054         zap_page = remote_flush = local_flush = false;
4055
4056         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4057
4058         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4059
4060         /*
4061          * No need to care whether allocation memory is successful
4062          * or not since pte prefetch is skiped if it does not have
4063          * enough objects in the cache.
4064          */
4065         mmu_topup_memory_caches(vcpu);
4066
4067         spin_lock(&vcpu->kvm->mmu_lock);
4068         ++vcpu->kvm->stat.mmu_pte_write;
4069         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4070
4071         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4072         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4073                 if (detect_write_misaligned(sp, gpa, bytes) ||
4074                       detect_write_flooding(sp)) {
4075                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4076                                                      &invalid_list);
4077                         ++vcpu->kvm->stat.mmu_flooded;
4078                         continue;
4079                 }
4080
4081                 spte = get_written_sptes(sp, gpa, &npte);
4082                 if (!spte)
4083                         continue;
4084
4085                 local_flush = true;
4086                 while (npte--) {
4087                         entry = *spte;
4088                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4089                         if (gentry &&
4090                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4091                               & mask.word) && rmap_can_add(vcpu))
4092                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4093                         if (need_remote_flush(entry, *spte))
4094                                 remote_flush = true;
4095                         ++spte;
4096                 }
4097         }
4098         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4099         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4100         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4101         spin_unlock(&vcpu->kvm->mmu_lock);
4102 }
4103
4104 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4105 {
4106         gpa_t gpa;
4107         int r;
4108
4109         if (vcpu->arch.mmu.direct_map)
4110                 return 0;
4111
4112         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4113
4114         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4115
4116         return r;
4117 }
4118 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4119
4120 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4121 {
4122         LIST_HEAD(invalid_list);
4123
4124         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4125                 return;
4126
4127         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4128                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4129                         break;
4130
4131                 ++vcpu->kvm->stat.mmu_recycled;
4132         }
4133         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4134 }
4135
4136 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4137 {
4138         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4139                 return vcpu_match_mmio_gpa(vcpu, addr);
4140
4141         return vcpu_match_mmio_gva(vcpu, addr);
4142 }
4143
4144 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4145                        void *insn, int insn_len)
4146 {
4147         int r, emulation_type = EMULTYPE_RETRY;
4148         enum emulation_result er;
4149
4150         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4151         if (r < 0)
4152                 goto out;
4153
4154         if (!r) {
4155                 r = 1;
4156                 goto out;
4157         }
4158
4159         if (is_mmio_page_fault(vcpu, cr2))
4160                 emulation_type = 0;
4161
4162         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4163
4164         switch (er) {
4165         case EMULATE_DONE:
4166                 return 1;
4167         case EMULATE_DO_MMIO:
4168                 ++vcpu->stat.mmio_exits;
4169                 /* fall through */
4170         case EMULATE_FAIL:
4171                 return 0;
4172         default:
4173                 BUG();
4174         }
4175 out:
4176         return r;
4177 }
4178 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4179
4180 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4181 {
4182         vcpu->arch.mmu.invlpg(vcpu, gva);
4183         kvm_mmu_flush_tlb(vcpu);
4184         ++vcpu->stat.invlpg;
4185 }
4186 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4187
4188 void kvm_enable_tdp(void)
4189 {
4190         tdp_enabled = true;
4191 }
4192 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4193
4194 void kvm_disable_tdp(void)
4195 {
4196         tdp_enabled = false;
4197 }
4198 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4199
4200 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4201 {
4202         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4203         if (vcpu->arch.mmu.lm_root != NULL)
4204                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4205 }
4206
4207 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4208 {
4209         struct page *page;
4210         int i;
4211
4212         ASSERT(vcpu);
4213
4214         /*
4215          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4216          * Therefore we need to allocate shadow page tables in the first
4217          * 4GB of memory, which happens to fit the DMA32 zone.
4218          */
4219         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4220         if (!page)
4221                 return -ENOMEM;
4222
4223         vcpu->arch.mmu.pae_root = page_address(page);
4224         for (i = 0; i < 4; ++i)
4225                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4226
4227         return 0;
4228 }
4229
4230 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4231 {
4232         ASSERT(vcpu);
4233
4234         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4235         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4236         vcpu->arch.mmu.translate_gpa = translate_gpa;
4237         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4238
4239         return alloc_mmu_pages(vcpu);
4240 }
4241
4242 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4243 {
4244         ASSERT(vcpu);
4245         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4246
4247         return init_kvm_mmu(vcpu);
4248 }
4249
4250 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4251 {
4252         struct kvm_memory_slot *memslot;
4253         gfn_t last_gfn;
4254         int i;
4255
4256         memslot = id_to_memslot(kvm->memslots, slot);
4257         last_gfn = memslot->base_gfn + memslot->npages - 1;
4258
4259         spin_lock(&kvm->mmu_lock);
4260
4261         for (i = PT_PAGE_TABLE_LEVEL;
4262              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4263                 unsigned long *rmapp;
4264                 unsigned long last_index, index;
4265
4266                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4267                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4268
4269                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4270                         if (*rmapp)
4271                                 __rmap_write_protect(kvm, rmapp, false);
4272
4273                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4274                                 kvm_flush_remote_tlbs(kvm);
4275                                 cond_resched_lock(&kvm->mmu_lock);
4276                         }
4277                 }
4278         }
4279
4280         kvm_flush_remote_tlbs(kvm);
4281         spin_unlock(&kvm->mmu_lock);
4282 }
4283
4284 #define BATCH_ZAP_PAGES 10
4285 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4286 {
4287         struct kvm_mmu_page *sp, *node;
4288         int batch = 0;
4289
4290 restart:
4291         list_for_each_entry_safe_reverse(sp, node,
4292               &kvm->arch.active_mmu_pages, link) {
4293                 int ret;
4294
4295                 /*
4296                  * No obsolete page exists before new created page since
4297                  * active_mmu_pages is the FIFO list.
4298                  */
4299                 if (!is_obsolete_sp(kvm, sp))
4300                         break;
4301
4302                 /*
4303                  * Since we are reversely walking the list and the invalid
4304                  * list will be moved to the head, skip the invalid page
4305                  * can help us to avoid the infinity list walking.
4306                  */
4307                 if (sp->role.invalid)
4308                         continue;
4309
4310                 /*
4311                  * Need not flush tlb since we only zap the sp with invalid
4312                  * generation number.
4313                  */
4314                 if (batch >= BATCH_ZAP_PAGES &&
4315                       cond_resched_lock(&kvm->mmu_lock)) {
4316                         batch = 0;
4317                         goto restart;
4318                 }
4319
4320                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4321                                 &kvm->arch.zapped_obsolete_pages);
4322                 batch += ret;
4323
4324                 if (ret)
4325                         goto restart;
4326         }
4327
4328         /*
4329          * Should flush tlb before free page tables since lockless-walking
4330          * may use the pages.
4331          */
4332         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4333 }
4334
4335 /*
4336  * Fast invalidate all shadow pages and use lock-break technique
4337  * to zap obsolete pages.
4338  *
4339  * It's required when memslot is being deleted or VM is being
4340  * destroyed, in these cases, we should ensure that KVM MMU does
4341  * not use any resource of the being-deleted slot or all slots
4342  * after calling the function.
4343  */
4344 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4345 {
4346         spin_lock(&kvm->mmu_lock);
4347         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4348         kvm->arch.mmu_valid_gen++;
4349
4350         /*
4351          * Notify all vcpus to reload its shadow page table
4352          * and flush TLB. Then all vcpus will switch to new
4353          * shadow page table with the new mmu_valid_gen.
4354          *
4355          * Note: we should do this under the protection of
4356          * mmu-lock, otherwise, vcpu would purge shadow page
4357          * but miss tlb flush.
4358          */
4359         kvm_reload_remote_mmus(kvm);
4360
4361         kvm_zap_obsolete_pages(kvm);
4362         spin_unlock(&kvm->mmu_lock);
4363 }
4364
4365 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4366 {
4367         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4368 }
4369
4370 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4371 {
4372         /*
4373          * The very rare case: if the generation-number is round,
4374          * zap all shadow pages.
4375          *
4376          * The max value is MMIO_MAX_GEN - 1 since it is not called
4377          * when mark memslot invalid.
4378          */
4379         if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1)))
4380                 kvm_mmu_invalidate_zap_all_pages(kvm);
4381 }
4382
4383 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4384 {
4385         struct kvm *kvm;
4386         int nr_to_scan = sc->nr_to_scan;
4387
4388         if (nr_to_scan == 0)
4389                 goto out;
4390
4391         raw_spin_lock(&kvm_lock);
4392
4393         list_for_each_entry(kvm, &vm_list, vm_list) {
4394                 int idx;
4395                 LIST_HEAD(invalid_list);
4396
4397                 /*
4398                  * Never scan more than sc->nr_to_scan VM instances.
4399                  * Will not hit this condition practically since we do not try
4400                  * to shrink more than one VM and it is very unlikely to see
4401                  * !n_used_mmu_pages so many times.
4402                  */
4403                 if (!nr_to_scan--)
4404                         break;
4405                 /*
4406                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4407                  * here. We may skip a VM instance errorneosly, but we do not
4408                  * want to shrink a VM that only started to populate its MMU
4409                  * anyway.
4410                  */
4411                 if (!kvm->arch.n_used_mmu_pages &&
4412                       !kvm_has_zapped_obsolete_pages(kvm))
4413                         continue;
4414
4415                 idx = srcu_read_lock(&kvm->srcu);
4416                 spin_lock(&kvm->mmu_lock);
4417
4418                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4419                         kvm_mmu_commit_zap_page(kvm,
4420                               &kvm->arch.zapped_obsolete_pages);
4421                         goto unlock;
4422                 }
4423
4424                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4425                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4426
4427 unlock:
4428                 spin_unlock(&kvm->mmu_lock);
4429                 srcu_read_unlock(&kvm->srcu, idx);
4430
4431                 list_move_tail(&kvm->vm_list, &vm_list);
4432                 break;
4433         }
4434
4435         raw_spin_unlock(&kvm_lock);
4436
4437 out:
4438         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4439 }
4440
4441 static struct shrinker mmu_shrinker = {
4442         .shrink = mmu_shrink,
4443         .seeks = DEFAULT_SEEKS * 10,
4444 };
4445
4446 static void mmu_destroy_caches(void)
4447 {
4448         if (pte_list_desc_cache)
4449                 kmem_cache_destroy(pte_list_desc_cache);
4450         if (mmu_page_header_cache)
4451                 kmem_cache_destroy(mmu_page_header_cache);
4452 }
4453
4454 int kvm_mmu_module_init(void)
4455 {
4456         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4457                                             sizeof(struct pte_list_desc),
4458                                             0, 0, NULL);
4459         if (!pte_list_desc_cache)
4460                 goto nomem;
4461
4462         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4463                                                   sizeof(struct kvm_mmu_page),
4464                                                   0, 0, NULL);
4465         if (!mmu_page_header_cache)
4466                 goto nomem;
4467
4468         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4469                 goto nomem;
4470
4471         register_shrinker(&mmu_shrinker);
4472
4473         return 0;
4474
4475 nomem:
4476         mmu_destroy_caches();
4477         return -ENOMEM;
4478 }
4479
4480 /*
4481  * Caculate mmu pages needed for kvm.
4482  */
4483 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4484 {
4485         unsigned int nr_mmu_pages;
4486         unsigned int  nr_pages = 0;
4487         struct kvm_memslots *slots;
4488         struct kvm_memory_slot *memslot;
4489
4490         slots = kvm_memslots(kvm);
4491
4492         kvm_for_each_memslot(memslot, slots)
4493                 nr_pages += memslot->npages;
4494
4495         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4496         nr_mmu_pages = max(nr_mmu_pages,
4497                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4498
4499         return nr_mmu_pages;
4500 }
4501
4502 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4503 {
4504         struct kvm_shadow_walk_iterator iterator;
4505         u64 spte;
4506         int nr_sptes = 0;
4507
4508         walk_shadow_page_lockless_begin(vcpu);
4509         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4510                 sptes[iterator.level-1] = spte;
4511                 nr_sptes++;
4512                 if (!is_shadow_present_pte(spte))
4513                         break;
4514         }
4515         walk_shadow_page_lockless_end(vcpu);
4516
4517         return nr_sptes;
4518 }
4519 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4520
4521 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4522 {
4523         ASSERT(vcpu);
4524
4525         destroy_kvm_mmu(vcpu);
4526         free_mmu_pages(vcpu);
4527         mmu_free_memory_caches(vcpu);
4528 }
4529
4530 void kvm_mmu_module_exit(void)
4531 {
4532         mmu_destroy_caches();
4533         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4534         unregister_shrinker(&mmu_shrinker);
4535         mmu_audit_disable();
4536 }