]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/mmu.c
KVM: MMU: do not reuse the obsolete page
[~andy/linux] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
203
204         access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
206         sp->mmio_cached = true;
207         trace_mark_mmio_spte(sptep, gfn, access);
208         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209 }
210
211 static bool is_mmio_spte(u64 spte)
212 {
213         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214 }
215
216 static gfn_t get_mmio_spte_gfn(u64 spte)
217 {
218         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219 }
220
221 static unsigned get_mmio_spte_access(u64 spte)
222 {
223         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224 }
225
226 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227 {
228         if (unlikely(is_noslot_pfn(pfn))) {
229                 mark_mmio_spte(sptep, gfn, access);
230                 return true;
231         }
232
233         return false;
234 }
235
236 static inline u64 rsvd_bits(int s, int e)
237 {
238         return ((1ULL << (e - s + 1)) - 1) << s;
239 }
240
241 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
242                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
243 {
244         shadow_user_mask = user_mask;
245         shadow_accessed_mask = accessed_mask;
246         shadow_dirty_mask = dirty_mask;
247         shadow_nx_mask = nx_mask;
248         shadow_x_mask = x_mask;
249 }
250 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
252 static int is_cpuid_PSE36(void)
253 {
254         return 1;
255 }
256
257 static int is_nx(struct kvm_vcpu *vcpu)
258 {
259         return vcpu->arch.efer & EFER_NX;
260 }
261
262 static int is_shadow_present_pte(u64 pte)
263 {
264         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
265 }
266
267 static int is_large_pte(u64 pte)
268 {
269         return pte & PT_PAGE_SIZE_MASK;
270 }
271
272 static int is_dirty_gpte(unsigned long pte)
273 {
274         return pte & PT_DIRTY_MASK;
275 }
276
277 static int is_rmap_spte(u64 pte)
278 {
279         return is_shadow_present_pte(pte);
280 }
281
282 static int is_last_spte(u64 pte, int level)
283 {
284         if (level == PT_PAGE_TABLE_LEVEL)
285                 return 1;
286         if (is_large_pte(pte))
287                 return 1;
288         return 0;
289 }
290
291 static pfn_t spte_to_pfn(u64 pte)
292 {
293         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
294 }
295
296 static gfn_t pse36_gfn_delta(u32 gpte)
297 {
298         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300         return (gpte & PT32_DIR_PSE36_MASK) << shift;
301 }
302
303 #ifdef CONFIG_X86_64
304 static void __set_spte(u64 *sptep, u64 spte)
305 {
306         *sptep = spte;
307 }
308
309 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
310 {
311         *sptep = spte;
312 }
313
314 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315 {
316         return xchg(sptep, spte);
317 }
318
319 static u64 __get_spte_lockless(u64 *sptep)
320 {
321         return ACCESS_ONCE(*sptep);
322 }
323
324 static bool __check_direct_spte_mmio_pf(u64 spte)
325 {
326         /* It is valid if the spte is zapped. */
327         return spte == 0ull;
328 }
329 #else
330 union split_spte {
331         struct {
332                 u32 spte_low;
333                 u32 spte_high;
334         };
335         u64 spte;
336 };
337
338 static void count_spte_clear(u64 *sptep, u64 spte)
339 {
340         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
341
342         if (is_shadow_present_pte(spte))
343                 return;
344
345         /* Ensure the spte is completely set before we increase the count */
346         smp_wmb();
347         sp->clear_spte_count++;
348 }
349
350 static void __set_spte(u64 *sptep, u64 spte)
351 {
352         union split_spte *ssptep, sspte;
353
354         ssptep = (union split_spte *)sptep;
355         sspte = (union split_spte)spte;
356
357         ssptep->spte_high = sspte.spte_high;
358
359         /*
360          * If we map the spte from nonpresent to present, We should store
361          * the high bits firstly, then set present bit, so cpu can not
362          * fetch this spte while we are setting the spte.
363          */
364         smp_wmb();
365
366         ssptep->spte_low = sspte.spte_low;
367 }
368
369 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370 {
371         union split_spte *ssptep, sspte;
372
373         ssptep = (union split_spte *)sptep;
374         sspte = (union split_spte)spte;
375
376         ssptep->spte_low = sspte.spte_low;
377
378         /*
379          * If we map the spte from present to nonpresent, we should clear
380          * present bit firstly to avoid vcpu fetch the old high bits.
381          */
382         smp_wmb();
383
384         ssptep->spte_high = sspte.spte_high;
385         count_spte_clear(sptep, spte);
386 }
387
388 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389 {
390         union split_spte *ssptep, sspte, orig;
391
392         ssptep = (union split_spte *)sptep;
393         sspte = (union split_spte)spte;
394
395         /* xchg acts as a barrier before the setting of the high bits */
396         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
397         orig.spte_high = ssptep->spte_high;
398         ssptep->spte_high = sspte.spte_high;
399         count_spte_clear(sptep, spte);
400
401         return orig.spte;
402 }
403
404 /*
405  * The idea using the light way get the spte on x86_32 guest is from
406  * gup_get_pte(arch/x86/mm/gup.c).
407  * The difference is we can not catch the spte tlb flush if we leave
408  * guest mode, so we emulate it by increase clear_spte_count when spte
409  * is cleared.
410  */
411 static u64 __get_spte_lockless(u64 *sptep)
412 {
413         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
414         union split_spte spte, *orig = (union split_spte *)sptep;
415         int count;
416
417 retry:
418         count = sp->clear_spte_count;
419         smp_rmb();
420
421         spte.spte_low = orig->spte_low;
422         smp_rmb();
423
424         spte.spte_high = orig->spte_high;
425         smp_rmb();
426
427         if (unlikely(spte.spte_low != orig->spte_low ||
428               count != sp->clear_spte_count))
429                 goto retry;
430
431         return spte.spte;
432 }
433
434 static bool __check_direct_spte_mmio_pf(u64 spte)
435 {
436         union split_spte sspte = (union split_spte)spte;
437         u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439         /* It is valid if the spte is zapped. */
440         if (spte == 0ull)
441                 return true;
442
443         /* It is valid if the spte is being zapped. */
444         if (sspte.spte_low == 0ull &&
445             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446                 return true;
447
448         return false;
449 }
450 #endif
451
452 static bool spte_is_locklessly_modifiable(u64 spte)
453 {
454         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
456 }
457
458 static bool spte_has_volatile_bits(u64 spte)
459 {
460         /*
461          * Always atomicly update spte if it can be updated
462          * out of mmu-lock, it can ensure dirty bit is not lost,
463          * also, it can help us to get a stable is_writable_pte()
464          * to ensure tlb flush is not missed.
465          */
466         if (spte_is_locklessly_modifiable(spte))
467                 return true;
468
469         if (!shadow_accessed_mask)
470                 return false;
471
472         if (!is_shadow_present_pte(spte))
473                 return false;
474
475         if ((spte & shadow_accessed_mask) &&
476               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
477                 return false;
478
479         return true;
480 }
481
482 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483 {
484         return (old_spte & bit_mask) && !(new_spte & bit_mask);
485 }
486
487 /* Rules for using mmu_spte_set:
488  * Set the sptep from nonpresent to present.
489  * Note: the sptep being assigned *must* be either not present
490  * or in a state where the hardware will not attempt to update
491  * the spte.
492  */
493 static void mmu_spte_set(u64 *sptep, u64 new_spte)
494 {
495         WARN_ON(is_shadow_present_pte(*sptep));
496         __set_spte(sptep, new_spte);
497 }
498
499 /* Rules for using mmu_spte_update:
500  * Update the state bits, it means the mapped pfn is not changged.
501  *
502  * Whenever we overwrite a writable spte with a read-only one we
503  * should flush remote TLBs. Otherwise rmap_write_protect
504  * will find a read-only spte, even though the writable spte
505  * might be cached on a CPU's TLB, the return value indicates this
506  * case.
507  */
508 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
509 {
510         u64 old_spte = *sptep;
511         bool ret = false;
512
513         WARN_ON(!is_rmap_spte(new_spte));
514
515         if (!is_shadow_present_pte(old_spte)) {
516                 mmu_spte_set(sptep, new_spte);
517                 return ret;
518         }
519
520         if (!spte_has_volatile_bits(old_spte))
521                 __update_clear_spte_fast(sptep, new_spte);
522         else
523                 old_spte = __update_clear_spte_slow(sptep, new_spte);
524
525         /*
526          * For the spte updated out of mmu-lock is safe, since
527          * we always atomicly update it, see the comments in
528          * spte_has_volatile_bits().
529          */
530         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531                 ret = true;
532
533         if (!shadow_accessed_mask)
534                 return ret;
535
536         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
540
541         return ret;
542 }
543
544 /*
545  * Rules for using mmu_spte_clear_track_bits:
546  * It sets the sptep from present to nonpresent, and track the
547  * state bits, it is used to clear the last level sptep.
548  */
549 static int mmu_spte_clear_track_bits(u64 *sptep)
550 {
551         pfn_t pfn;
552         u64 old_spte = *sptep;
553
554         if (!spte_has_volatile_bits(old_spte))
555                 __update_clear_spte_fast(sptep, 0ull);
556         else
557                 old_spte = __update_clear_spte_slow(sptep, 0ull);
558
559         if (!is_rmap_spte(old_spte))
560                 return 0;
561
562         pfn = spte_to_pfn(old_spte);
563
564         /*
565          * KVM does not hold the refcount of the page used by
566          * kvm mmu, before reclaiming the page, we should
567          * unmap it from mmu first.
568          */
569         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
571         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572                 kvm_set_pfn_accessed(pfn);
573         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574                 kvm_set_pfn_dirty(pfn);
575         return 1;
576 }
577
578 /*
579  * Rules for using mmu_spte_clear_no_track:
580  * Directly clear spte without caring the state bits of sptep,
581  * it is used to set the upper level spte.
582  */
583 static void mmu_spte_clear_no_track(u64 *sptep)
584 {
585         __update_clear_spte_fast(sptep, 0ull);
586 }
587
588 static u64 mmu_spte_get_lockless(u64 *sptep)
589 {
590         return __get_spte_lockless(sptep);
591 }
592
593 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594 {
595         /*
596          * Prevent page table teardown by making any free-er wait during
597          * kvm_flush_remote_tlbs() IPI to all active vcpus.
598          */
599         local_irq_disable();
600         vcpu->mode = READING_SHADOW_PAGE_TABLES;
601         /*
602          * Make sure a following spte read is not reordered ahead of the write
603          * to vcpu->mode.
604          */
605         smp_mb();
606 }
607
608 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609 {
610         /*
611          * Make sure the write to vcpu->mode is not reordered in front of
612          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
613          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614          */
615         smp_mb();
616         vcpu->mode = OUTSIDE_GUEST_MODE;
617         local_irq_enable();
618 }
619
620 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
621                                   struct kmem_cache *base_cache, int min)
622 {
623         void *obj;
624
625         if (cache->nobjs >= min)
626                 return 0;
627         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
628                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
629                 if (!obj)
630                         return -ENOMEM;
631                 cache->objects[cache->nobjs++] = obj;
632         }
633         return 0;
634 }
635
636 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637 {
638         return cache->nobjs;
639 }
640
641 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642                                   struct kmem_cache *cache)
643 {
644         while (mc->nobjs)
645                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
646 }
647
648 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
649                                        int min)
650 {
651         void *page;
652
653         if (cache->nobjs >= min)
654                 return 0;
655         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
656                 page = (void *)__get_free_page(GFP_KERNEL);
657                 if (!page)
658                         return -ENOMEM;
659                 cache->objects[cache->nobjs++] = page;
660         }
661         return 0;
662 }
663
664 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665 {
666         while (mc->nobjs)
667                 free_page((unsigned long)mc->objects[--mc->nobjs]);
668 }
669
670 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
671 {
672         int r;
673
674         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
675                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
676         if (r)
677                 goto out;
678         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
679         if (r)
680                 goto out;
681         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
682                                    mmu_page_header_cache, 4);
683 out:
684         return r;
685 }
686
687 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688 {
689         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690                                 pte_list_desc_cache);
691         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
692         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693                                 mmu_page_header_cache);
694 }
695
696 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
697 {
698         void *p;
699
700         BUG_ON(!mc->nobjs);
701         p = mc->objects[--mc->nobjs];
702         return p;
703 }
704
705 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
706 {
707         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
708 }
709
710 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711 {
712         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
713 }
714
715 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716 {
717         if (!sp->role.direct)
718                 return sp->gfns[index];
719
720         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721 }
722
723 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724 {
725         if (sp->role.direct)
726                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727         else
728                 sp->gfns[index] = gfn;
729 }
730
731 /*
732  * Return the pointer to the large page information for a given gfn,
733  * handling slots that are not large page aligned.
734  */
735 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736                                               struct kvm_memory_slot *slot,
737                                               int level)
738 {
739         unsigned long idx;
740
741         idx = gfn_to_index(gfn, slot->base_gfn, level);
742         return &slot->arch.lpage_info[level - 2][idx];
743 }
744
745 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746 {
747         struct kvm_memory_slot *slot;
748         struct kvm_lpage_info *linfo;
749         int i;
750
751         slot = gfn_to_memslot(kvm, gfn);
752         for (i = PT_DIRECTORY_LEVEL;
753              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
754                 linfo = lpage_info_slot(gfn, slot, i);
755                 linfo->write_count += 1;
756         }
757         kvm->arch.indirect_shadow_pages++;
758 }
759
760 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761 {
762         struct kvm_memory_slot *slot;
763         struct kvm_lpage_info *linfo;
764         int i;
765
766         slot = gfn_to_memslot(kvm, gfn);
767         for (i = PT_DIRECTORY_LEVEL;
768              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
769                 linfo = lpage_info_slot(gfn, slot, i);
770                 linfo->write_count -= 1;
771                 WARN_ON(linfo->write_count < 0);
772         }
773         kvm->arch.indirect_shadow_pages--;
774 }
775
776 static int has_wrprotected_page(struct kvm *kvm,
777                                 gfn_t gfn,
778                                 int level)
779 {
780         struct kvm_memory_slot *slot;
781         struct kvm_lpage_info *linfo;
782
783         slot = gfn_to_memslot(kvm, gfn);
784         if (slot) {
785                 linfo = lpage_info_slot(gfn, slot, level);
786                 return linfo->write_count;
787         }
788
789         return 1;
790 }
791
792 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
793 {
794         unsigned long page_size;
795         int i, ret = 0;
796
797         page_size = kvm_host_page_size(kvm, gfn);
798
799         for (i = PT_PAGE_TABLE_LEVEL;
800              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801                 if (page_size >= KVM_HPAGE_SIZE(i))
802                         ret = i;
803                 else
804                         break;
805         }
806
807         return ret;
808 }
809
810 static struct kvm_memory_slot *
811 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812                             bool no_dirty_log)
813 {
814         struct kvm_memory_slot *slot;
815
816         slot = gfn_to_memslot(vcpu->kvm, gfn);
817         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818               (no_dirty_log && slot->dirty_bitmap))
819                 slot = NULL;
820
821         return slot;
822 }
823
824 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825 {
826         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
827 }
828
829 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830 {
831         int host_level, level, max_level;
832
833         host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835         if (host_level == PT_PAGE_TABLE_LEVEL)
836                 return host_level;
837
838         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
839
840         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
841                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842                         break;
843
844         return level - 1;
845 }
846
847 /*
848  * Pte mapping structures:
849  *
850  * If pte_list bit zero is zero, then pte_list point to the spte.
851  *
852  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853  * pte_list_desc containing more mappings.
854  *
855  * Returns the number of pte entries before the spte was added or zero if
856  * the spte was not added.
857  *
858  */
859 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860                         unsigned long *pte_list)
861 {
862         struct pte_list_desc *desc;
863         int i, count = 0;
864
865         if (!*pte_list) {
866                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867                 *pte_list = (unsigned long)spte;
868         } else if (!(*pte_list & 1)) {
869                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870                 desc = mmu_alloc_pte_list_desc(vcpu);
871                 desc->sptes[0] = (u64 *)*pte_list;
872                 desc->sptes[1] = spte;
873                 *pte_list = (unsigned long)desc | 1;
874                 ++count;
875         } else {
876                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
879                         desc = desc->more;
880                         count += PTE_LIST_EXT;
881                 }
882                 if (desc->sptes[PTE_LIST_EXT-1]) {
883                         desc->more = mmu_alloc_pte_list_desc(vcpu);
884                         desc = desc->more;
885                 }
886                 for (i = 0; desc->sptes[i]; ++i)
887                         ++count;
888                 desc->sptes[i] = spte;
889         }
890         return count;
891 }
892
893 static void
894 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895                            int i, struct pte_list_desc *prev_desc)
896 {
897         int j;
898
899         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
900                 ;
901         desc->sptes[i] = desc->sptes[j];
902         desc->sptes[j] = NULL;
903         if (j != 0)
904                 return;
905         if (!prev_desc && !desc->more)
906                 *pte_list = (unsigned long)desc->sptes[0];
907         else
908                 if (prev_desc)
909                         prev_desc->more = desc->more;
910                 else
911                         *pte_list = (unsigned long)desc->more | 1;
912         mmu_free_pte_list_desc(desc);
913 }
914
915 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
916 {
917         struct pte_list_desc *desc;
918         struct pte_list_desc *prev_desc;
919         int i;
920
921         if (!*pte_list) {
922                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
923                 BUG();
924         } else if (!(*pte_list & 1)) {
925                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
926                 if ((u64 *)*pte_list != spte) {
927                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
928                         BUG();
929                 }
930                 *pte_list = 0;
931         } else {
932                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
933                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
934                 prev_desc = NULL;
935                 while (desc) {
936                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
937                                 if (desc->sptes[i] == spte) {
938                                         pte_list_desc_remove_entry(pte_list,
939                                                                desc, i,
940                                                                prev_desc);
941                                         return;
942                                 }
943                         prev_desc = desc;
944                         desc = desc->more;
945                 }
946                 pr_err("pte_list_remove: %p many->many\n", spte);
947                 BUG();
948         }
949 }
950
951 typedef void (*pte_list_walk_fn) (u64 *spte);
952 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953 {
954         struct pte_list_desc *desc;
955         int i;
956
957         if (!*pte_list)
958                 return;
959
960         if (!(*pte_list & 1))
961                 return fn((u64 *)*pte_list);
962
963         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964         while (desc) {
965                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966                         fn(desc->sptes[i]);
967                 desc = desc->more;
968         }
969 }
970
971 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
972                                     struct kvm_memory_slot *slot)
973 {
974         unsigned long idx;
975
976         idx = gfn_to_index(gfn, slot->base_gfn, level);
977         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
978 }
979
980 /*
981  * Take gfn and return the reverse mapping to it.
982  */
983 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984 {
985         struct kvm_memory_slot *slot;
986
987         slot = gfn_to_memslot(kvm, gfn);
988         return __gfn_to_rmap(gfn, level, slot);
989 }
990
991 static bool rmap_can_add(struct kvm_vcpu *vcpu)
992 {
993         struct kvm_mmu_memory_cache *cache;
994
995         cache = &vcpu->arch.mmu_pte_list_desc_cache;
996         return mmu_memory_cache_free_objects(cache);
997 }
998
999 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000 {
1001         struct kvm_mmu_page *sp;
1002         unsigned long *rmapp;
1003
1004         sp = page_header(__pa(spte));
1005         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007         return pte_list_add(vcpu, spte, rmapp);
1008 }
1009
1010 static void rmap_remove(struct kvm *kvm, u64 *spte)
1011 {
1012         struct kvm_mmu_page *sp;
1013         gfn_t gfn;
1014         unsigned long *rmapp;
1015
1016         sp = page_header(__pa(spte));
1017         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019         pte_list_remove(spte, rmapp);
1020 }
1021
1022 /*
1023  * Used by the following functions to iterate through the sptes linked by a
1024  * rmap.  All fields are private and not assumed to be used outside.
1025  */
1026 struct rmap_iterator {
1027         /* private fields */
1028         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1029         int pos;                        /* index of the sptep */
1030 };
1031
1032 /*
1033  * Iteration must be started by this function.  This should also be used after
1034  * removing/dropping sptes from the rmap link because in such cases the
1035  * information in the itererator may not be valid.
1036  *
1037  * Returns sptep if found, NULL otherwise.
1038  */
1039 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040 {
1041         if (!rmap)
1042                 return NULL;
1043
1044         if (!(rmap & 1)) {
1045                 iter->desc = NULL;
1046                 return (u64 *)rmap;
1047         }
1048
1049         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050         iter->pos = 0;
1051         return iter->desc->sptes[iter->pos];
1052 }
1053
1054 /*
1055  * Must be used with a valid iterator: e.g. after rmap_get_first().
1056  *
1057  * Returns sptep if found, NULL otherwise.
1058  */
1059 static u64 *rmap_get_next(struct rmap_iterator *iter)
1060 {
1061         if (iter->desc) {
1062                 if (iter->pos < PTE_LIST_EXT - 1) {
1063                         u64 *sptep;
1064
1065                         ++iter->pos;
1066                         sptep = iter->desc->sptes[iter->pos];
1067                         if (sptep)
1068                                 return sptep;
1069                 }
1070
1071                 iter->desc = iter->desc->more;
1072
1073                 if (iter->desc) {
1074                         iter->pos = 0;
1075                         /* desc->sptes[0] cannot be NULL */
1076                         return iter->desc->sptes[iter->pos];
1077                 }
1078         }
1079
1080         return NULL;
1081 }
1082
1083 static void drop_spte(struct kvm *kvm, u64 *sptep)
1084 {
1085         if (mmu_spte_clear_track_bits(sptep))
1086                 rmap_remove(kvm, sptep);
1087 }
1088
1089
1090 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091 {
1092         if (is_large_pte(*sptep)) {
1093                 WARN_ON(page_header(__pa(sptep))->role.level ==
1094                         PT_PAGE_TABLE_LEVEL);
1095                 drop_spte(kvm, sptep);
1096                 --kvm->stat.lpages;
1097                 return true;
1098         }
1099
1100         return false;
1101 }
1102
1103 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104 {
1105         if (__drop_large_spte(vcpu->kvm, sptep))
1106                 kvm_flush_remote_tlbs(vcpu->kvm);
1107 }
1108
1109 /*
1110  * Write-protect on the specified @sptep, @pt_protect indicates whether
1111  * spte writ-protection is caused by protecting shadow page table.
1112  * @flush indicates whether tlb need be flushed.
1113  *
1114  * Note: write protection is difference between drity logging and spte
1115  * protection:
1116  * - for dirty logging, the spte can be set to writable at anytime if
1117  *   its dirty bitmap is properly set.
1118  * - for spte protection, the spte can be writable only after unsync-ing
1119  *   shadow page.
1120  *
1121  * Return true if the spte is dropped.
1122  */
1123 static bool
1124 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1125 {
1126         u64 spte = *sptep;
1127
1128         if (!is_writable_pte(spte) &&
1129               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1130                 return false;
1131
1132         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
1134         if (__drop_large_spte(kvm, sptep)) {
1135                 *flush |= true;
1136                 return true;
1137         }
1138
1139         if (pt_protect)
1140                 spte &= ~SPTE_MMU_WRITEABLE;
1141         spte = spte & ~PT_WRITABLE_MASK;
1142
1143         *flush |= mmu_spte_update(sptep, spte);
1144         return false;
1145 }
1146
1147 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148                                  bool pt_protect)
1149 {
1150         u64 *sptep;
1151         struct rmap_iterator iter;
1152         bool flush = false;
1153
1154         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1156                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157                         sptep = rmap_get_first(*rmapp, &iter);
1158                         continue;
1159                 }
1160
1161                 sptep = rmap_get_next(&iter);
1162         }
1163
1164         return flush;
1165 }
1166
1167 /**
1168  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169  * @kvm: kvm instance
1170  * @slot: slot to protect
1171  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172  * @mask: indicates which pages we should protect
1173  *
1174  * Used when we do not need to care about huge page mappings: e.g. during dirty
1175  * logging we do not have any such mappings.
1176  */
1177 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178                                      struct kvm_memory_slot *slot,
1179                                      gfn_t gfn_offset, unsigned long mask)
1180 {
1181         unsigned long *rmapp;
1182
1183         while (mask) {
1184                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185                                       PT_PAGE_TABLE_LEVEL, slot);
1186                 __rmap_write_protect(kvm, rmapp, false);
1187
1188                 /* clear the first set bit */
1189                 mask &= mask - 1;
1190         }
1191 }
1192
1193 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1194 {
1195         struct kvm_memory_slot *slot;
1196         unsigned long *rmapp;
1197         int i;
1198         bool write_protected = false;
1199
1200         slot = gfn_to_memslot(kvm, gfn);
1201
1202         for (i = PT_PAGE_TABLE_LEVEL;
1203              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204                 rmapp = __gfn_to_rmap(gfn, i, slot);
1205                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1206         }
1207
1208         return write_protected;
1209 }
1210
1211 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1212                            struct kvm_memory_slot *slot, unsigned long data)
1213 {
1214         u64 *sptep;
1215         struct rmap_iterator iter;
1216         int need_tlb_flush = 0;
1217
1218         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222                 drop_spte(kvm, sptep);
1223                 need_tlb_flush = 1;
1224         }
1225
1226         return need_tlb_flush;
1227 }
1228
1229 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1230                              struct kvm_memory_slot *slot, unsigned long data)
1231 {
1232         u64 *sptep;
1233         struct rmap_iterator iter;
1234         int need_flush = 0;
1235         u64 new_spte;
1236         pte_t *ptep = (pte_t *)data;
1237         pfn_t new_pfn;
1238
1239         WARN_ON(pte_huge(*ptep));
1240         new_pfn = pte_pfn(*ptep);
1241
1242         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243                 BUG_ON(!is_shadow_present_pte(*sptep));
1244                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
1246                 need_flush = 1;
1247
1248                 if (pte_write(*ptep)) {
1249                         drop_spte(kvm, sptep);
1250                         sptep = rmap_get_first(*rmapp, &iter);
1251                 } else {
1252                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1253                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255                         new_spte &= ~PT_WRITABLE_MASK;
1256                         new_spte &= ~SPTE_HOST_WRITEABLE;
1257                         new_spte &= ~shadow_accessed_mask;
1258
1259                         mmu_spte_clear_track_bits(sptep);
1260                         mmu_spte_set(sptep, new_spte);
1261                         sptep = rmap_get_next(&iter);
1262                 }
1263         }
1264
1265         if (need_flush)
1266                 kvm_flush_remote_tlbs(kvm);
1267
1268         return 0;
1269 }
1270
1271 static int kvm_handle_hva_range(struct kvm *kvm,
1272                                 unsigned long start,
1273                                 unsigned long end,
1274                                 unsigned long data,
1275                                 int (*handler)(struct kvm *kvm,
1276                                                unsigned long *rmapp,
1277                                                struct kvm_memory_slot *slot,
1278                                                unsigned long data))
1279 {
1280         int j;
1281         int ret = 0;
1282         struct kvm_memslots *slots;
1283         struct kvm_memory_slot *memslot;
1284
1285         slots = kvm_memslots(kvm);
1286
1287         kvm_for_each_memslot(memslot, slots) {
1288                 unsigned long hva_start, hva_end;
1289                 gfn_t gfn_start, gfn_end;
1290
1291                 hva_start = max(start, memslot->userspace_addr);
1292                 hva_end = min(end, memslot->userspace_addr +
1293                                         (memslot->npages << PAGE_SHIFT));
1294                 if (hva_start >= hva_end)
1295                         continue;
1296                 /*
1297                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1298                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1299                  */
1300                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1301                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1302
1303                 for (j = PT_PAGE_TABLE_LEVEL;
1304                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305                         unsigned long idx, idx_end;
1306                         unsigned long *rmapp;
1307
1308                         /*
1309                          * {idx(page_j) | page_j intersects with
1310                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311                          */
1312                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1314
1315                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1316
1317                         for (; idx <= idx_end; ++idx)
1318                                 ret |= handler(kvm, rmapp++, memslot, data);
1319                 }
1320         }
1321
1322         return ret;
1323 }
1324
1325 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326                           unsigned long data,
1327                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1328                                          struct kvm_memory_slot *slot,
1329                                          unsigned long data))
1330 {
1331         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1332 }
1333
1334 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335 {
1336         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337 }
1338
1339 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340 {
1341         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342 }
1343
1344 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345 {
1346         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1347 }
1348
1349 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1350                          struct kvm_memory_slot *slot, unsigned long data)
1351 {
1352         u64 *sptep;
1353         struct rmap_iterator uninitialized_var(iter);
1354         int young = 0;
1355
1356         /*
1357          * In case of absence of EPT Access and Dirty Bits supports,
1358          * emulate the accessed bit for EPT, by checking if this page has
1359          * an EPT mapping, and clearing it if it does. On the next access,
1360          * a new EPT mapping will be established.
1361          * This has some overhead, but not as much as the cost of swapping
1362          * out actively used pages or breaking up actively used hugepages.
1363          */
1364         if (!shadow_accessed_mask) {
1365                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366                 goto out;
1367         }
1368
1369         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370              sptep = rmap_get_next(&iter)) {
1371                 BUG_ON(!is_shadow_present_pte(*sptep));
1372
1373                 if (*sptep & shadow_accessed_mask) {
1374                         young = 1;
1375                         clear_bit((ffs(shadow_accessed_mask) - 1),
1376                                  (unsigned long *)sptep);
1377                 }
1378         }
1379 out:
1380         /* @data has hva passed to kvm_age_hva(). */
1381         trace_kvm_age_page(data, slot, young);
1382         return young;
1383 }
1384
1385 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1386                               struct kvm_memory_slot *slot, unsigned long data)
1387 {
1388         u64 *sptep;
1389         struct rmap_iterator iter;
1390         int young = 0;
1391
1392         /*
1393          * If there's no access bit in the secondary pte set by the
1394          * hardware it's up to gup-fast/gup to set the access bit in
1395          * the primary pte or in the page structure.
1396          */
1397         if (!shadow_accessed_mask)
1398                 goto out;
1399
1400         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401              sptep = rmap_get_next(&iter)) {
1402                 BUG_ON(!is_shadow_present_pte(*sptep));
1403
1404                 if (*sptep & shadow_accessed_mask) {
1405                         young = 1;
1406                         break;
1407                 }
1408         }
1409 out:
1410         return young;
1411 }
1412
1413 #define RMAP_RECYCLE_THRESHOLD 1000
1414
1415 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1416 {
1417         unsigned long *rmapp;
1418         struct kvm_mmu_page *sp;
1419
1420         sp = page_header(__pa(spte));
1421
1422         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1423
1424         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1425         kvm_flush_remote_tlbs(vcpu->kvm);
1426 }
1427
1428 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429 {
1430         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1431 }
1432
1433 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434 {
1435         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436 }
1437
1438 #ifdef MMU_DEBUG
1439 static int is_empty_shadow_page(u64 *spt)
1440 {
1441         u64 *pos;
1442         u64 *end;
1443
1444         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1445                 if (is_shadow_present_pte(*pos)) {
1446                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1447                                pos, *pos);
1448                         return 0;
1449                 }
1450         return 1;
1451 }
1452 #endif
1453
1454 /*
1455  * This value is the sum of all of the kvm instances's
1456  * kvm->arch.n_used_mmu_pages values.  We need a global,
1457  * aggregate version in order to make the slab shrinker
1458  * faster
1459  */
1460 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461 {
1462         kvm->arch.n_used_mmu_pages += nr;
1463         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464 }
1465
1466 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1467 {
1468         ASSERT(is_empty_shadow_page(sp->spt));
1469         hlist_del(&sp->hash_link);
1470         list_del(&sp->link);
1471         free_page((unsigned long)sp->spt);
1472         if (!sp->role.direct)
1473                 free_page((unsigned long)sp->gfns);
1474         kmem_cache_free(mmu_page_header_cache, sp);
1475 }
1476
1477 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478 {
1479         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1480 }
1481
1482 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1483                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1484 {
1485         if (!parent_pte)
1486                 return;
1487
1488         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1489 }
1490
1491 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1492                                        u64 *parent_pte)
1493 {
1494         pte_list_remove(parent_pte, &sp->parent_ptes);
1495 }
1496
1497 static void drop_parent_pte(struct kvm_mmu_page *sp,
1498                             u64 *parent_pte)
1499 {
1500         mmu_page_remove_parent_pte(sp, parent_pte);
1501         mmu_spte_clear_no_track(parent_pte);
1502 }
1503
1504 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505                                                u64 *parent_pte, int direct)
1506 {
1507         struct kvm_mmu_page *sp;
1508
1509         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1510         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1511         if (!direct)
1512                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1513         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1514
1515         /*
1516          * The active_mmu_pages list is the FIFO list, do not move the
1517          * page until it is zapped. kvm_zap_obsolete_pages depends on
1518          * this feature. See the comments in kvm_zap_obsolete_pages().
1519          */
1520         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1521         sp->parent_ptes = 0;
1522         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1523         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1524         return sp;
1525 }
1526
1527 static void mark_unsync(u64 *spte);
1528 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1529 {
1530         pte_list_walk(&sp->parent_ptes, mark_unsync);
1531 }
1532
1533 static void mark_unsync(u64 *spte)
1534 {
1535         struct kvm_mmu_page *sp;
1536         unsigned int index;
1537
1538         sp = page_header(__pa(spte));
1539         index = spte - sp->spt;
1540         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1541                 return;
1542         if (sp->unsync_children++)
1543                 return;
1544         kvm_mmu_mark_parents_unsync(sp);
1545 }
1546
1547 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1548                                struct kvm_mmu_page *sp)
1549 {
1550         return 1;
1551 }
1552
1553 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1554 {
1555 }
1556
1557 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1558                                  struct kvm_mmu_page *sp, u64 *spte,
1559                                  const void *pte)
1560 {
1561         WARN_ON(1);
1562 }
1563
1564 #define KVM_PAGE_ARRAY_NR 16
1565
1566 struct kvm_mmu_pages {
1567         struct mmu_page_and_offset {
1568                 struct kvm_mmu_page *sp;
1569                 unsigned int idx;
1570         } page[KVM_PAGE_ARRAY_NR];
1571         unsigned int nr;
1572 };
1573
1574 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1575                          int idx)
1576 {
1577         int i;
1578
1579         if (sp->unsync)
1580                 for (i=0; i < pvec->nr; i++)
1581                         if (pvec->page[i].sp == sp)
1582                                 return 0;
1583
1584         pvec->page[pvec->nr].sp = sp;
1585         pvec->page[pvec->nr].idx = idx;
1586         pvec->nr++;
1587         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1588 }
1589
1590 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1591                            struct kvm_mmu_pages *pvec)
1592 {
1593         int i, ret, nr_unsync_leaf = 0;
1594
1595         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1596                 struct kvm_mmu_page *child;
1597                 u64 ent = sp->spt[i];
1598
1599                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1600                         goto clear_child_bitmap;
1601
1602                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1603
1604                 if (child->unsync_children) {
1605                         if (mmu_pages_add(pvec, child, i))
1606                                 return -ENOSPC;
1607
1608                         ret = __mmu_unsync_walk(child, pvec);
1609                         if (!ret)
1610                                 goto clear_child_bitmap;
1611                         else if (ret > 0)
1612                                 nr_unsync_leaf += ret;
1613                         else
1614                                 return ret;
1615                 } else if (child->unsync) {
1616                         nr_unsync_leaf++;
1617                         if (mmu_pages_add(pvec, child, i))
1618                                 return -ENOSPC;
1619                 } else
1620                          goto clear_child_bitmap;
1621
1622                 continue;
1623
1624 clear_child_bitmap:
1625                 __clear_bit(i, sp->unsync_child_bitmap);
1626                 sp->unsync_children--;
1627                 WARN_ON((int)sp->unsync_children < 0);
1628         }
1629
1630
1631         return nr_unsync_leaf;
1632 }
1633
1634 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1635                            struct kvm_mmu_pages *pvec)
1636 {
1637         if (!sp->unsync_children)
1638                 return 0;
1639
1640         mmu_pages_add(pvec, sp, 0);
1641         return __mmu_unsync_walk(sp, pvec);
1642 }
1643
1644 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1645 {
1646         WARN_ON(!sp->unsync);
1647         trace_kvm_mmu_sync_page(sp);
1648         sp->unsync = 0;
1649         --kvm->stat.mmu_unsync;
1650 }
1651
1652 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1653                                     struct list_head *invalid_list);
1654 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1655                                     struct list_head *invalid_list);
1656
1657 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1658         hlist_for_each_entry(_sp,                                       \
1659           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1660                 if ((_sp)->gfn != (_gfn)) {} else
1661
1662 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1663         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1664                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1665
1666 /* @sp->gfn should be write-protected at the call site */
1667 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1668                            struct list_head *invalid_list, bool clear_unsync)
1669 {
1670         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1671                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1672                 return 1;
1673         }
1674
1675         if (clear_unsync)
1676                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1677
1678         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1679                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1680                 return 1;
1681         }
1682
1683         kvm_mmu_flush_tlb(vcpu);
1684         return 0;
1685 }
1686
1687 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1688                                    struct kvm_mmu_page *sp)
1689 {
1690         LIST_HEAD(invalid_list);
1691         int ret;
1692
1693         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1694         if (ret)
1695                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1696
1697         return ret;
1698 }
1699
1700 #ifdef CONFIG_KVM_MMU_AUDIT
1701 #include "mmu_audit.c"
1702 #else
1703 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1704 static void mmu_audit_disable(void) { }
1705 #endif
1706
1707 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1708                          struct list_head *invalid_list)
1709 {
1710         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1711 }
1712
1713 /* @gfn should be write-protected at the call site */
1714 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1715 {
1716         struct kvm_mmu_page *s;
1717         LIST_HEAD(invalid_list);
1718         bool flush = false;
1719
1720         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1721                 if (!s->unsync)
1722                         continue;
1723
1724                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1725                 kvm_unlink_unsync_page(vcpu->kvm, s);
1726                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1727                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1728                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1729                         continue;
1730                 }
1731                 flush = true;
1732         }
1733
1734         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1735         if (flush)
1736                 kvm_mmu_flush_tlb(vcpu);
1737 }
1738
1739 struct mmu_page_path {
1740         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1741         unsigned int idx[PT64_ROOT_LEVEL-1];
1742 };
1743
1744 #define for_each_sp(pvec, sp, parents, i)                       \
1745                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1746                         sp = pvec.page[i].sp;                   \
1747                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1748                         i = mmu_pages_next(&pvec, &parents, i))
1749
1750 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1751                           struct mmu_page_path *parents,
1752                           int i)
1753 {
1754         int n;
1755
1756         for (n = i+1; n < pvec->nr; n++) {
1757                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1758
1759                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1760                         parents->idx[0] = pvec->page[n].idx;
1761                         return n;
1762                 }
1763
1764                 parents->parent[sp->role.level-2] = sp;
1765                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1766         }
1767
1768         return n;
1769 }
1770
1771 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1772 {
1773         struct kvm_mmu_page *sp;
1774         unsigned int level = 0;
1775
1776         do {
1777                 unsigned int idx = parents->idx[level];
1778
1779                 sp = parents->parent[level];
1780                 if (!sp)
1781                         return;
1782
1783                 --sp->unsync_children;
1784                 WARN_ON((int)sp->unsync_children < 0);
1785                 __clear_bit(idx, sp->unsync_child_bitmap);
1786                 level++;
1787         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1788 }
1789
1790 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1791                                struct mmu_page_path *parents,
1792                                struct kvm_mmu_pages *pvec)
1793 {
1794         parents->parent[parent->role.level-1] = NULL;
1795         pvec->nr = 0;
1796 }
1797
1798 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1799                               struct kvm_mmu_page *parent)
1800 {
1801         int i;
1802         struct kvm_mmu_page *sp;
1803         struct mmu_page_path parents;
1804         struct kvm_mmu_pages pages;
1805         LIST_HEAD(invalid_list);
1806
1807         kvm_mmu_pages_init(parent, &parents, &pages);
1808         while (mmu_unsync_walk(parent, &pages)) {
1809                 bool protected = false;
1810
1811                 for_each_sp(pages, sp, parents, i)
1812                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1813
1814                 if (protected)
1815                         kvm_flush_remote_tlbs(vcpu->kvm);
1816
1817                 for_each_sp(pages, sp, parents, i) {
1818                         kvm_sync_page(vcpu, sp, &invalid_list);
1819                         mmu_pages_clear_parents(&parents);
1820                 }
1821                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1822                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1823                 kvm_mmu_pages_init(parent, &parents, &pages);
1824         }
1825 }
1826
1827 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1828 {
1829         int i;
1830
1831         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1832                 sp->spt[i] = 0ull;
1833 }
1834
1835 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1836 {
1837         sp->write_flooding_count = 0;
1838 }
1839
1840 static void clear_sp_write_flooding_count(u64 *spte)
1841 {
1842         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1843
1844         __clear_sp_write_flooding_count(sp);
1845 }
1846
1847 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1848 {
1849         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1850 }
1851
1852 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1853                                              gfn_t gfn,
1854                                              gva_t gaddr,
1855                                              unsigned level,
1856                                              int direct,
1857                                              unsigned access,
1858                                              u64 *parent_pte)
1859 {
1860         union kvm_mmu_page_role role;
1861         unsigned quadrant;
1862         struct kvm_mmu_page *sp;
1863         bool need_sync = false;
1864
1865         role = vcpu->arch.mmu.base_role;
1866         role.level = level;
1867         role.direct = direct;
1868         if (role.direct)
1869                 role.cr4_pae = 0;
1870         role.access = access;
1871         if (!vcpu->arch.mmu.direct_map
1872             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1873                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1874                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1875                 role.quadrant = quadrant;
1876         }
1877         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1878                 if (is_obsolete_sp(vcpu->kvm, sp))
1879                         continue;
1880
1881                 if (!need_sync && sp->unsync)
1882                         need_sync = true;
1883
1884                 if (sp->role.word != role.word)
1885                         continue;
1886
1887                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1888                         break;
1889
1890                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1891                 if (sp->unsync_children) {
1892                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1893                         kvm_mmu_mark_parents_unsync(sp);
1894                 } else if (sp->unsync)
1895                         kvm_mmu_mark_parents_unsync(sp);
1896
1897                 __clear_sp_write_flooding_count(sp);
1898                 trace_kvm_mmu_get_page(sp, false);
1899                 return sp;
1900         }
1901         ++vcpu->kvm->stat.mmu_cache_miss;
1902         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1903         if (!sp)
1904                 return sp;
1905         sp->gfn = gfn;
1906         sp->role = role;
1907         hlist_add_head(&sp->hash_link,
1908                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1909         if (!direct) {
1910                 if (rmap_write_protect(vcpu->kvm, gfn))
1911                         kvm_flush_remote_tlbs(vcpu->kvm);
1912                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1913                         kvm_sync_pages(vcpu, gfn);
1914
1915                 account_shadowed(vcpu->kvm, gfn);
1916         }
1917         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1918         init_shadow_page_table(sp);
1919         trace_kvm_mmu_get_page(sp, true);
1920         return sp;
1921 }
1922
1923 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924                              struct kvm_vcpu *vcpu, u64 addr)
1925 {
1926         iterator->addr = addr;
1927         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928         iterator->level = vcpu->arch.mmu.shadow_root_level;
1929
1930         if (iterator->level == PT64_ROOT_LEVEL &&
1931             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932             !vcpu->arch.mmu.direct_map)
1933                 --iterator->level;
1934
1935         if (iterator->level == PT32E_ROOT_LEVEL) {
1936                 iterator->shadow_addr
1937                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939                 --iterator->level;
1940                 if (!iterator->shadow_addr)
1941                         iterator->level = 0;
1942         }
1943 }
1944
1945 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1946 {
1947         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948                 return false;
1949
1950         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952         return true;
1953 }
1954
1955 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956                                u64 spte)
1957 {
1958         if (is_last_spte(spte, iterator->level)) {
1959                 iterator->level = 0;
1960                 return;
1961         }
1962
1963         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1964         --iterator->level;
1965 }
1966
1967 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1968 {
1969         return __shadow_walk_next(iterator, *iterator->sptep);
1970 }
1971
1972 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1973 {
1974         u64 spte;
1975
1976         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1977                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1978
1979         mmu_spte_set(sptep, spte);
1980 }
1981
1982 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983                                    unsigned direct_access)
1984 {
1985         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986                 struct kvm_mmu_page *child;
1987
1988                 /*
1989                  * For the direct sp, if the guest pte's dirty bit
1990                  * changed form clean to dirty, it will corrupt the
1991                  * sp's access: allow writable in the read-only sp,
1992                  * so we should update the spte at this point to get
1993                  * a new sp with the correct access.
1994                  */
1995                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996                 if (child->role.access == direct_access)
1997                         return;
1998
1999                 drop_parent_pte(child, sptep);
2000                 kvm_flush_remote_tlbs(vcpu->kvm);
2001         }
2002 }
2003
2004 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2005                              u64 *spte)
2006 {
2007         u64 pte;
2008         struct kvm_mmu_page *child;
2009
2010         pte = *spte;
2011         if (is_shadow_present_pte(pte)) {
2012                 if (is_last_spte(pte, sp->role.level)) {
2013                         drop_spte(kvm, spte);
2014                         if (is_large_pte(pte))
2015                                 --kvm->stat.lpages;
2016                 } else {
2017                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2018                         drop_parent_pte(child, spte);
2019                 }
2020                 return true;
2021         }
2022
2023         if (is_mmio_spte(pte))
2024                 mmu_spte_clear_no_track(spte);
2025
2026         return false;
2027 }
2028
2029 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2030                                          struct kvm_mmu_page *sp)
2031 {
2032         unsigned i;
2033
2034         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2036 }
2037
2038 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2039 {
2040         mmu_page_remove_parent_pte(sp, parent_pte);
2041 }
2042
2043 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2044 {
2045         u64 *sptep;
2046         struct rmap_iterator iter;
2047
2048         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049                 drop_parent_pte(sp, sptep);
2050 }
2051
2052 static int mmu_zap_unsync_children(struct kvm *kvm,
2053                                    struct kvm_mmu_page *parent,
2054                                    struct list_head *invalid_list)
2055 {
2056         int i, zapped = 0;
2057         struct mmu_page_path parents;
2058         struct kvm_mmu_pages pages;
2059
2060         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2061                 return 0;
2062
2063         kvm_mmu_pages_init(parent, &parents, &pages);
2064         while (mmu_unsync_walk(parent, &pages)) {
2065                 struct kvm_mmu_page *sp;
2066
2067                 for_each_sp(pages, sp, parents, i) {
2068                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2069                         mmu_pages_clear_parents(&parents);
2070                         zapped++;
2071                 }
2072                 kvm_mmu_pages_init(parent, &parents, &pages);
2073         }
2074
2075         return zapped;
2076 }
2077
2078 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079                                     struct list_head *invalid_list)
2080 {
2081         int ret;
2082
2083         trace_kvm_mmu_prepare_zap_page(sp);
2084         ++kvm->stat.mmu_shadow_zapped;
2085         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2086         kvm_mmu_page_unlink_children(kvm, sp);
2087         kvm_mmu_unlink_parents(kvm, sp);
2088
2089         if (!sp->role.invalid && !sp->role.direct)
2090                 unaccount_shadowed(kvm, sp->gfn);
2091
2092         if (sp->unsync)
2093                 kvm_unlink_unsync_page(kvm, sp);
2094         if (!sp->root_count) {
2095                 /* Count self */
2096                 ret++;
2097                 list_move(&sp->link, invalid_list);
2098                 kvm_mod_used_mmu_pages(kvm, -1);
2099         } else {
2100                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2101                 kvm_reload_remote_mmus(kvm);
2102         }
2103
2104         sp->role.invalid = 1;
2105         return ret;
2106 }
2107
2108 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2109                                     struct list_head *invalid_list)
2110 {
2111         struct kvm_mmu_page *sp, *nsp;
2112
2113         if (list_empty(invalid_list))
2114                 return;
2115
2116         /*
2117          * wmb: make sure everyone sees our modifications to the page tables
2118          * rmb: make sure we see changes to vcpu->mode
2119          */
2120         smp_mb();
2121
2122         /*
2123          * Wait for all vcpus to exit guest mode and/or lockless shadow
2124          * page table walks.
2125          */
2126         kvm_flush_remote_tlbs(kvm);
2127
2128         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2129                 WARN_ON(!sp->role.invalid || sp->root_count);
2130                 kvm_mmu_free_page(sp);
2131         }
2132 }
2133
2134 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2135                                         struct list_head *invalid_list)
2136 {
2137         struct kvm_mmu_page *sp;
2138
2139         if (list_empty(&kvm->arch.active_mmu_pages))
2140                 return false;
2141
2142         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2143                         struct kvm_mmu_page, link);
2144         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2145
2146         return true;
2147 }
2148
2149 /*
2150  * Changing the number of mmu pages allocated to the vm
2151  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2152  */
2153 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2154 {
2155         LIST_HEAD(invalid_list);
2156
2157         spin_lock(&kvm->mmu_lock);
2158
2159         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2160                 /* Need to free some mmu pages to achieve the goal. */
2161                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2162                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2163                                 break;
2164
2165                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2166                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2167         }
2168
2169         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2170
2171         spin_unlock(&kvm->mmu_lock);
2172 }
2173
2174 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2175 {
2176         struct kvm_mmu_page *sp;
2177         LIST_HEAD(invalid_list);
2178         int r;
2179
2180         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2181         r = 0;
2182         spin_lock(&kvm->mmu_lock);
2183         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2184                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2185                          sp->role.word);
2186                 r = 1;
2187                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2188         }
2189         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2190         spin_unlock(&kvm->mmu_lock);
2191
2192         return r;
2193 }
2194 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2195
2196 /*
2197  * The function is based on mtrr_type_lookup() in
2198  * arch/x86/kernel/cpu/mtrr/generic.c
2199  */
2200 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2201                          u64 start, u64 end)
2202 {
2203         int i;
2204         u64 base, mask;
2205         u8 prev_match, curr_match;
2206         int num_var_ranges = KVM_NR_VAR_MTRR;
2207
2208         if (!mtrr_state->enabled)
2209                 return 0xFF;
2210
2211         /* Make end inclusive end, instead of exclusive */
2212         end--;
2213
2214         /* Look in fixed ranges. Just return the type as per start */
2215         if (mtrr_state->have_fixed && (start < 0x100000)) {
2216                 int idx;
2217
2218                 if (start < 0x80000) {
2219                         idx = 0;
2220                         idx += (start >> 16);
2221                         return mtrr_state->fixed_ranges[idx];
2222                 } else if (start < 0xC0000) {
2223                         idx = 1 * 8;
2224                         idx += ((start - 0x80000) >> 14);
2225                         return mtrr_state->fixed_ranges[idx];
2226                 } else if (start < 0x1000000) {
2227                         idx = 3 * 8;
2228                         idx += ((start - 0xC0000) >> 12);
2229                         return mtrr_state->fixed_ranges[idx];
2230                 }
2231         }
2232
2233         /*
2234          * Look in variable ranges
2235          * Look of multiple ranges matching this address and pick type
2236          * as per MTRR precedence
2237          */
2238         if (!(mtrr_state->enabled & 2))
2239                 return mtrr_state->def_type;
2240
2241         prev_match = 0xFF;
2242         for (i = 0; i < num_var_ranges; ++i) {
2243                 unsigned short start_state, end_state;
2244
2245                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2246                         continue;
2247
2248                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2249                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2250                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2251                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2252
2253                 start_state = ((start & mask) == (base & mask));
2254                 end_state = ((end & mask) == (base & mask));
2255                 if (start_state != end_state)
2256                         return 0xFE;
2257
2258                 if ((start & mask) != (base & mask))
2259                         continue;
2260
2261                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2262                 if (prev_match == 0xFF) {
2263                         prev_match = curr_match;
2264                         continue;
2265                 }
2266
2267                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2268                     curr_match == MTRR_TYPE_UNCACHABLE)
2269                         return MTRR_TYPE_UNCACHABLE;
2270
2271                 if ((prev_match == MTRR_TYPE_WRBACK &&
2272                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2273                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2274                      curr_match == MTRR_TYPE_WRBACK)) {
2275                         prev_match = MTRR_TYPE_WRTHROUGH;
2276                         curr_match = MTRR_TYPE_WRTHROUGH;
2277                 }
2278
2279                 if (prev_match != curr_match)
2280                         return MTRR_TYPE_UNCACHABLE;
2281         }
2282
2283         if (prev_match != 0xFF)
2284                 return prev_match;
2285
2286         return mtrr_state->def_type;
2287 }
2288
2289 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2290 {
2291         u8 mtrr;
2292
2293         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2294                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2295         if (mtrr == 0xfe || mtrr == 0xff)
2296                 mtrr = MTRR_TYPE_WRBACK;
2297         return mtrr;
2298 }
2299 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2300
2301 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2302 {
2303         trace_kvm_mmu_unsync_page(sp);
2304         ++vcpu->kvm->stat.mmu_unsync;
2305         sp->unsync = 1;
2306
2307         kvm_mmu_mark_parents_unsync(sp);
2308 }
2309
2310 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2311 {
2312         struct kvm_mmu_page *s;
2313
2314         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2315                 if (s->unsync)
2316                         continue;
2317                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2318                 __kvm_unsync_page(vcpu, s);
2319         }
2320 }
2321
2322 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2323                                   bool can_unsync)
2324 {
2325         struct kvm_mmu_page *s;
2326         bool need_unsync = false;
2327
2328         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2329                 if (!can_unsync)
2330                         return 1;
2331
2332                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2333                         return 1;
2334
2335                 if (!s->unsync)
2336                         need_unsync = true;
2337         }
2338         if (need_unsync)
2339                 kvm_unsync_pages(vcpu, gfn);
2340         return 0;
2341 }
2342
2343 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2344                     unsigned pte_access, int level,
2345                     gfn_t gfn, pfn_t pfn, bool speculative,
2346                     bool can_unsync, bool host_writable)
2347 {
2348         u64 spte;
2349         int ret = 0;
2350
2351         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2352                 return 0;
2353
2354         spte = PT_PRESENT_MASK;
2355         if (!speculative)
2356                 spte |= shadow_accessed_mask;
2357
2358         if (pte_access & ACC_EXEC_MASK)
2359                 spte |= shadow_x_mask;
2360         else
2361                 spte |= shadow_nx_mask;
2362
2363         if (pte_access & ACC_USER_MASK)
2364                 spte |= shadow_user_mask;
2365
2366         if (level > PT_PAGE_TABLE_LEVEL)
2367                 spte |= PT_PAGE_SIZE_MASK;
2368         if (tdp_enabled)
2369                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2370                         kvm_is_mmio_pfn(pfn));
2371
2372         if (host_writable)
2373                 spte |= SPTE_HOST_WRITEABLE;
2374         else
2375                 pte_access &= ~ACC_WRITE_MASK;
2376
2377         spte |= (u64)pfn << PAGE_SHIFT;
2378
2379         if (pte_access & ACC_WRITE_MASK) {
2380
2381                 /*
2382                  * Other vcpu creates new sp in the window between
2383                  * mapping_level() and acquiring mmu-lock. We can
2384                  * allow guest to retry the access, the mapping can
2385                  * be fixed if guest refault.
2386                  */
2387                 if (level > PT_PAGE_TABLE_LEVEL &&
2388                     has_wrprotected_page(vcpu->kvm, gfn, level))
2389                         goto done;
2390
2391                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2392
2393                 /*
2394                  * Optimization: for pte sync, if spte was writable the hash
2395                  * lookup is unnecessary (and expensive). Write protection
2396                  * is responsibility of mmu_get_page / kvm_sync_page.
2397                  * Same reasoning can be applied to dirty page accounting.
2398                  */
2399                 if (!can_unsync && is_writable_pte(*sptep))
2400                         goto set_pte;
2401
2402                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2403                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2404                                  __func__, gfn);
2405                         ret = 1;
2406                         pte_access &= ~ACC_WRITE_MASK;
2407                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2408                 }
2409         }
2410
2411         if (pte_access & ACC_WRITE_MASK)
2412                 mark_page_dirty(vcpu->kvm, gfn);
2413
2414 set_pte:
2415         if (mmu_spte_update(sptep, spte))
2416                 kvm_flush_remote_tlbs(vcpu->kvm);
2417 done:
2418         return ret;
2419 }
2420
2421 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2422                          unsigned pte_access, int write_fault, int *emulate,
2423                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2424                          bool host_writable)
2425 {
2426         int was_rmapped = 0;
2427         int rmap_count;
2428
2429         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2430                  *sptep, write_fault, gfn);
2431
2432         if (is_rmap_spte(*sptep)) {
2433                 /*
2434                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2435                  * the parent of the now unreachable PTE.
2436                  */
2437                 if (level > PT_PAGE_TABLE_LEVEL &&
2438                     !is_large_pte(*sptep)) {
2439                         struct kvm_mmu_page *child;
2440                         u64 pte = *sptep;
2441
2442                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2443                         drop_parent_pte(child, sptep);
2444                         kvm_flush_remote_tlbs(vcpu->kvm);
2445                 } else if (pfn != spte_to_pfn(*sptep)) {
2446                         pgprintk("hfn old %llx new %llx\n",
2447                                  spte_to_pfn(*sptep), pfn);
2448                         drop_spte(vcpu->kvm, sptep);
2449                         kvm_flush_remote_tlbs(vcpu->kvm);
2450                 } else
2451                         was_rmapped = 1;
2452         }
2453
2454         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2455               true, host_writable)) {
2456                 if (write_fault)
2457                         *emulate = 1;
2458                 kvm_mmu_flush_tlb(vcpu);
2459         }
2460
2461         if (unlikely(is_mmio_spte(*sptep) && emulate))
2462                 *emulate = 1;
2463
2464         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2465         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2466                  is_large_pte(*sptep)? "2MB" : "4kB",
2467                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2468                  *sptep, sptep);
2469         if (!was_rmapped && is_large_pte(*sptep))
2470                 ++vcpu->kvm->stat.lpages;
2471
2472         if (is_shadow_present_pte(*sptep)) {
2473                 if (!was_rmapped) {
2474                         rmap_count = rmap_add(vcpu, sptep, gfn);
2475                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2476                                 rmap_recycle(vcpu, sptep, gfn);
2477                 }
2478         }
2479
2480         kvm_release_pfn_clean(pfn);
2481 }
2482
2483 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2484 {
2485         mmu_free_roots(vcpu);
2486 }
2487
2488 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2489 {
2490         int bit7;
2491
2492         bit7 = (gpte >> 7) & 1;
2493         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2494 }
2495
2496 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2497                                      bool no_dirty_log)
2498 {
2499         struct kvm_memory_slot *slot;
2500
2501         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2502         if (!slot)
2503                 return KVM_PFN_ERR_FAULT;
2504
2505         return gfn_to_pfn_memslot_atomic(slot, gfn);
2506 }
2507
2508 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2509                                   struct kvm_mmu_page *sp, u64 *spte,
2510                                   u64 gpte)
2511 {
2512         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2513                 goto no_present;
2514
2515         if (!is_present_gpte(gpte))
2516                 goto no_present;
2517
2518         if (!(gpte & PT_ACCESSED_MASK))
2519                 goto no_present;
2520
2521         return false;
2522
2523 no_present:
2524         drop_spte(vcpu->kvm, spte);
2525         return true;
2526 }
2527
2528 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2529                                     struct kvm_mmu_page *sp,
2530                                     u64 *start, u64 *end)
2531 {
2532         struct page *pages[PTE_PREFETCH_NUM];
2533         unsigned access = sp->role.access;
2534         int i, ret;
2535         gfn_t gfn;
2536
2537         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2538         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2539                 return -1;
2540
2541         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2542         if (ret <= 0)
2543                 return -1;
2544
2545         for (i = 0; i < ret; i++, gfn++, start++)
2546                 mmu_set_spte(vcpu, start, access, 0, NULL,
2547                              sp->role.level, gfn, page_to_pfn(pages[i]),
2548                              true, true);
2549
2550         return 0;
2551 }
2552
2553 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2554                                   struct kvm_mmu_page *sp, u64 *sptep)
2555 {
2556         u64 *spte, *start = NULL;
2557         int i;
2558
2559         WARN_ON(!sp->role.direct);
2560
2561         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2562         spte = sp->spt + i;
2563
2564         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2565                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2566                         if (!start)
2567                                 continue;
2568                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2569                                 break;
2570                         start = NULL;
2571                 } else if (!start)
2572                         start = spte;
2573         }
2574 }
2575
2576 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2577 {
2578         struct kvm_mmu_page *sp;
2579
2580         /*
2581          * Since it's no accessed bit on EPT, it's no way to
2582          * distinguish between actually accessed translations
2583          * and prefetched, so disable pte prefetch if EPT is
2584          * enabled.
2585          */
2586         if (!shadow_accessed_mask)
2587                 return;
2588
2589         sp = page_header(__pa(sptep));
2590         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2591                 return;
2592
2593         __direct_pte_prefetch(vcpu, sp, sptep);
2594 }
2595
2596 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2597                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2598                         bool prefault)
2599 {
2600         struct kvm_shadow_walk_iterator iterator;
2601         struct kvm_mmu_page *sp;
2602         int emulate = 0;
2603         gfn_t pseudo_gfn;
2604
2605         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2606                 if (iterator.level == level) {
2607                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2608                                      write, &emulate, level, gfn, pfn,
2609                                      prefault, map_writable);
2610                         direct_pte_prefetch(vcpu, iterator.sptep);
2611                         ++vcpu->stat.pf_fixed;
2612                         break;
2613                 }
2614
2615                 if (!is_shadow_present_pte(*iterator.sptep)) {
2616                         u64 base_addr = iterator.addr;
2617
2618                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2619                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2620                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2621                                               iterator.level - 1,
2622                                               1, ACC_ALL, iterator.sptep);
2623
2624                         link_shadow_page(iterator.sptep, sp);
2625                 }
2626         }
2627         return emulate;
2628 }
2629
2630 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2631 {
2632         siginfo_t info;
2633
2634         info.si_signo   = SIGBUS;
2635         info.si_errno   = 0;
2636         info.si_code    = BUS_MCEERR_AR;
2637         info.si_addr    = (void __user *)address;
2638         info.si_addr_lsb = PAGE_SHIFT;
2639
2640         send_sig_info(SIGBUS, &info, tsk);
2641 }
2642
2643 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2644 {
2645         /*
2646          * Do not cache the mmio info caused by writing the readonly gfn
2647          * into the spte otherwise read access on readonly gfn also can
2648          * caused mmio page fault and treat it as mmio access.
2649          * Return 1 to tell kvm to emulate it.
2650          */
2651         if (pfn == KVM_PFN_ERR_RO_FAULT)
2652                 return 1;
2653
2654         if (pfn == KVM_PFN_ERR_HWPOISON) {
2655                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2656                 return 0;
2657         }
2658
2659         return -EFAULT;
2660 }
2661
2662 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2663                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2664 {
2665         pfn_t pfn = *pfnp;
2666         gfn_t gfn = *gfnp;
2667         int level = *levelp;
2668
2669         /*
2670          * Check if it's a transparent hugepage. If this would be an
2671          * hugetlbfs page, level wouldn't be set to
2672          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2673          * here.
2674          */
2675         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2676             level == PT_PAGE_TABLE_LEVEL &&
2677             PageTransCompound(pfn_to_page(pfn)) &&
2678             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2679                 unsigned long mask;
2680                 /*
2681                  * mmu_notifier_retry was successful and we hold the
2682                  * mmu_lock here, so the pmd can't become splitting
2683                  * from under us, and in turn
2684                  * __split_huge_page_refcount() can't run from under
2685                  * us and we can safely transfer the refcount from
2686                  * PG_tail to PG_head as we switch the pfn to tail to
2687                  * head.
2688                  */
2689                 *levelp = level = PT_DIRECTORY_LEVEL;
2690                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2691                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2692                 if (pfn & mask) {
2693                         gfn &= ~mask;
2694                         *gfnp = gfn;
2695                         kvm_release_pfn_clean(pfn);
2696                         pfn &= ~mask;
2697                         kvm_get_pfn(pfn);
2698                         *pfnp = pfn;
2699                 }
2700         }
2701 }
2702
2703 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2704                                 pfn_t pfn, unsigned access, int *ret_val)
2705 {
2706         bool ret = true;
2707
2708         /* The pfn is invalid, report the error! */
2709         if (unlikely(is_error_pfn(pfn))) {
2710                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2711                 goto exit;
2712         }
2713
2714         if (unlikely(is_noslot_pfn(pfn)))
2715                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2716
2717         ret = false;
2718 exit:
2719         return ret;
2720 }
2721
2722 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2723 {
2724         /*
2725          * #PF can be fast only if the shadow page table is present and it
2726          * is caused by write-protect, that means we just need change the
2727          * W bit of the spte which can be done out of mmu-lock.
2728          */
2729         if (!(error_code & PFERR_PRESENT_MASK) ||
2730               !(error_code & PFERR_WRITE_MASK))
2731                 return false;
2732
2733         return true;
2734 }
2735
2736 static bool
2737 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2738 {
2739         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2740         gfn_t gfn;
2741
2742         WARN_ON(!sp->role.direct);
2743
2744         /*
2745          * The gfn of direct spte is stable since it is calculated
2746          * by sp->gfn.
2747          */
2748         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2749
2750         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2751                 mark_page_dirty(vcpu->kvm, gfn);
2752
2753         return true;
2754 }
2755
2756 /*
2757  * Return value:
2758  * - true: let the vcpu to access on the same address again.
2759  * - false: let the real page fault path to fix it.
2760  */
2761 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2762                             u32 error_code)
2763 {
2764         struct kvm_shadow_walk_iterator iterator;
2765         bool ret = false;
2766         u64 spte = 0ull;
2767
2768         if (!page_fault_can_be_fast(vcpu, error_code))
2769                 return false;
2770
2771         walk_shadow_page_lockless_begin(vcpu);
2772         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2773                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2774                         break;
2775
2776         /*
2777          * If the mapping has been changed, let the vcpu fault on the
2778          * same address again.
2779          */
2780         if (!is_rmap_spte(spte)) {
2781                 ret = true;
2782                 goto exit;
2783         }
2784
2785         if (!is_last_spte(spte, level))
2786                 goto exit;
2787
2788         /*
2789          * Check if it is a spurious fault caused by TLB lazily flushed.
2790          *
2791          * Need not check the access of upper level table entries since
2792          * they are always ACC_ALL.
2793          */
2794          if (is_writable_pte(spte)) {
2795                 ret = true;
2796                 goto exit;
2797         }
2798
2799         /*
2800          * Currently, to simplify the code, only the spte write-protected
2801          * by dirty-log can be fast fixed.
2802          */
2803         if (!spte_is_locklessly_modifiable(spte))
2804                 goto exit;
2805
2806         /*
2807          * Currently, fast page fault only works for direct mapping since
2808          * the gfn is not stable for indirect shadow page.
2809          * See Documentation/virtual/kvm/locking.txt to get more detail.
2810          */
2811         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2812 exit:
2813         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2814                               spte, ret);
2815         walk_shadow_page_lockless_end(vcpu);
2816
2817         return ret;
2818 }
2819
2820 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2821                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2822 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2823
2824 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2825                          gfn_t gfn, bool prefault)
2826 {
2827         int r;
2828         int level;
2829         int force_pt_level;
2830         pfn_t pfn;
2831         unsigned long mmu_seq;
2832         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2833
2834         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2835         if (likely(!force_pt_level)) {
2836                 level = mapping_level(vcpu, gfn);
2837                 /*
2838                  * This path builds a PAE pagetable - so we can map
2839                  * 2mb pages at maximum. Therefore check if the level
2840                  * is larger than that.
2841                  */
2842                 if (level > PT_DIRECTORY_LEVEL)
2843                         level = PT_DIRECTORY_LEVEL;
2844
2845                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2846         } else
2847                 level = PT_PAGE_TABLE_LEVEL;
2848
2849         if (fast_page_fault(vcpu, v, level, error_code))
2850                 return 0;
2851
2852         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2853         smp_rmb();
2854
2855         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2856                 return 0;
2857
2858         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2859                 return r;
2860
2861         spin_lock(&vcpu->kvm->mmu_lock);
2862         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2863                 goto out_unlock;
2864         make_mmu_pages_available(vcpu);
2865         if (likely(!force_pt_level))
2866                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2867         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2868                          prefault);
2869         spin_unlock(&vcpu->kvm->mmu_lock);
2870
2871
2872         return r;
2873
2874 out_unlock:
2875         spin_unlock(&vcpu->kvm->mmu_lock);
2876         kvm_release_pfn_clean(pfn);
2877         return 0;
2878 }
2879
2880
2881 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2882 {
2883         int i;
2884         struct kvm_mmu_page *sp;
2885         LIST_HEAD(invalid_list);
2886
2887         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2888                 return;
2889
2890         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2891             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2892              vcpu->arch.mmu.direct_map)) {
2893                 hpa_t root = vcpu->arch.mmu.root_hpa;
2894
2895                 spin_lock(&vcpu->kvm->mmu_lock);
2896                 sp = page_header(root);
2897                 --sp->root_count;
2898                 if (!sp->root_count && sp->role.invalid) {
2899                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2900                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2901                 }
2902                 spin_unlock(&vcpu->kvm->mmu_lock);
2903                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2904                 return;
2905         }
2906
2907         spin_lock(&vcpu->kvm->mmu_lock);
2908         for (i = 0; i < 4; ++i) {
2909                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2910
2911                 if (root) {
2912                         root &= PT64_BASE_ADDR_MASK;
2913                         sp = page_header(root);
2914                         --sp->root_count;
2915                         if (!sp->root_count && sp->role.invalid)
2916                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2917                                                          &invalid_list);
2918                 }
2919                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2920         }
2921         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2922         spin_unlock(&vcpu->kvm->mmu_lock);
2923         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2924 }
2925
2926 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2927 {
2928         int ret = 0;
2929
2930         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2931                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2932                 ret = 1;
2933         }
2934
2935         return ret;
2936 }
2937
2938 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2939 {
2940         struct kvm_mmu_page *sp;
2941         unsigned i;
2942
2943         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2944                 spin_lock(&vcpu->kvm->mmu_lock);
2945                 make_mmu_pages_available(vcpu);
2946                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2947                                       1, ACC_ALL, NULL);
2948                 ++sp->root_count;
2949                 spin_unlock(&vcpu->kvm->mmu_lock);
2950                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2951         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2952                 for (i = 0; i < 4; ++i) {
2953                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2954
2955                         ASSERT(!VALID_PAGE(root));
2956                         spin_lock(&vcpu->kvm->mmu_lock);
2957                         make_mmu_pages_available(vcpu);
2958                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2959                                               i << 30,
2960                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2961                                               NULL);
2962                         root = __pa(sp->spt);
2963                         ++sp->root_count;
2964                         spin_unlock(&vcpu->kvm->mmu_lock);
2965                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2966                 }
2967                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2968         } else
2969                 BUG();
2970
2971         return 0;
2972 }
2973
2974 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2975 {
2976         struct kvm_mmu_page *sp;
2977         u64 pdptr, pm_mask;
2978         gfn_t root_gfn;
2979         int i;
2980
2981         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2982
2983         if (mmu_check_root(vcpu, root_gfn))
2984                 return 1;
2985
2986         /*
2987          * Do we shadow a long mode page table? If so we need to
2988          * write-protect the guests page table root.
2989          */
2990         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2991                 hpa_t root = vcpu->arch.mmu.root_hpa;
2992
2993                 ASSERT(!VALID_PAGE(root));
2994
2995                 spin_lock(&vcpu->kvm->mmu_lock);
2996                 make_mmu_pages_available(vcpu);
2997                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2998                                       0, ACC_ALL, NULL);
2999                 root = __pa(sp->spt);
3000                 ++sp->root_count;
3001                 spin_unlock(&vcpu->kvm->mmu_lock);
3002                 vcpu->arch.mmu.root_hpa = root;
3003                 return 0;
3004         }
3005
3006         /*
3007          * We shadow a 32 bit page table. This may be a legacy 2-level
3008          * or a PAE 3-level page table. In either case we need to be aware that
3009          * the shadow page table may be a PAE or a long mode page table.
3010          */
3011         pm_mask = PT_PRESENT_MASK;
3012         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3013                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3014
3015         for (i = 0; i < 4; ++i) {
3016                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3017
3018                 ASSERT(!VALID_PAGE(root));
3019                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3020                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3021                         if (!is_present_gpte(pdptr)) {
3022                                 vcpu->arch.mmu.pae_root[i] = 0;
3023                                 continue;
3024                         }
3025                         root_gfn = pdptr >> PAGE_SHIFT;
3026                         if (mmu_check_root(vcpu, root_gfn))
3027                                 return 1;
3028                 }
3029                 spin_lock(&vcpu->kvm->mmu_lock);
3030                 make_mmu_pages_available(vcpu);
3031                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3032                                       PT32_ROOT_LEVEL, 0,
3033                                       ACC_ALL, NULL);
3034                 root = __pa(sp->spt);
3035                 ++sp->root_count;
3036                 spin_unlock(&vcpu->kvm->mmu_lock);
3037
3038                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3039         }
3040         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3041
3042         /*
3043          * If we shadow a 32 bit page table with a long mode page
3044          * table we enter this path.
3045          */
3046         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3047                 if (vcpu->arch.mmu.lm_root == NULL) {
3048                         /*
3049                          * The additional page necessary for this is only
3050                          * allocated on demand.
3051                          */
3052
3053                         u64 *lm_root;
3054
3055                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3056                         if (lm_root == NULL)
3057                                 return 1;
3058
3059                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3060
3061                         vcpu->arch.mmu.lm_root = lm_root;
3062                 }
3063
3064                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3065         }
3066
3067         return 0;
3068 }
3069
3070 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3071 {
3072         if (vcpu->arch.mmu.direct_map)
3073                 return mmu_alloc_direct_roots(vcpu);
3074         else
3075                 return mmu_alloc_shadow_roots(vcpu);
3076 }
3077
3078 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3079 {
3080         int i;
3081         struct kvm_mmu_page *sp;
3082
3083         if (vcpu->arch.mmu.direct_map)
3084                 return;
3085
3086         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3087                 return;
3088
3089         vcpu_clear_mmio_info(vcpu, ~0ul);
3090         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3091         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3092                 hpa_t root = vcpu->arch.mmu.root_hpa;
3093                 sp = page_header(root);
3094                 mmu_sync_children(vcpu, sp);
3095                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3096                 return;
3097         }
3098         for (i = 0; i < 4; ++i) {
3099                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3100
3101                 if (root && VALID_PAGE(root)) {
3102                         root &= PT64_BASE_ADDR_MASK;
3103                         sp = page_header(root);
3104                         mmu_sync_children(vcpu, sp);
3105                 }
3106         }
3107         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3108 }
3109
3110 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3111 {
3112         spin_lock(&vcpu->kvm->mmu_lock);
3113         mmu_sync_roots(vcpu);
3114         spin_unlock(&vcpu->kvm->mmu_lock);
3115 }
3116
3117 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3118                                   u32 access, struct x86_exception *exception)
3119 {
3120         if (exception)
3121                 exception->error_code = 0;
3122         return vaddr;
3123 }
3124
3125 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3126                                          u32 access,
3127                                          struct x86_exception *exception)
3128 {
3129         if (exception)
3130                 exception->error_code = 0;
3131         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3132 }
3133
3134 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3135 {
3136         if (direct)
3137                 return vcpu_match_mmio_gpa(vcpu, addr);
3138
3139         return vcpu_match_mmio_gva(vcpu, addr);
3140 }
3141
3142
3143 /*
3144  * On direct hosts, the last spte is only allows two states
3145  * for mmio page fault:
3146  *   - It is the mmio spte
3147  *   - It is zapped or it is being zapped.
3148  *
3149  * This function completely checks the spte when the last spte
3150  * is not the mmio spte.
3151  */
3152 static bool check_direct_spte_mmio_pf(u64 spte)
3153 {
3154         return __check_direct_spte_mmio_pf(spte);
3155 }
3156
3157 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3158 {
3159         struct kvm_shadow_walk_iterator iterator;
3160         u64 spte = 0ull;
3161
3162         walk_shadow_page_lockless_begin(vcpu);
3163         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3164                 if (!is_shadow_present_pte(spte))
3165                         break;
3166         walk_shadow_page_lockless_end(vcpu);
3167
3168         return spte;
3169 }
3170
3171 /*
3172  * If it is a real mmio page fault, return 1 and emulat the instruction
3173  * directly, return 0 to let CPU fault again on the address, -1 is
3174  * returned if bug is detected.
3175  */
3176 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3177 {
3178         u64 spte;
3179
3180         if (quickly_check_mmio_pf(vcpu, addr, direct))
3181                 return 1;
3182
3183         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3184
3185         if (is_mmio_spte(spte)) {
3186                 gfn_t gfn = get_mmio_spte_gfn(spte);
3187                 unsigned access = get_mmio_spte_access(spte);
3188
3189                 if (direct)
3190                         addr = 0;
3191
3192                 trace_handle_mmio_page_fault(addr, gfn, access);
3193                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3194                 return 1;
3195         }
3196
3197         /*
3198          * It's ok if the gva is remapped by other cpus on shadow guest,
3199          * it's a BUG if the gfn is not a mmio page.
3200          */
3201         if (direct && !check_direct_spte_mmio_pf(spte))
3202                 return -1;
3203
3204         /*
3205          * If the page table is zapped by other cpus, let CPU fault again on
3206          * the address.
3207          */
3208         return 0;
3209 }
3210 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3211
3212 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3213                                   u32 error_code, bool direct)
3214 {
3215         int ret;
3216
3217         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3218         WARN_ON(ret < 0);
3219         return ret;
3220 }
3221
3222 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3223                                 u32 error_code, bool prefault)
3224 {
3225         gfn_t gfn;
3226         int r;
3227
3228         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3229
3230         if (unlikely(error_code & PFERR_RSVD_MASK))
3231                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3232
3233         r = mmu_topup_memory_caches(vcpu);
3234         if (r)
3235                 return r;
3236
3237         ASSERT(vcpu);
3238         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3239
3240         gfn = gva >> PAGE_SHIFT;
3241
3242         return nonpaging_map(vcpu, gva & PAGE_MASK,
3243                              error_code, gfn, prefault);
3244 }
3245
3246 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3247 {
3248         struct kvm_arch_async_pf arch;
3249
3250         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3251         arch.gfn = gfn;
3252         arch.direct_map = vcpu->arch.mmu.direct_map;
3253         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3254
3255         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3256 }
3257
3258 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3259 {
3260         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3261                      kvm_event_needs_reinjection(vcpu)))
3262                 return false;
3263
3264         return kvm_x86_ops->interrupt_allowed(vcpu);
3265 }
3266
3267 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3268                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3269 {
3270         bool async;
3271
3272         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3273
3274         if (!async)
3275                 return false; /* *pfn has correct page already */
3276
3277         if (!prefault && can_do_async_pf(vcpu)) {
3278                 trace_kvm_try_async_get_page(gva, gfn);
3279                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3280                         trace_kvm_async_pf_doublefault(gva, gfn);
3281                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3282                         return true;
3283                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3284                         return true;
3285         }
3286
3287         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3288
3289         return false;
3290 }
3291
3292 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3293                           bool prefault)
3294 {
3295         pfn_t pfn;
3296         int r;
3297         int level;
3298         int force_pt_level;
3299         gfn_t gfn = gpa >> PAGE_SHIFT;
3300         unsigned long mmu_seq;
3301         int write = error_code & PFERR_WRITE_MASK;
3302         bool map_writable;
3303
3304         ASSERT(vcpu);
3305         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3306
3307         if (unlikely(error_code & PFERR_RSVD_MASK))
3308                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3309
3310         r = mmu_topup_memory_caches(vcpu);
3311         if (r)
3312                 return r;
3313
3314         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3315         if (likely(!force_pt_level)) {
3316                 level = mapping_level(vcpu, gfn);
3317                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3318         } else
3319                 level = PT_PAGE_TABLE_LEVEL;
3320
3321         if (fast_page_fault(vcpu, gpa, level, error_code))
3322                 return 0;
3323
3324         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3325         smp_rmb();
3326
3327         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3328                 return 0;
3329
3330         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3331                 return r;
3332
3333         spin_lock(&vcpu->kvm->mmu_lock);
3334         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3335                 goto out_unlock;
3336         make_mmu_pages_available(vcpu);
3337         if (likely(!force_pt_level))
3338                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3339         r = __direct_map(vcpu, gpa, write, map_writable,
3340                          level, gfn, pfn, prefault);
3341         spin_unlock(&vcpu->kvm->mmu_lock);
3342
3343         return r;
3344
3345 out_unlock:
3346         spin_unlock(&vcpu->kvm->mmu_lock);
3347         kvm_release_pfn_clean(pfn);
3348         return 0;
3349 }
3350
3351 static void nonpaging_free(struct kvm_vcpu *vcpu)
3352 {
3353         mmu_free_roots(vcpu);
3354 }
3355
3356 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3357                                   struct kvm_mmu *context)
3358 {
3359         context->new_cr3 = nonpaging_new_cr3;
3360         context->page_fault = nonpaging_page_fault;
3361         context->gva_to_gpa = nonpaging_gva_to_gpa;
3362         context->free = nonpaging_free;
3363         context->sync_page = nonpaging_sync_page;
3364         context->invlpg = nonpaging_invlpg;
3365         context->update_pte = nonpaging_update_pte;
3366         context->root_level = 0;
3367         context->shadow_root_level = PT32E_ROOT_LEVEL;
3368         context->root_hpa = INVALID_PAGE;
3369         context->direct_map = true;
3370         context->nx = false;
3371         return 0;
3372 }
3373
3374 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3375 {
3376         ++vcpu->stat.tlb_flush;
3377         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3378 }
3379
3380 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3381 {
3382         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3383         mmu_free_roots(vcpu);
3384 }
3385
3386 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3387 {
3388         return kvm_read_cr3(vcpu);
3389 }
3390
3391 static void inject_page_fault(struct kvm_vcpu *vcpu,
3392                               struct x86_exception *fault)
3393 {
3394         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3395 }
3396
3397 static void paging_free(struct kvm_vcpu *vcpu)
3398 {
3399         nonpaging_free(vcpu);
3400 }
3401
3402 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3403 {
3404         unsigned mask;
3405
3406         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3407
3408         mask = (unsigned)~ACC_WRITE_MASK;
3409         /* Allow write access to dirty gptes */
3410         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3411         *access &= mask;
3412 }
3413
3414 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3415                            int *nr_present)
3416 {
3417         if (unlikely(is_mmio_spte(*sptep))) {
3418                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3419                         mmu_spte_clear_no_track(sptep);
3420                         return true;
3421                 }
3422
3423                 (*nr_present)++;
3424                 mark_mmio_spte(sptep, gfn, access);
3425                 return true;
3426         }
3427
3428         return false;
3429 }
3430
3431 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3432 {
3433         unsigned access;
3434
3435         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3436         access &= ~(gpte >> PT64_NX_SHIFT);
3437
3438         return access;
3439 }
3440
3441 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3442 {
3443         unsigned index;
3444
3445         index = level - 1;
3446         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3447         return mmu->last_pte_bitmap & (1 << index);
3448 }
3449
3450 #define PTTYPE 64
3451 #include "paging_tmpl.h"
3452 #undef PTTYPE
3453
3454 #define PTTYPE 32
3455 #include "paging_tmpl.h"
3456 #undef PTTYPE
3457
3458 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3459                                   struct kvm_mmu *context)
3460 {
3461         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3462         u64 exb_bit_rsvd = 0;
3463
3464         if (!context->nx)
3465                 exb_bit_rsvd = rsvd_bits(63, 63);
3466         switch (context->root_level) {
3467         case PT32_ROOT_LEVEL:
3468                 /* no rsvd bits for 2 level 4K page table entries */
3469                 context->rsvd_bits_mask[0][1] = 0;
3470                 context->rsvd_bits_mask[0][0] = 0;
3471                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3472
3473                 if (!is_pse(vcpu)) {
3474                         context->rsvd_bits_mask[1][1] = 0;
3475                         break;
3476                 }
3477
3478                 if (is_cpuid_PSE36())
3479                         /* 36bits PSE 4MB page */
3480                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3481                 else
3482                         /* 32 bits PSE 4MB page */
3483                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3484                 break;
3485         case PT32E_ROOT_LEVEL:
3486                 context->rsvd_bits_mask[0][2] =
3487                         rsvd_bits(maxphyaddr, 63) |
3488                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3489                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3490                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3491                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3492                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3493                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3494                         rsvd_bits(maxphyaddr, 62) |
3495                         rsvd_bits(13, 20);              /* large page */
3496                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3497                 break;
3498         case PT64_ROOT_LEVEL:
3499                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3500                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3501                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3502                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3503                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3504                         rsvd_bits(maxphyaddr, 51);
3505                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3506                         rsvd_bits(maxphyaddr, 51);
3507                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3508                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3509                         rsvd_bits(maxphyaddr, 51) |
3510                         rsvd_bits(13, 29);
3511                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3512                         rsvd_bits(maxphyaddr, 51) |
3513                         rsvd_bits(13, 20);              /* large page */
3514                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3515                 break;
3516         }
3517 }
3518
3519 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3520 {
3521         unsigned bit, byte, pfec;
3522         u8 map;
3523         bool fault, x, w, u, wf, uf, ff, smep;
3524
3525         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3526         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3527                 pfec = byte << 1;
3528                 map = 0;
3529                 wf = pfec & PFERR_WRITE_MASK;
3530                 uf = pfec & PFERR_USER_MASK;
3531                 ff = pfec & PFERR_FETCH_MASK;
3532                 for (bit = 0; bit < 8; ++bit) {
3533                         x = bit & ACC_EXEC_MASK;
3534                         w = bit & ACC_WRITE_MASK;
3535                         u = bit & ACC_USER_MASK;
3536
3537                         /* Not really needed: !nx will cause pte.nx to fault */
3538                         x |= !mmu->nx;
3539                         /* Allow supervisor writes if !cr0.wp */
3540                         w |= !is_write_protection(vcpu) && !uf;
3541                         /* Disallow supervisor fetches of user code if cr4.smep */
3542                         x &= !(smep && u && !uf);
3543
3544                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3545                         map |= fault << bit;
3546                 }
3547                 mmu->permissions[byte] = map;
3548         }
3549 }
3550
3551 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3552 {
3553         u8 map;
3554         unsigned level, root_level = mmu->root_level;
3555         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3556
3557         if (root_level == PT32E_ROOT_LEVEL)
3558                 --root_level;
3559         /* PT_PAGE_TABLE_LEVEL always terminates */
3560         map = 1 | (1 << ps_set_index);
3561         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3562                 if (level <= PT_PDPE_LEVEL
3563                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3564                         map |= 1 << (ps_set_index | (level - 1));
3565         }
3566         mmu->last_pte_bitmap = map;
3567 }
3568
3569 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3570                                         struct kvm_mmu *context,
3571                                         int level)
3572 {
3573         context->nx = is_nx(vcpu);
3574         context->root_level = level;
3575
3576         reset_rsvds_bits_mask(vcpu, context);
3577         update_permission_bitmask(vcpu, context);
3578         update_last_pte_bitmap(vcpu, context);
3579
3580         ASSERT(is_pae(vcpu));
3581         context->new_cr3 = paging_new_cr3;
3582         context->page_fault = paging64_page_fault;
3583         context->gva_to_gpa = paging64_gva_to_gpa;
3584         context->sync_page = paging64_sync_page;
3585         context->invlpg = paging64_invlpg;
3586         context->update_pte = paging64_update_pte;
3587         context->free = paging_free;
3588         context->shadow_root_level = level;
3589         context->root_hpa = INVALID_PAGE;
3590         context->direct_map = false;
3591         return 0;
3592 }
3593
3594 static int paging64_init_context(struct kvm_vcpu *vcpu,
3595                                  struct kvm_mmu *context)
3596 {
3597         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3598 }
3599
3600 static int paging32_init_context(struct kvm_vcpu *vcpu,
3601                                  struct kvm_mmu *context)
3602 {
3603         context->nx = false;
3604         context->root_level = PT32_ROOT_LEVEL;
3605
3606         reset_rsvds_bits_mask(vcpu, context);
3607         update_permission_bitmask(vcpu, context);
3608         update_last_pte_bitmap(vcpu, context);
3609
3610         context->new_cr3 = paging_new_cr3;
3611         context->page_fault = paging32_page_fault;
3612         context->gva_to_gpa = paging32_gva_to_gpa;
3613         context->free = paging_free;
3614         context->sync_page = paging32_sync_page;
3615         context->invlpg = paging32_invlpg;
3616         context->update_pte = paging32_update_pte;
3617         context->shadow_root_level = PT32E_ROOT_LEVEL;
3618         context->root_hpa = INVALID_PAGE;
3619         context->direct_map = false;
3620         return 0;
3621 }
3622
3623 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3624                                   struct kvm_mmu *context)
3625 {
3626         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3627 }
3628
3629 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3630 {
3631         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3632
3633         context->base_role.word = 0;
3634         context->new_cr3 = nonpaging_new_cr3;
3635         context->page_fault = tdp_page_fault;
3636         context->free = nonpaging_free;
3637         context->sync_page = nonpaging_sync_page;
3638         context->invlpg = nonpaging_invlpg;
3639         context->update_pte = nonpaging_update_pte;
3640         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3641         context->root_hpa = INVALID_PAGE;
3642         context->direct_map = true;
3643         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3644         context->get_cr3 = get_cr3;
3645         context->get_pdptr = kvm_pdptr_read;
3646         context->inject_page_fault = kvm_inject_page_fault;
3647
3648         if (!is_paging(vcpu)) {
3649                 context->nx = false;
3650                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3651                 context->root_level = 0;
3652         } else if (is_long_mode(vcpu)) {
3653                 context->nx = is_nx(vcpu);
3654                 context->root_level = PT64_ROOT_LEVEL;
3655                 reset_rsvds_bits_mask(vcpu, context);
3656                 context->gva_to_gpa = paging64_gva_to_gpa;
3657         } else if (is_pae(vcpu)) {
3658                 context->nx = is_nx(vcpu);
3659                 context->root_level = PT32E_ROOT_LEVEL;
3660                 reset_rsvds_bits_mask(vcpu, context);
3661                 context->gva_to_gpa = paging64_gva_to_gpa;
3662         } else {
3663                 context->nx = false;
3664                 context->root_level = PT32_ROOT_LEVEL;
3665                 reset_rsvds_bits_mask(vcpu, context);
3666                 context->gva_to_gpa = paging32_gva_to_gpa;
3667         }
3668
3669         update_permission_bitmask(vcpu, context);
3670         update_last_pte_bitmap(vcpu, context);
3671
3672         return 0;
3673 }
3674
3675 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3676 {
3677         int r;
3678         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3679         ASSERT(vcpu);
3680         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3681
3682         if (!is_paging(vcpu))
3683                 r = nonpaging_init_context(vcpu, context);
3684         else if (is_long_mode(vcpu))
3685                 r = paging64_init_context(vcpu, context);
3686         else if (is_pae(vcpu))
3687                 r = paging32E_init_context(vcpu, context);
3688         else
3689                 r = paging32_init_context(vcpu, context);
3690
3691         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3692         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3693         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3694         vcpu->arch.mmu.base_role.smep_andnot_wp
3695                 = smep && !is_write_protection(vcpu);
3696
3697         return r;
3698 }
3699 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3700
3701 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3702 {
3703         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3704
3705         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3706         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3707         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3708         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3709
3710         return r;
3711 }
3712
3713 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3714 {
3715         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3716
3717         g_context->get_cr3           = get_cr3;
3718         g_context->get_pdptr         = kvm_pdptr_read;
3719         g_context->inject_page_fault = kvm_inject_page_fault;
3720
3721         /*
3722          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3723          * translation of l2_gpa to l1_gpa addresses is done using the
3724          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3725          * functions between mmu and nested_mmu are swapped.
3726          */
3727         if (!is_paging(vcpu)) {
3728                 g_context->nx = false;
3729                 g_context->root_level = 0;
3730                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3731         } else if (is_long_mode(vcpu)) {
3732                 g_context->nx = is_nx(vcpu);
3733                 g_context->root_level = PT64_ROOT_LEVEL;
3734                 reset_rsvds_bits_mask(vcpu, g_context);
3735                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3736         } else if (is_pae(vcpu)) {
3737                 g_context->nx = is_nx(vcpu);
3738                 g_context->root_level = PT32E_ROOT_LEVEL;
3739                 reset_rsvds_bits_mask(vcpu, g_context);
3740                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3741         } else {
3742                 g_context->nx = false;
3743                 g_context->root_level = PT32_ROOT_LEVEL;
3744                 reset_rsvds_bits_mask(vcpu, g_context);
3745                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3746         }
3747
3748         update_permission_bitmask(vcpu, g_context);
3749         update_last_pte_bitmap(vcpu, g_context);
3750
3751         return 0;
3752 }
3753
3754 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3755 {
3756         if (mmu_is_nested(vcpu))
3757                 return init_kvm_nested_mmu(vcpu);
3758         else if (tdp_enabled)
3759                 return init_kvm_tdp_mmu(vcpu);
3760         else
3761                 return init_kvm_softmmu(vcpu);
3762 }
3763
3764 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3765 {
3766         ASSERT(vcpu);
3767         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3768                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3769                 vcpu->arch.mmu.free(vcpu);
3770 }
3771
3772 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3773 {
3774         destroy_kvm_mmu(vcpu);
3775         return init_kvm_mmu(vcpu);
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3778
3779 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3780 {
3781         int r;
3782
3783         r = mmu_topup_memory_caches(vcpu);
3784         if (r)
3785                 goto out;
3786         r = mmu_alloc_roots(vcpu);
3787         kvm_mmu_sync_roots(vcpu);
3788         if (r)
3789                 goto out;
3790         /* set_cr3() should ensure TLB has been flushed */
3791         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3792 out:
3793         return r;
3794 }
3795 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3796
3797 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3798 {
3799         mmu_free_roots(vcpu);
3800 }
3801 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3802
3803 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3804                                   struct kvm_mmu_page *sp, u64 *spte,
3805                                   const void *new)
3806 {
3807         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3808                 ++vcpu->kvm->stat.mmu_pde_zapped;
3809                 return;
3810         }
3811
3812         ++vcpu->kvm->stat.mmu_pte_updated;
3813         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3814 }
3815
3816 static bool need_remote_flush(u64 old, u64 new)
3817 {
3818         if (!is_shadow_present_pte(old))
3819                 return false;
3820         if (!is_shadow_present_pte(new))
3821                 return true;
3822         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3823                 return true;
3824         old ^= PT64_NX_MASK;
3825         new ^= PT64_NX_MASK;
3826         return (old & ~new & PT64_PERM_MASK) != 0;
3827 }
3828
3829 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3830                                     bool remote_flush, bool local_flush)
3831 {
3832         if (zap_page)
3833                 return;
3834
3835         if (remote_flush)
3836                 kvm_flush_remote_tlbs(vcpu->kvm);
3837         else if (local_flush)
3838                 kvm_mmu_flush_tlb(vcpu);
3839 }
3840
3841 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3842                                     const u8 *new, int *bytes)
3843 {
3844         u64 gentry;
3845         int r;
3846
3847         /*
3848          * Assume that the pte write on a page table of the same type
3849          * as the current vcpu paging mode since we update the sptes only
3850          * when they have the same mode.
3851          */
3852         if (is_pae(vcpu) && *bytes == 4) {
3853                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3854                 *gpa &= ~(gpa_t)7;
3855                 *bytes = 8;
3856                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3857                 if (r)
3858                         gentry = 0;
3859                 new = (const u8 *)&gentry;
3860         }
3861
3862         switch (*bytes) {
3863         case 4:
3864                 gentry = *(const u32 *)new;
3865                 break;
3866         case 8:
3867                 gentry = *(const u64 *)new;
3868                 break;
3869         default:
3870                 gentry = 0;
3871                 break;
3872         }
3873
3874         return gentry;
3875 }
3876
3877 /*
3878  * If we're seeing too many writes to a page, it may no longer be a page table,
3879  * or we may be forking, in which case it is better to unmap the page.
3880  */
3881 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3882 {
3883         /*
3884          * Skip write-flooding detected for the sp whose level is 1, because
3885          * it can become unsync, then the guest page is not write-protected.
3886          */
3887         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3888                 return false;
3889
3890         return ++sp->write_flooding_count >= 3;
3891 }
3892
3893 /*
3894  * Misaligned accesses are too much trouble to fix up; also, they usually
3895  * indicate a page is not used as a page table.
3896  */
3897 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3898                                     int bytes)
3899 {
3900         unsigned offset, pte_size, misaligned;
3901
3902         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3903                  gpa, bytes, sp->role.word);
3904
3905         offset = offset_in_page(gpa);
3906         pte_size = sp->role.cr4_pae ? 8 : 4;
3907
3908         /*
3909          * Sometimes, the OS only writes the last one bytes to update status
3910          * bits, for example, in linux, andb instruction is used in clear_bit().
3911          */
3912         if (!(offset & (pte_size - 1)) && bytes == 1)
3913                 return false;
3914
3915         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3916         misaligned |= bytes < 4;
3917
3918         return misaligned;
3919 }
3920
3921 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3922 {
3923         unsigned page_offset, quadrant;
3924         u64 *spte;
3925         int level;
3926
3927         page_offset = offset_in_page(gpa);
3928         level = sp->role.level;
3929         *nspte = 1;
3930         if (!sp->role.cr4_pae) {
3931                 page_offset <<= 1;      /* 32->64 */
3932                 /*
3933                  * A 32-bit pde maps 4MB while the shadow pdes map
3934                  * only 2MB.  So we need to double the offset again
3935                  * and zap two pdes instead of one.
3936                  */
3937                 if (level == PT32_ROOT_LEVEL) {
3938                         page_offset &= ~7; /* kill rounding error */
3939                         page_offset <<= 1;
3940                         *nspte = 2;
3941                 }
3942                 quadrant = page_offset >> PAGE_SHIFT;
3943                 page_offset &= ~PAGE_MASK;
3944                 if (quadrant != sp->role.quadrant)
3945                         return NULL;
3946         }
3947
3948         spte = &sp->spt[page_offset / sizeof(*spte)];
3949         return spte;
3950 }
3951
3952 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3953                        const u8 *new, int bytes)
3954 {
3955         gfn_t gfn = gpa >> PAGE_SHIFT;
3956         union kvm_mmu_page_role mask = { .word = 0 };
3957         struct kvm_mmu_page *sp;
3958         LIST_HEAD(invalid_list);
3959         u64 entry, gentry, *spte;
3960         int npte;
3961         bool remote_flush, local_flush, zap_page;
3962
3963         /*
3964          * If we don't have indirect shadow pages, it means no page is
3965          * write-protected, so we can exit simply.
3966          */
3967         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3968                 return;
3969
3970         zap_page = remote_flush = local_flush = false;
3971
3972         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3973
3974         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3975
3976         /*
3977          * No need to care whether allocation memory is successful
3978          * or not since pte prefetch is skiped if it does not have
3979          * enough objects in the cache.
3980          */
3981         mmu_topup_memory_caches(vcpu);
3982
3983         spin_lock(&vcpu->kvm->mmu_lock);
3984         ++vcpu->kvm->stat.mmu_pte_write;
3985         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3986
3987         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3988         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
3989                 if (detect_write_misaligned(sp, gpa, bytes) ||
3990                       detect_write_flooding(sp)) {
3991                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3992                                                      &invalid_list);
3993                         ++vcpu->kvm->stat.mmu_flooded;
3994                         continue;
3995                 }
3996
3997                 spte = get_written_sptes(sp, gpa, &npte);
3998                 if (!spte)
3999                         continue;
4000
4001                 local_flush = true;
4002                 while (npte--) {
4003                         entry = *spte;
4004                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4005                         if (gentry &&
4006                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4007                               & mask.word) && rmap_can_add(vcpu))
4008                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4009                         if (need_remote_flush(entry, *spte))
4010                                 remote_flush = true;
4011                         ++spte;
4012                 }
4013         }
4014         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4015         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4016         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4017         spin_unlock(&vcpu->kvm->mmu_lock);
4018 }
4019
4020 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4021 {
4022         gpa_t gpa;
4023         int r;
4024
4025         if (vcpu->arch.mmu.direct_map)
4026                 return 0;
4027
4028         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4029
4030         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4031
4032         return r;
4033 }
4034 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4035
4036 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4037 {
4038         LIST_HEAD(invalid_list);
4039
4040         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4041                 return;
4042
4043         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4044                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4045                         break;
4046
4047                 ++vcpu->kvm->stat.mmu_recycled;
4048         }
4049         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4050 }
4051
4052 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4053 {
4054         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4055                 return vcpu_match_mmio_gpa(vcpu, addr);
4056
4057         return vcpu_match_mmio_gva(vcpu, addr);
4058 }
4059
4060 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4061                        void *insn, int insn_len)
4062 {
4063         int r, emulation_type = EMULTYPE_RETRY;
4064         enum emulation_result er;
4065
4066         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4067         if (r < 0)
4068                 goto out;
4069
4070         if (!r) {
4071                 r = 1;
4072                 goto out;
4073         }
4074
4075         if (is_mmio_page_fault(vcpu, cr2))
4076                 emulation_type = 0;
4077
4078         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4079
4080         switch (er) {
4081         case EMULATE_DONE:
4082                 return 1;
4083         case EMULATE_DO_MMIO:
4084                 ++vcpu->stat.mmio_exits;
4085                 /* fall through */
4086         case EMULATE_FAIL:
4087                 return 0;
4088         default:
4089                 BUG();
4090         }
4091 out:
4092         return r;
4093 }
4094 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4095
4096 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4097 {
4098         vcpu->arch.mmu.invlpg(vcpu, gva);
4099         kvm_mmu_flush_tlb(vcpu);
4100         ++vcpu->stat.invlpg;
4101 }
4102 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4103
4104 void kvm_enable_tdp(void)
4105 {
4106         tdp_enabled = true;
4107 }
4108 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4109
4110 void kvm_disable_tdp(void)
4111 {
4112         tdp_enabled = false;
4113 }
4114 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4115
4116 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4117 {
4118         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4119         if (vcpu->arch.mmu.lm_root != NULL)
4120                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4121 }
4122
4123 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4124 {
4125         struct page *page;
4126         int i;
4127
4128         ASSERT(vcpu);
4129
4130         /*
4131          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4132          * Therefore we need to allocate shadow page tables in the first
4133          * 4GB of memory, which happens to fit the DMA32 zone.
4134          */
4135         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4136         if (!page)
4137                 return -ENOMEM;
4138
4139         vcpu->arch.mmu.pae_root = page_address(page);
4140         for (i = 0; i < 4; ++i)
4141                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4142
4143         return 0;
4144 }
4145
4146 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4147 {
4148         ASSERT(vcpu);
4149
4150         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4151         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4152         vcpu->arch.mmu.translate_gpa = translate_gpa;
4153         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4154
4155         return alloc_mmu_pages(vcpu);
4156 }
4157
4158 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4159 {
4160         ASSERT(vcpu);
4161         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4162
4163         return init_kvm_mmu(vcpu);
4164 }
4165
4166 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4167 {
4168         struct kvm_memory_slot *memslot;
4169         gfn_t last_gfn;
4170         int i;
4171
4172         memslot = id_to_memslot(kvm->memslots, slot);
4173         last_gfn = memslot->base_gfn + memslot->npages - 1;
4174
4175         spin_lock(&kvm->mmu_lock);
4176
4177         for (i = PT_PAGE_TABLE_LEVEL;
4178              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4179                 unsigned long *rmapp;
4180                 unsigned long last_index, index;
4181
4182                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4183                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4184
4185                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4186                         if (*rmapp)
4187                                 __rmap_write_protect(kvm, rmapp, false);
4188
4189                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4190                                 kvm_flush_remote_tlbs(kvm);
4191                                 cond_resched_lock(&kvm->mmu_lock);
4192                         }
4193                 }
4194         }
4195
4196         kvm_flush_remote_tlbs(kvm);
4197         spin_unlock(&kvm->mmu_lock);
4198 }
4199
4200 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4201 {
4202         struct kvm_mmu_page *sp, *node;
4203         LIST_HEAD(invalid_list);
4204
4205 restart:
4206         list_for_each_entry_safe_reverse(sp, node,
4207               &kvm->arch.active_mmu_pages, link) {
4208                 /*
4209                  * No obsolete page exists before new created page since
4210                  * active_mmu_pages is the FIFO list.
4211                  */
4212                 if (!is_obsolete_sp(kvm, sp))
4213                         break;
4214
4215                 /*
4216                  * Do not repeatedly zap a root page to avoid unnecessary
4217                  * KVM_REQ_MMU_RELOAD, otherwise we may not be able to
4218                  * progress:
4219                  *    vcpu 0                        vcpu 1
4220                  *                         call vcpu_enter_guest():
4221                  *                            1): handle KVM_REQ_MMU_RELOAD
4222                  *                                and require mmu-lock to
4223                  *                                load mmu
4224                  * repeat:
4225                  *    1): zap root page and
4226                  *        send KVM_REQ_MMU_RELOAD
4227                  *
4228                  *    2): if (cond_resched_lock(mmu-lock))
4229                  *
4230                  *                            2): hold mmu-lock and load mmu
4231                  *
4232                  *                            3): see KVM_REQ_MMU_RELOAD bit
4233                  *                                on vcpu->requests is set
4234                  *                                then return 1 to call
4235                  *                                vcpu_enter_guest() again.
4236                  *            goto repeat;
4237                  *
4238                  * Since we are reversely walking the list and the invalid
4239                  * list will be moved to the head, skip the invalid page
4240                  * can help us to avoid the infinity list walking.
4241                  */
4242                 if (sp->role.invalid)
4243                         continue;
4244
4245                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4246                         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4247                         cond_resched_lock(&kvm->mmu_lock);
4248                         goto restart;
4249                 }
4250
4251                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4252                         goto restart;
4253         }
4254
4255         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4256 }
4257
4258 /*
4259  * Fast invalidate all shadow pages and use lock-break technique
4260  * to zap obsolete pages.
4261  *
4262  * It's required when memslot is being deleted or VM is being
4263  * destroyed, in these cases, we should ensure that KVM MMU does
4264  * not use any resource of the being-deleted slot or all slots
4265  * after calling the function.
4266  */
4267 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4268 {
4269         spin_lock(&kvm->mmu_lock);
4270         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4271         kvm->arch.mmu_valid_gen++;
4272
4273         kvm_zap_obsolete_pages(kvm);
4274         spin_unlock(&kvm->mmu_lock);
4275 }
4276
4277 void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4278 {
4279         struct kvm_mmu_page *sp, *node;
4280         LIST_HEAD(invalid_list);
4281
4282         spin_lock(&kvm->mmu_lock);
4283 restart:
4284         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4285                 if (!sp->mmio_cached)
4286                         continue;
4287                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4288                         goto restart;
4289         }
4290
4291         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4292         spin_unlock(&kvm->mmu_lock);
4293 }
4294
4295 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4296 {
4297         struct kvm *kvm;
4298         int nr_to_scan = sc->nr_to_scan;
4299
4300         if (nr_to_scan == 0)
4301                 goto out;
4302
4303         raw_spin_lock(&kvm_lock);
4304
4305         list_for_each_entry(kvm, &vm_list, vm_list) {
4306                 int idx;
4307                 LIST_HEAD(invalid_list);
4308
4309                 /*
4310                  * Never scan more than sc->nr_to_scan VM instances.
4311                  * Will not hit this condition practically since we do not try
4312                  * to shrink more than one VM and it is very unlikely to see
4313                  * !n_used_mmu_pages so many times.
4314                  */
4315                 if (!nr_to_scan--)
4316                         break;
4317                 /*
4318                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4319                  * here. We may skip a VM instance errorneosly, but we do not
4320                  * want to shrink a VM that only started to populate its MMU
4321                  * anyway.
4322                  */
4323                 if (!kvm->arch.n_used_mmu_pages)
4324                         continue;
4325
4326                 idx = srcu_read_lock(&kvm->srcu);
4327                 spin_lock(&kvm->mmu_lock);
4328
4329                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4330                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4331
4332                 spin_unlock(&kvm->mmu_lock);
4333                 srcu_read_unlock(&kvm->srcu, idx);
4334
4335                 list_move_tail(&kvm->vm_list, &vm_list);
4336                 break;
4337         }
4338
4339         raw_spin_unlock(&kvm_lock);
4340
4341 out:
4342         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4343 }
4344
4345 static struct shrinker mmu_shrinker = {
4346         .shrink = mmu_shrink,
4347         .seeks = DEFAULT_SEEKS * 10,
4348 };
4349
4350 static void mmu_destroy_caches(void)
4351 {
4352         if (pte_list_desc_cache)
4353                 kmem_cache_destroy(pte_list_desc_cache);
4354         if (mmu_page_header_cache)
4355                 kmem_cache_destroy(mmu_page_header_cache);
4356 }
4357
4358 int kvm_mmu_module_init(void)
4359 {
4360         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4361                                             sizeof(struct pte_list_desc),
4362                                             0, 0, NULL);
4363         if (!pte_list_desc_cache)
4364                 goto nomem;
4365
4366         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4367                                                   sizeof(struct kvm_mmu_page),
4368                                                   0, 0, NULL);
4369         if (!mmu_page_header_cache)
4370                 goto nomem;
4371
4372         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4373                 goto nomem;
4374
4375         register_shrinker(&mmu_shrinker);
4376
4377         return 0;
4378
4379 nomem:
4380         mmu_destroy_caches();
4381         return -ENOMEM;
4382 }
4383
4384 /*
4385  * Caculate mmu pages needed for kvm.
4386  */
4387 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4388 {
4389         unsigned int nr_mmu_pages;
4390         unsigned int  nr_pages = 0;
4391         struct kvm_memslots *slots;
4392         struct kvm_memory_slot *memslot;
4393
4394         slots = kvm_memslots(kvm);
4395
4396         kvm_for_each_memslot(memslot, slots)
4397                 nr_pages += memslot->npages;
4398
4399         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4400         nr_mmu_pages = max(nr_mmu_pages,
4401                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4402
4403         return nr_mmu_pages;
4404 }
4405
4406 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4407 {
4408         struct kvm_shadow_walk_iterator iterator;
4409         u64 spte;
4410         int nr_sptes = 0;
4411
4412         walk_shadow_page_lockless_begin(vcpu);
4413         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4414                 sptes[iterator.level-1] = spte;
4415                 nr_sptes++;
4416                 if (!is_shadow_present_pte(spte))
4417                         break;
4418         }
4419         walk_shadow_page_lockless_end(vcpu);
4420
4421         return nr_sptes;
4422 }
4423 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4424
4425 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4426 {
4427         ASSERT(vcpu);
4428
4429         destroy_kvm_mmu(vcpu);
4430         free_mmu_pages(vcpu);
4431         mmu_free_memory_caches(vcpu);
4432 }
4433
4434 void kvm_mmu_module_exit(void)
4435 {
4436         mmu_destroy_caches();
4437         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4438         unregister_shrinker(&mmu_shrinker);
4439         mmu_audit_disable();
4440 }