]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/mmu.c
KVM: MMU: add tracepoint for check_mmio_spte
[~andy/linux] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 /*
201  * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202  * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203  * number.
204  */
205 #define MMIO_SPTE_GEN_LOW_SHIFT         3
206 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
207
208 #define MMIO_GEN_SHIFT                  19
209 #define MMIO_GEN_LOW_SHIFT              9
210 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 1)
211 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
212 #define MMIO_MAX_GEN                    ((1 << MMIO_GEN_SHIFT) - 1)
213
214 static u64 generation_mmio_spte_mask(unsigned int gen)
215 {
216         u64 mask;
217
218         WARN_ON(gen > MMIO_MAX_GEN);
219
220         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
221         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
222         return mask;
223 }
224
225 static unsigned int get_mmio_spte_generation(u64 spte)
226 {
227         unsigned int gen;
228
229         spte &= ~shadow_mmio_mask;
230
231         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
232         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
233         return gen;
234 }
235
236 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
237 {
238         return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
239 }
240
241 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
242                            unsigned access)
243 {
244         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
245         unsigned int gen = kvm_current_mmio_generation(kvm);
246         u64 mask = generation_mmio_spte_mask(gen);
247
248         access &= ACC_WRITE_MASK | ACC_USER_MASK;
249         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
250         sp->mmio_cached = true;
251
252         trace_mark_mmio_spte(sptep, gfn, access, gen);
253         mmu_spte_set(sptep, mask);
254 }
255
256 static bool is_mmio_spte(u64 spte)
257 {
258         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
259 }
260
261 static gfn_t get_mmio_spte_gfn(u64 spte)
262 {
263         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
264         return (spte & ~mask) >> PAGE_SHIFT;
265 }
266
267 static unsigned get_mmio_spte_access(u64 spte)
268 {
269         u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
270         return (spte & ~mask) & ~PAGE_MASK;
271 }
272
273 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
274                           pfn_t pfn, unsigned access)
275 {
276         if (unlikely(is_noslot_pfn(pfn))) {
277                 mark_mmio_spte(kvm, sptep, gfn, access);
278                 return true;
279         }
280
281         return false;
282 }
283
284 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
285 {
286         unsigned int kvm_gen, spte_gen;
287
288         kvm_gen = kvm_current_mmio_generation(kvm);
289         spte_gen = get_mmio_spte_generation(spte);
290
291         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
292         return likely(kvm_gen == spte_gen);
293 }
294
295 static inline u64 rsvd_bits(int s, int e)
296 {
297         return ((1ULL << (e - s + 1)) - 1) << s;
298 }
299
300 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
301                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
302 {
303         shadow_user_mask = user_mask;
304         shadow_accessed_mask = accessed_mask;
305         shadow_dirty_mask = dirty_mask;
306         shadow_nx_mask = nx_mask;
307         shadow_x_mask = x_mask;
308 }
309 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
310
311 static int is_cpuid_PSE36(void)
312 {
313         return 1;
314 }
315
316 static int is_nx(struct kvm_vcpu *vcpu)
317 {
318         return vcpu->arch.efer & EFER_NX;
319 }
320
321 static int is_shadow_present_pte(u64 pte)
322 {
323         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
324 }
325
326 static int is_large_pte(u64 pte)
327 {
328         return pte & PT_PAGE_SIZE_MASK;
329 }
330
331 static int is_dirty_gpte(unsigned long pte)
332 {
333         return pte & PT_DIRTY_MASK;
334 }
335
336 static int is_rmap_spte(u64 pte)
337 {
338         return is_shadow_present_pte(pte);
339 }
340
341 static int is_last_spte(u64 pte, int level)
342 {
343         if (level == PT_PAGE_TABLE_LEVEL)
344                 return 1;
345         if (is_large_pte(pte))
346                 return 1;
347         return 0;
348 }
349
350 static pfn_t spte_to_pfn(u64 pte)
351 {
352         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
353 }
354
355 static gfn_t pse36_gfn_delta(u32 gpte)
356 {
357         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
358
359         return (gpte & PT32_DIR_PSE36_MASK) << shift;
360 }
361
362 #ifdef CONFIG_X86_64
363 static void __set_spte(u64 *sptep, u64 spte)
364 {
365         *sptep = spte;
366 }
367
368 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
369 {
370         *sptep = spte;
371 }
372
373 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374 {
375         return xchg(sptep, spte);
376 }
377
378 static u64 __get_spte_lockless(u64 *sptep)
379 {
380         return ACCESS_ONCE(*sptep);
381 }
382
383 static bool __check_direct_spte_mmio_pf(u64 spte)
384 {
385         /* It is valid if the spte is zapped. */
386         return spte == 0ull;
387 }
388 #else
389 union split_spte {
390         struct {
391                 u32 spte_low;
392                 u32 spte_high;
393         };
394         u64 spte;
395 };
396
397 static void count_spte_clear(u64 *sptep, u64 spte)
398 {
399         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
400
401         if (is_shadow_present_pte(spte))
402                 return;
403
404         /* Ensure the spte is completely set before we increase the count */
405         smp_wmb();
406         sp->clear_spte_count++;
407 }
408
409 static void __set_spte(u64 *sptep, u64 spte)
410 {
411         union split_spte *ssptep, sspte;
412
413         ssptep = (union split_spte *)sptep;
414         sspte = (union split_spte)spte;
415
416         ssptep->spte_high = sspte.spte_high;
417
418         /*
419          * If we map the spte from nonpresent to present, We should store
420          * the high bits firstly, then set present bit, so cpu can not
421          * fetch this spte while we are setting the spte.
422          */
423         smp_wmb();
424
425         ssptep->spte_low = sspte.spte_low;
426 }
427
428 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
429 {
430         union split_spte *ssptep, sspte;
431
432         ssptep = (union split_spte *)sptep;
433         sspte = (union split_spte)spte;
434
435         ssptep->spte_low = sspte.spte_low;
436
437         /*
438          * If we map the spte from present to nonpresent, we should clear
439          * present bit firstly to avoid vcpu fetch the old high bits.
440          */
441         smp_wmb();
442
443         ssptep->spte_high = sspte.spte_high;
444         count_spte_clear(sptep, spte);
445 }
446
447 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
448 {
449         union split_spte *ssptep, sspte, orig;
450
451         ssptep = (union split_spte *)sptep;
452         sspte = (union split_spte)spte;
453
454         /* xchg acts as a barrier before the setting of the high bits */
455         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
456         orig.spte_high = ssptep->spte_high;
457         ssptep->spte_high = sspte.spte_high;
458         count_spte_clear(sptep, spte);
459
460         return orig.spte;
461 }
462
463 /*
464  * The idea using the light way get the spte on x86_32 guest is from
465  * gup_get_pte(arch/x86/mm/gup.c).
466  * The difference is we can not catch the spte tlb flush if we leave
467  * guest mode, so we emulate it by increase clear_spte_count when spte
468  * is cleared.
469  */
470 static u64 __get_spte_lockless(u64 *sptep)
471 {
472         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
473         union split_spte spte, *orig = (union split_spte *)sptep;
474         int count;
475
476 retry:
477         count = sp->clear_spte_count;
478         smp_rmb();
479
480         spte.spte_low = orig->spte_low;
481         smp_rmb();
482
483         spte.spte_high = orig->spte_high;
484         smp_rmb();
485
486         if (unlikely(spte.spte_low != orig->spte_low ||
487               count != sp->clear_spte_count))
488                 goto retry;
489
490         return spte.spte;
491 }
492
493 static bool __check_direct_spte_mmio_pf(u64 spte)
494 {
495         union split_spte sspte = (union split_spte)spte;
496         u32 high_mmio_mask = shadow_mmio_mask >> 32;
497
498         /* It is valid if the spte is zapped. */
499         if (spte == 0ull)
500                 return true;
501
502         /* It is valid if the spte is being zapped. */
503         if (sspte.spte_low == 0ull &&
504             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
505                 return true;
506
507         return false;
508 }
509 #endif
510
511 static bool spte_is_locklessly_modifiable(u64 spte)
512 {
513         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
514                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
515 }
516
517 static bool spte_has_volatile_bits(u64 spte)
518 {
519         /*
520          * Always atomicly update spte if it can be updated
521          * out of mmu-lock, it can ensure dirty bit is not lost,
522          * also, it can help us to get a stable is_writable_pte()
523          * to ensure tlb flush is not missed.
524          */
525         if (spte_is_locklessly_modifiable(spte))
526                 return true;
527
528         if (!shadow_accessed_mask)
529                 return false;
530
531         if (!is_shadow_present_pte(spte))
532                 return false;
533
534         if ((spte & shadow_accessed_mask) &&
535               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
536                 return false;
537
538         return true;
539 }
540
541 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
542 {
543         return (old_spte & bit_mask) && !(new_spte & bit_mask);
544 }
545
546 /* Rules for using mmu_spte_set:
547  * Set the sptep from nonpresent to present.
548  * Note: the sptep being assigned *must* be either not present
549  * or in a state where the hardware will not attempt to update
550  * the spte.
551  */
552 static void mmu_spte_set(u64 *sptep, u64 new_spte)
553 {
554         WARN_ON(is_shadow_present_pte(*sptep));
555         __set_spte(sptep, new_spte);
556 }
557
558 /* Rules for using mmu_spte_update:
559  * Update the state bits, it means the mapped pfn is not changged.
560  *
561  * Whenever we overwrite a writable spte with a read-only one we
562  * should flush remote TLBs. Otherwise rmap_write_protect
563  * will find a read-only spte, even though the writable spte
564  * might be cached on a CPU's TLB, the return value indicates this
565  * case.
566  */
567 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
568 {
569         u64 old_spte = *sptep;
570         bool ret = false;
571
572         WARN_ON(!is_rmap_spte(new_spte));
573
574         if (!is_shadow_present_pte(old_spte)) {
575                 mmu_spte_set(sptep, new_spte);
576                 return ret;
577         }
578
579         if (!spte_has_volatile_bits(old_spte))
580                 __update_clear_spte_fast(sptep, new_spte);
581         else
582                 old_spte = __update_clear_spte_slow(sptep, new_spte);
583
584         /*
585          * For the spte updated out of mmu-lock is safe, since
586          * we always atomicly update it, see the comments in
587          * spte_has_volatile_bits().
588          */
589         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
590                 ret = true;
591
592         if (!shadow_accessed_mask)
593                 return ret;
594
595         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
596                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
597         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
598                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
599
600         return ret;
601 }
602
603 /*
604  * Rules for using mmu_spte_clear_track_bits:
605  * It sets the sptep from present to nonpresent, and track the
606  * state bits, it is used to clear the last level sptep.
607  */
608 static int mmu_spte_clear_track_bits(u64 *sptep)
609 {
610         pfn_t pfn;
611         u64 old_spte = *sptep;
612
613         if (!spte_has_volatile_bits(old_spte))
614                 __update_clear_spte_fast(sptep, 0ull);
615         else
616                 old_spte = __update_clear_spte_slow(sptep, 0ull);
617
618         if (!is_rmap_spte(old_spte))
619                 return 0;
620
621         pfn = spte_to_pfn(old_spte);
622
623         /*
624          * KVM does not hold the refcount of the page used by
625          * kvm mmu, before reclaiming the page, we should
626          * unmap it from mmu first.
627          */
628         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
629
630         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
631                 kvm_set_pfn_accessed(pfn);
632         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
633                 kvm_set_pfn_dirty(pfn);
634         return 1;
635 }
636
637 /*
638  * Rules for using mmu_spte_clear_no_track:
639  * Directly clear spte without caring the state bits of sptep,
640  * it is used to set the upper level spte.
641  */
642 static void mmu_spte_clear_no_track(u64 *sptep)
643 {
644         __update_clear_spte_fast(sptep, 0ull);
645 }
646
647 static u64 mmu_spte_get_lockless(u64 *sptep)
648 {
649         return __get_spte_lockless(sptep);
650 }
651
652 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
653 {
654         /*
655          * Prevent page table teardown by making any free-er wait during
656          * kvm_flush_remote_tlbs() IPI to all active vcpus.
657          */
658         local_irq_disable();
659         vcpu->mode = READING_SHADOW_PAGE_TABLES;
660         /*
661          * Make sure a following spte read is not reordered ahead of the write
662          * to vcpu->mode.
663          */
664         smp_mb();
665 }
666
667 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
668 {
669         /*
670          * Make sure the write to vcpu->mode is not reordered in front of
671          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
672          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
673          */
674         smp_mb();
675         vcpu->mode = OUTSIDE_GUEST_MODE;
676         local_irq_enable();
677 }
678
679 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
680                                   struct kmem_cache *base_cache, int min)
681 {
682         void *obj;
683
684         if (cache->nobjs >= min)
685                 return 0;
686         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
687                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
688                 if (!obj)
689                         return -ENOMEM;
690                 cache->objects[cache->nobjs++] = obj;
691         }
692         return 0;
693 }
694
695 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
696 {
697         return cache->nobjs;
698 }
699
700 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
701                                   struct kmem_cache *cache)
702 {
703         while (mc->nobjs)
704                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
705 }
706
707 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
708                                        int min)
709 {
710         void *page;
711
712         if (cache->nobjs >= min)
713                 return 0;
714         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
715                 page = (void *)__get_free_page(GFP_KERNEL);
716                 if (!page)
717                         return -ENOMEM;
718                 cache->objects[cache->nobjs++] = page;
719         }
720         return 0;
721 }
722
723 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
724 {
725         while (mc->nobjs)
726                 free_page((unsigned long)mc->objects[--mc->nobjs]);
727 }
728
729 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
730 {
731         int r;
732
733         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
734                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
735         if (r)
736                 goto out;
737         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
738         if (r)
739                 goto out;
740         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
741                                    mmu_page_header_cache, 4);
742 out:
743         return r;
744 }
745
746 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
747 {
748         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
749                                 pte_list_desc_cache);
750         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
751         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
752                                 mmu_page_header_cache);
753 }
754
755 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
756 {
757         void *p;
758
759         BUG_ON(!mc->nobjs);
760         p = mc->objects[--mc->nobjs];
761         return p;
762 }
763
764 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
765 {
766         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
767 }
768
769 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
770 {
771         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
772 }
773
774 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
775 {
776         if (!sp->role.direct)
777                 return sp->gfns[index];
778
779         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
780 }
781
782 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
783 {
784         if (sp->role.direct)
785                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
786         else
787                 sp->gfns[index] = gfn;
788 }
789
790 /*
791  * Return the pointer to the large page information for a given gfn,
792  * handling slots that are not large page aligned.
793  */
794 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
795                                               struct kvm_memory_slot *slot,
796                                               int level)
797 {
798         unsigned long idx;
799
800         idx = gfn_to_index(gfn, slot->base_gfn, level);
801         return &slot->arch.lpage_info[level - 2][idx];
802 }
803
804 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
805 {
806         struct kvm_memory_slot *slot;
807         struct kvm_lpage_info *linfo;
808         int i;
809
810         slot = gfn_to_memslot(kvm, gfn);
811         for (i = PT_DIRECTORY_LEVEL;
812              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
813                 linfo = lpage_info_slot(gfn, slot, i);
814                 linfo->write_count += 1;
815         }
816         kvm->arch.indirect_shadow_pages++;
817 }
818
819 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
820 {
821         struct kvm_memory_slot *slot;
822         struct kvm_lpage_info *linfo;
823         int i;
824
825         slot = gfn_to_memslot(kvm, gfn);
826         for (i = PT_DIRECTORY_LEVEL;
827              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
828                 linfo = lpage_info_slot(gfn, slot, i);
829                 linfo->write_count -= 1;
830                 WARN_ON(linfo->write_count < 0);
831         }
832         kvm->arch.indirect_shadow_pages--;
833 }
834
835 static int has_wrprotected_page(struct kvm *kvm,
836                                 gfn_t gfn,
837                                 int level)
838 {
839         struct kvm_memory_slot *slot;
840         struct kvm_lpage_info *linfo;
841
842         slot = gfn_to_memslot(kvm, gfn);
843         if (slot) {
844                 linfo = lpage_info_slot(gfn, slot, level);
845                 return linfo->write_count;
846         }
847
848         return 1;
849 }
850
851 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
852 {
853         unsigned long page_size;
854         int i, ret = 0;
855
856         page_size = kvm_host_page_size(kvm, gfn);
857
858         for (i = PT_PAGE_TABLE_LEVEL;
859              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
860                 if (page_size >= KVM_HPAGE_SIZE(i))
861                         ret = i;
862                 else
863                         break;
864         }
865
866         return ret;
867 }
868
869 static struct kvm_memory_slot *
870 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
871                             bool no_dirty_log)
872 {
873         struct kvm_memory_slot *slot;
874
875         slot = gfn_to_memslot(vcpu->kvm, gfn);
876         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
877               (no_dirty_log && slot->dirty_bitmap))
878                 slot = NULL;
879
880         return slot;
881 }
882
883 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
884 {
885         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
886 }
887
888 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889 {
890         int host_level, level, max_level;
891
892         host_level = host_mapping_level(vcpu->kvm, large_gfn);
893
894         if (host_level == PT_PAGE_TABLE_LEVEL)
895                 return host_level;
896
897         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
898
899         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
900                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
901                         break;
902
903         return level - 1;
904 }
905
906 /*
907  * Pte mapping structures:
908  *
909  * If pte_list bit zero is zero, then pte_list point to the spte.
910  *
911  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
912  * pte_list_desc containing more mappings.
913  *
914  * Returns the number of pte entries before the spte was added or zero if
915  * the spte was not added.
916  *
917  */
918 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
919                         unsigned long *pte_list)
920 {
921         struct pte_list_desc *desc;
922         int i, count = 0;
923
924         if (!*pte_list) {
925                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
926                 *pte_list = (unsigned long)spte;
927         } else if (!(*pte_list & 1)) {
928                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
929                 desc = mmu_alloc_pte_list_desc(vcpu);
930                 desc->sptes[0] = (u64 *)*pte_list;
931                 desc->sptes[1] = spte;
932                 *pte_list = (unsigned long)desc | 1;
933                 ++count;
934         } else {
935                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
936                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
937                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
938                         desc = desc->more;
939                         count += PTE_LIST_EXT;
940                 }
941                 if (desc->sptes[PTE_LIST_EXT-1]) {
942                         desc->more = mmu_alloc_pte_list_desc(vcpu);
943                         desc = desc->more;
944                 }
945                 for (i = 0; desc->sptes[i]; ++i)
946                         ++count;
947                 desc->sptes[i] = spte;
948         }
949         return count;
950 }
951
952 static void
953 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
954                            int i, struct pte_list_desc *prev_desc)
955 {
956         int j;
957
958         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
959                 ;
960         desc->sptes[i] = desc->sptes[j];
961         desc->sptes[j] = NULL;
962         if (j != 0)
963                 return;
964         if (!prev_desc && !desc->more)
965                 *pte_list = (unsigned long)desc->sptes[0];
966         else
967                 if (prev_desc)
968                         prev_desc->more = desc->more;
969                 else
970                         *pte_list = (unsigned long)desc->more | 1;
971         mmu_free_pte_list_desc(desc);
972 }
973
974 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
975 {
976         struct pte_list_desc *desc;
977         struct pte_list_desc *prev_desc;
978         int i;
979
980         if (!*pte_list) {
981                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
982                 BUG();
983         } else if (!(*pte_list & 1)) {
984                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
985                 if ((u64 *)*pte_list != spte) {
986                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
987                         BUG();
988                 }
989                 *pte_list = 0;
990         } else {
991                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
992                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
993                 prev_desc = NULL;
994                 while (desc) {
995                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
996                                 if (desc->sptes[i] == spte) {
997                                         pte_list_desc_remove_entry(pte_list,
998                                                                desc, i,
999                                                                prev_desc);
1000                                         return;
1001                                 }
1002                         prev_desc = desc;
1003                         desc = desc->more;
1004                 }
1005                 pr_err("pte_list_remove: %p many->many\n", spte);
1006                 BUG();
1007         }
1008 }
1009
1010 typedef void (*pte_list_walk_fn) (u64 *spte);
1011 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1012 {
1013         struct pte_list_desc *desc;
1014         int i;
1015
1016         if (!*pte_list)
1017                 return;
1018
1019         if (!(*pte_list & 1))
1020                 return fn((u64 *)*pte_list);
1021
1022         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1023         while (desc) {
1024                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1025                         fn(desc->sptes[i]);
1026                 desc = desc->more;
1027         }
1028 }
1029
1030 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1031                                     struct kvm_memory_slot *slot)
1032 {
1033         unsigned long idx;
1034
1035         idx = gfn_to_index(gfn, slot->base_gfn, level);
1036         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1037 }
1038
1039 /*
1040  * Take gfn and return the reverse mapping to it.
1041  */
1042 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1043 {
1044         struct kvm_memory_slot *slot;
1045
1046         slot = gfn_to_memslot(kvm, gfn);
1047         return __gfn_to_rmap(gfn, level, slot);
1048 }
1049
1050 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1051 {
1052         struct kvm_mmu_memory_cache *cache;
1053
1054         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1055         return mmu_memory_cache_free_objects(cache);
1056 }
1057
1058 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1059 {
1060         struct kvm_mmu_page *sp;
1061         unsigned long *rmapp;
1062
1063         sp = page_header(__pa(spte));
1064         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1065         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1066         return pte_list_add(vcpu, spte, rmapp);
1067 }
1068
1069 static void rmap_remove(struct kvm *kvm, u64 *spte)
1070 {
1071         struct kvm_mmu_page *sp;
1072         gfn_t gfn;
1073         unsigned long *rmapp;
1074
1075         sp = page_header(__pa(spte));
1076         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1077         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1078         pte_list_remove(spte, rmapp);
1079 }
1080
1081 /*
1082  * Used by the following functions to iterate through the sptes linked by a
1083  * rmap.  All fields are private and not assumed to be used outside.
1084  */
1085 struct rmap_iterator {
1086         /* private fields */
1087         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1088         int pos;                        /* index of the sptep */
1089 };
1090
1091 /*
1092  * Iteration must be started by this function.  This should also be used after
1093  * removing/dropping sptes from the rmap link because in such cases the
1094  * information in the itererator may not be valid.
1095  *
1096  * Returns sptep if found, NULL otherwise.
1097  */
1098 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1099 {
1100         if (!rmap)
1101                 return NULL;
1102
1103         if (!(rmap & 1)) {
1104                 iter->desc = NULL;
1105                 return (u64 *)rmap;
1106         }
1107
1108         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1109         iter->pos = 0;
1110         return iter->desc->sptes[iter->pos];
1111 }
1112
1113 /*
1114  * Must be used with a valid iterator: e.g. after rmap_get_first().
1115  *
1116  * Returns sptep if found, NULL otherwise.
1117  */
1118 static u64 *rmap_get_next(struct rmap_iterator *iter)
1119 {
1120         if (iter->desc) {
1121                 if (iter->pos < PTE_LIST_EXT - 1) {
1122                         u64 *sptep;
1123
1124                         ++iter->pos;
1125                         sptep = iter->desc->sptes[iter->pos];
1126                         if (sptep)
1127                                 return sptep;
1128                 }
1129
1130                 iter->desc = iter->desc->more;
1131
1132                 if (iter->desc) {
1133                         iter->pos = 0;
1134                         /* desc->sptes[0] cannot be NULL */
1135                         return iter->desc->sptes[iter->pos];
1136                 }
1137         }
1138
1139         return NULL;
1140 }
1141
1142 static void drop_spte(struct kvm *kvm, u64 *sptep)
1143 {
1144         if (mmu_spte_clear_track_bits(sptep))
1145                 rmap_remove(kvm, sptep);
1146 }
1147
1148
1149 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1150 {
1151         if (is_large_pte(*sptep)) {
1152                 WARN_ON(page_header(__pa(sptep))->role.level ==
1153                         PT_PAGE_TABLE_LEVEL);
1154                 drop_spte(kvm, sptep);
1155                 --kvm->stat.lpages;
1156                 return true;
1157         }
1158
1159         return false;
1160 }
1161
1162 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1163 {
1164         if (__drop_large_spte(vcpu->kvm, sptep))
1165                 kvm_flush_remote_tlbs(vcpu->kvm);
1166 }
1167
1168 /*
1169  * Write-protect on the specified @sptep, @pt_protect indicates whether
1170  * spte writ-protection is caused by protecting shadow page table.
1171  * @flush indicates whether tlb need be flushed.
1172  *
1173  * Note: write protection is difference between drity logging and spte
1174  * protection:
1175  * - for dirty logging, the spte can be set to writable at anytime if
1176  *   its dirty bitmap is properly set.
1177  * - for spte protection, the spte can be writable only after unsync-ing
1178  *   shadow page.
1179  *
1180  * Return true if the spte is dropped.
1181  */
1182 static bool
1183 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1184 {
1185         u64 spte = *sptep;
1186
1187         if (!is_writable_pte(spte) &&
1188               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1189                 return false;
1190
1191         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1192
1193         if (__drop_large_spte(kvm, sptep)) {
1194                 *flush |= true;
1195                 return true;
1196         }
1197
1198         if (pt_protect)
1199                 spte &= ~SPTE_MMU_WRITEABLE;
1200         spte = spte & ~PT_WRITABLE_MASK;
1201
1202         *flush |= mmu_spte_update(sptep, spte);
1203         return false;
1204 }
1205
1206 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1207                                  bool pt_protect)
1208 {
1209         u64 *sptep;
1210         struct rmap_iterator iter;
1211         bool flush = false;
1212
1213         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1214                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1215                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1216                         sptep = rmap_get_first(*rmapp, &iter);
1217                         continue;
1218                 }
1219
1220                 sptep = rmap_get_next(&iter);
1221         }
1222
1223         return flush;
1224 }
1225
1226 /**
1227  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1228  * @kvm: kvm instance
1229  * @slot: slot to protect
1230  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1231  * @mask: indicates which pages we should protect
1232  *
1233  * Used when we do not need to care about huge page mappings: e.g. during dirty
1234  * logging we do not have any such mappings.
1235  */
1236 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1237                                      struct kvm_memory_slot *slot,
1238                                      gfn_t gfn_offset, unsigned long mask)
1239 {
1240         unsigned long *rmapp;
1241
1242         while (mask) {
1243                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1244                                       PT_PAGE_TABLE_LEVEL, slot);
1245                 __rmap_write_protect(kvm, rmapp, false);
1246
1247                 /* clear the first set bit */
1248                 mask &= mask - 1;
1249         }
1250 }
1251
1252 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1253 {
1254         struct kvm_memory_slot *slot;
1255         unsigned long *rmapp;
1256         int i;
1257         bool write_protected = false;
1258
1259         slot = gfn_to_memslot(kvm, gfn);
1260
1261         for (i = PT_PAGE_TABLE_LEVEL;
1262              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1263                 rmapp = __gfn_to_rmap(gfn, i, slot);
1264                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1265         }
1266
1267         return write_protected;
1268 }
1269
1270 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1271                            struct kvm_memory_slot *slot, unsigned long data)
1272 {
1273         u64 *sptep;
1274         struct rmap_iterator iter;
1275         int need_tlb_flush = 0;
1276
1277         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1278                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1279                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1280
1281                 drop_spte(kvm, sptep);
1282                 need_tlb_flush = 1;
1283         }
1284
1285         return need_tlb_flush;
1286 }
1287
1288 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1289                              struct kvm_memory_slot *slot, unsigned long data)
1290 {
1291         u64 *sptep;
1292         struct rmap_iterator iter;
1293         int need_flush = 0;
1294         u64 new_spte;
1295         pte_t *ptep = (pte_t *)data;
1296         pfn_t new_pfn;
1297
1298         WARN_ON(pte_huge(*ptep));
1299         new_pfn = pte_pfn(*ptep);
1300
1301         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1302                 BUG_ON(!is_shadow_present_pte(*sptep));
1303                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1304
1305                 need_flush = 1;
1306
1307                 if (pte_write(*ptep)) {
1308                         drop_spte(kvm, sptep);
1309                         sptep = rmap_get_first(*rmapp, &iter);
1310                 } else {
1311                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1312                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1313
1314                         new_spte &= ~PT_WRITABLE_MASK;
1315                         new_spte &= ~SPTE_HOST_WRITEABLE;
1316                         new_spte &= ~shadow_accessed_mask;
1317
1318                         mmu_spte_clear_track_bits(sptep);
1319                         mmu_spte_set(sptep, new_spte);
1320                         sptep = rmap_get_next(&iter);
1321                 }
1322         }
1323
1324         if (need_flush)
1325                 kvm_flush_remote_tlbs(kvm);
1326
1327         return 0;
1328 }
1329
1330 static int kvm_handle_hva_range(struct kvm *kvm,
1331                                 unsigned long start,
1332                                 unsigned long end,
1333                                 unsigned long data,
1334                                 int (*handler)(struct kvm *kvm,
1335                                                unsigned long *rmapp,
1336                                                struct kvm_memory_slot *slot,
1337                                                unsigned long data))
1338 {
1339         int j;
1340         int ret = 0;
1341         struct kvm_memslots *slots;
1342         struct kvm_memory_slot *memslot;
1343
1344         slots = kvm_memslots(kvm);
1345
1346         kvm_for_each_memslot(memslot, slots) {
1347                 unsigned long hva_start, hva_end;
1348                 gfn_t gfn_start, gfn_end;
1349
1350                 hva_start = max(start, memslot->userspace_addr);
1351                 hva_end = min(end, memslot->userspace_addr +
1352                                         (memslot->npages << PAGE_SHIFT));
1353                 if (hva_start >= hva_end)
1354                         continue;
1355                 /*
1356                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1357                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1358                  */
1359                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1360                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1361
1362                 for (j = PT_PAGE_TABLE_LEVEL;
1363                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1364                         unsigned long idx, idx_end;
1365                         unsigned long *rmapp;
1366
1367                         /*
1368                          * {idx(page_j) | page_j intersects with
1369                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1370                          */
1371                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1372                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1373
1374                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1375
1376                         for (; idx <= idx_end; ++idx)
1377                                 ret |= handler(kvm, rmapp++, memslot, data);
1378                 }
1379         }
1380
1381         return ret;
1382 }
1383
1384 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1385                           unsigned long data,
1386                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1387                                          struct kvm_memory_slot *slot,
1388                                          unsigned long data))
1389 {
1390         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1391 }
1392
1393 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1394 {
1395         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1396 }
1397
1398 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1399 {
1400         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1401 }
1402
1403 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1404 {
1405         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1406 }
1407
1408 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1409                          struct kvm_memory_slot *slot, unsigned long data)
1410 {
1411         u64 *sptep;
1412         struct rmap_iterator uninitialized_var(iter);
1413         int young = 0;
1414
1415         /*
1416          * In case of absence of EPT Access and Dirty Bits supports,
1417          * emulate the accessed bit for EPT, by checking if this page has
1418          * an EPT mapping, and clearing it if it does. On the next access,
1419          * a new EPT mapping will be established.
1420          * This has some overhead, but not as much as the cost of swapping
1421          * out actively used pages or breaking up actively used hugepages.
1422          */
1423         if (!shadow_accessed_mask) {
1424                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1425                 goto out;
1426         }
1427
1428         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1429              sptep = rmap_get_next(&iter)) {
1430                 BUG_ON(!is_shadow_present_pte(*sptep));
1431
1432                 if (*sptep & shadow_accessed_mask) {
1433                         young = 1;
1434                         clear_bit((ffs(shadow_accessed_mask) - 1),
1435                                  (unsigned long *)sptep);
1436                 }
1437         }
1438 out:
1439         /* @data has hva passed to kvm_age_hva(). */
1440         trace_kvm_age_page(data, slot, young);
1441         return young;
1442 }
1443
1444 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1445                               struct kvm_memory_slot *slot, unsigned long data)
1446 {
1447         u64 *sptep;
1448         struct rmap_iterator iter;
1449         int young = 0;
1450
1451         /*
1452          * If there's no access bit in the secondary pte set by the
1453          * hardware it's up to gup-fast/gup to set the access bit in
1454          * the primary pte or in the page structure.
1455          */
1456         if (!shadow_accessed_mask)
1457                 goto out;
1458
1459         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1460              sptep = rmap_get_next(&iter)) {
1461                 BUG_ON(!is_shadow_present_pte(*sptep));
1462
1463                 if (*sptep & shadow_accessed_mask) {
1464                         young = 1;
1465                         break;
1466                 }
1467         }
1468 out:
1469         return young;
1470 }
1471
1472 #define RMAP_RECYCLE_THRESHOLD 1000
1473
1474 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1475 {
1476         unsigned long *rmapp;
1477         struct kvm_mmu_page *sp;
1478
1479         sp = page_header(__pa(spte));
1480
1481         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1482
1483         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1484         kvm_flush_remote_tlbs(vcpu->kvm);
1485 }
1486
1487 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1488 {
1489         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1490 }
1491
1492 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1493 {
1494         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1495 }
1496
1497 #ifdef MMU_DEBUG
1498 static int is_empty_shadow_page(u64 *spt)
1499 {
1500         u64 *pos;
1501         u64 *end;
1502
1503         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1504                 if (is_shadow_present_pte(*pos)) {
1505                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1506                                pos, *pos);
1507                         return 0;
1508                 }
1509         return 1;
1510 }
1511 #endif
1512
1513 /*
1514  * This value is the sum of all of the kvm instances's
1515  * kvm->arch.n_used_mmu_pages values.  We need a global,
1516  * aggregate version in order to make the slab shrinker
1517  * faster
1518  */
1519 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1520 {
1521         kvm->arch.n_used_mmu_pages += nr;
1522         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1523 }
1524
1525 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1526 {
1527         ASSERT(is_empty_shadow_page(sp->spt));
1528         hlist_del(&sp->hash_link);
1529         list_del(&sp->link);
1530         free_page((unsigned long)sp->spt);
1531         if (!sp->role.direct)
1532                 free_page((unsigned long)sp->gfns);
1533         kmem_cache_free(mmu_page_header_cache, sp);
1534 }
1535
1536 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1537 {
1538         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1539 }
1540
1541 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1542                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1543 {
1544         if (!parent_pte)
1545                 return;
1546
1547         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1548 }
1549
1550 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1551                                        u64 *parent_pte)
1552 {
1553         pte_list_remove(parent_pte, &sp->parent_ptes);
1554 }
1555
1556 static void drop_parent_pte(struct kvm_mmu_page *sp,
1557                             u64 *parent_pte)
1558 {
1559         mmu_page_remove_parent_pte(sp, parent_pte);
1560         mmu_spte_clear_no_track(parent_pte);
1561 }
1562
1563 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1564                                                u64 *parent_pte, int direct)
1565 {
1566         struct kvm_mmu_page *sp;
1567
1568         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1569         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1570         if (!direct)
1571                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1572         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1573
1574         /*
1575          * The active_mmu_pages list is the FIFO list, do not move the
1576          * page until it is zapped. kvm_zap_obsolete_pages depends on
1577          * this feature. See the comments in kvm_zap_obsolete_pages().
1578          */
1579         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1580         sp->parent_ptes = 0;
1581         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1582         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1583         return sp;
1584 }
1585
1586 static void mark_unsync(u64 *spte);
1587 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1588 {
1589         pte_list_walk(&sp->parent_ptes, mark_unsync);
1590 }
1591
1592 static void mark_unsync(u64 *spte)
1593 {
1594         struct kvm_mmu_page *sp;
1595         unsigned int index;
1596
1597         sp = page_header(__pa(spte));
1598         index = spte - sp->spt;
1599         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1600                 return;
1601         if (sp->unsync_children++)
1602                 return;
1603         kvm_mmu_mark_parents_unsync(sp);
1604 }
1605
1606 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1607                                struct kvm_mmu_page *sp)
1608 {
1609         return 1;
1610 }
1611
1612 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1613 {
1614 }
1615
1616 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1617                                  struct kvm_mmu_page *sp, u64 *spte,
1618                                  const void *pte)
1619 {
1620         WARN_ON(1);
1621 }
1622
1623 #define KVM_PAGE_ARRAY_NR 16
1624
1625 struct kvm_mmu_pages {
1626         struct mmu_page_and_offset {
1627                 struct kvm_mmu_page *sp;
1628                 unsigned int idx;
1629         } page[KVM_PAGE_ARRAY_NR];
1630         unsigned int nr;
1631 };
1632
1633 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1634                          int idx)
1635 {
1636         int i;
1637
1638         if (sp->unsync)
1639                 for (i=0; i < pvec->nr; i++)
1640                         if (pvec->page[i].sp == sp)
1641                                 return 0;
1642
1643         pvec->page[pvec->nr].sp = sp;
1644         pvec->page[pvec->nr].idx = idx;
1645         pvec->nr++;
1646         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1647 }
1648
1649 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1650                            struct kvm_mmu_pages *pvec)
1651 {
1652         int i, ret, nr_unsync_leaf = 0;
1653
1654         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1655                 struct kvm_mmu_page *child;
1656                 u64 ent = sp->spt[i];
1657
1658                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1659                         goto clear_child_bitmap;
1660
1661                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1662
1663                 if (child->unsync_children) {
1664                         if (mmu_pages_add(pvec, child, i))
1665                                 return -ENOSPC;
1666
1667                         ret = __mmu_unsync_walk(child, pvec);
1668                         if (!ret)
1669                                 goto clear_child_bitmap;
1670                         else if (ret > 0)
1671                                 nr_unsync_leaf += ret;
1672                         else
1673                                 return ret;
1674                 } else if (child->unsync) {
1675                         nr_unsync_leaf++;
1676                         if (mmu_pages_add(pvec, child, i))
1677                                 return -ENOSPC;
1678                 } else
1679                          goto clear_child_bitmap;
1680
1681                 continue;
1682
1683 clear_child_bitmap:
1684                 __clear_bit(i, sp->unsync_child_bitmap);
1685                 sp->unsync_children--;
1686                 WARN_ON((int)sp->unsync_children < 0);
1687         }
1688
1689
1690         return nr_unsync_leaf;
1691 }
1692
1693 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1694                            struct kvm_mmu_pages *pvec)
1695 {
1696         if (!sp->unsync_children)
1697                 return 0;
1698
1699         mmu_pages_add(pvec, sp, 0);
1700         return __mmu_unsync_walk(sp, pvec);
1701 }
1702
1703 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1704 {
1705         WARN_ON(!sp->unsync);
1706         trace_kvm_mmu_sync_page(sp);
1707         sp->unsync = 0;
1708         --kvm->stat.mmu_unsync;
1709 }
1710
1711 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1712                                     struct list_head *invalid_list);
1713 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1714                                     struct list_head *invalid_list);
1715
1716 /*
1717  * NOTE: we should pay more attention on the zapped-obsolete page
1718  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1719  * since it has been deleted from active_mmu_pages but still can be found
1720  * at hast list.
1721  *
1722  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1723  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1724  * all the obsolete pages.
1725  */
1726 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1727         hlist_for_each_entry(_sp,                                       \
1728           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1729                 if ((_sp)->gfn != (_gfn)) {} else
1730
1731 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1732         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1733                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1734
1735 /* @sp->gfn should be write-protected at the call site */
1736 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1737                            struct list_head *invalid_list, bool clear_unsync)
1738 {
1739         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1740                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1741                 return 1;
1742         }
1743
1744         if (clear_unsync)
1745                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1746
1747         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1748                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1749                 return 1;
1750         }
1751
1752         kvm_mmu_flush_tlb(vcpu);
1753         return 0;
1754 }
1755
1756 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1757                                    struct kvm_mmu_page *sp)
1758 {
1759         LIST_HEAD(invalid_list);
1760         int ret;
1761
1762         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1763         if (ret)
1764                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1765
1766         return ret;
1767 }
1768
1769 #ifdef CONFIG_KVM_MMU_AUDIT
1770 #include "mmu_audit.c"
1771 #else
1772 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1773 static void mmu_audit_disable(void) { }
1774 #endif
1775
1776 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1777                          struct list_head *invalid_list)
1778 {
1779         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1780 }
1781
1782 /* @gfn should be write-protected at the call site */
1783 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1784 {
1785         struct kvm_mmu_page *s;
1786         LIST_HEAD(invalid_list);
1787         bool flush = false;
1788
1789         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1790                 if (!s->unsync)
1791                         continue;
1792
1793                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1794                 kvm_unlink_unsync_page(vcpu->kvm, s);
1795                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1796                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1797                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1798                         continue;
1799                 }
1800                 flush = true;
1801         }
1802
1803         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1804         if (flush)
1805                 kvm_mmu_flush_tlb(vcpu);
1806 }
1807
1808 struct mmu_page_path {
1809         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1810         unsigned int idx[PT64_ROOT_LEVEL-1];
1811 };
1812
1813 #define for_each_sp(pvec, sp, parents, i)                       \
1814                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1815                         sp = pvec.page[i].sp;                   \
1816                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1817                         i = mmu_pages_next(&pvec, &parents, i))
1818
1819 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1820                           struct mmu_page_path *parents,
1821                           int i)
1822 {
1823         int n;
1824
1825         for (n = i+1; n < pvec->nr; n++) {
1826                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1827
1828                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1829                         parents->idx[0] = pvec->page[n].idx;
1830                         return n;
1831                 }
1832
1833                 parents->parent[sp->role.level-2] = sp;
1834                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1835         }
1836
1837         return n;
1838 }
1839
1840 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1841 {
1842         struct kvm_mmu_page *sp;
1843         unsigned int level = 0;
1844
1845         do {
1846                 unsigned int idx = parents->idx[level];
1847
1848                 sp = parents->parent[level];
1849                 if (!sp)
1850                         return;
1851
1852                 --sp->unsync_children;
1853                 WARN_ON((int)sp->unsync_children < 0);
1854                 __clear_bit(idx, sp->unsync_child_bitmap);
1855                 level++;
1856         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1857 }
1858
1859 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1860                                struct mmu_page_path *parents,
1861                                struct kvm_mmu_pages *pvec)
1862 {
1863         parents->parent[parent->role.level-1] = NULL;
1864         pvec->nr = 0;
1865 }
1866
1867 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1868                               struct kvm_mmu_page *parent)
1869 {
1870         int i;
1871         struct kvm_mmu_page *sp;
1872         struct mmu_page_path parents;
1873         struct kvm_mmu_pages pages;
1874         LIST_HEAD(invalid_list);
1875
1876         kvm_mmu_pages_init(parent, &parents, &pages);
1877         while (mmu_unsync_walk(parent, &pages)) {
1878                 bool protected = false;
1879
1880                 for_each_sp(pages, sp, parents, i)
1881                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1882
1883                 if (protected)
1884                         kvm_flush_remote_tlbs(vcpu->kvm);
1885
1886                 for_each_sp(pages, sp, parents, i) {
1887                         kvm_sync_page(vcpu, sp, &invalid_list);
1888                         mmu_pages_clear_parents(&parents);
1889                 }
1890                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1891                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1892                 kvm_mmu_pages_init(parent, &parents, &pages);
1893         }
1894 }
1895
1896 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1897 {
1898         int i;
1899
1900         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1901                 sp->spt[i] = 0ull;
1902 }
1903
1904 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1905 {
1906         sp->write_flooding_count = 0;
1907 }
1908
1909 static void clear_sp_write_flooding_count(u64 *spte)
1910 {
1911         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1912
1913         __clear_sp_write_flooding_count(sp);
1914 }
1915
1916 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1917 {
1918         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1919 }
1920
1921 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1922                                              gfn_t gfn,
1923                                              gva_t gaddr,
1924                                              unsigned level,
1925                                              int direct,
1926                                              unsigned access,
1927                                              u64 *parent_pte)
1928 {
1929         union kvm_mmu_page_role role;
1930         unsigned quadrant;
1931         struct kvm_mmu_page *sp;
1932         bool need_sync = false;
1933
1934         role = vcpu->arch.mmu.base_role;
1935         role.level = level;
1936         role.direct = direct;
1937         if (role.direct)
1938                 role.cr4_pae = 0;
1939         role.access = access;
1940         if (!vcpu->arch.mmu.direct_map
1941             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1942                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1943                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1944                 role.quadrant = quadrant;
1945         }
1946         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1947                 if (is_obsolete_sp(vcpu->kvm, sp))
1948                         continue;
1949
1950                 if (!need_sync && sp->unsync)
1951                         need_sync = true;
1952
1953                 if (sp->role.word != role.word)
1954                         continue;
1955
1956                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1957                         break;
1958
1959                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1960                 if (sp->unsync_children) {
1961                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1962                         kvm_mmu_mark_parents_unsync(sp);
1963                 } else if (sp->unsync)
1964                         kvm_mmu_mark_parents_unsync(sp);
1965
1966                 __clear_sp_write_flooding_count(sp);
1967                 trace_kvm_mmu_get_page(sp, false);
1968                 return sp;
1969         }
1970         ++vcpu->kvm->stat.mmu_cache_miss;
1971         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1972         if (!sp)
1973                 return sp;
1974         sp->gfn = gfn;
1975         sp->role = role;
1976         hlist_add_head(&sp->hash_link,
1977                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1978         if (!direct) {
1979                 if (rmap_write_protect(vcpu->kvm, gfn))
1980                         kvm_flush_remote_tlbs(vcpu->kvm);
1981                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1982                         kvm_sync_pages(vcpu, gfn);
1983
1984                 account_shadowed(vcpu->kvm, gfn);
1985         }
1986         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1987         init_shadow_page_table(sp);
1988         trace_kvm_mmu_get_page(sp, true);
1989         return sp;
1990 }
1991
1992 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1993                              struct kvm_vcpu *vcpu, u64 addr)
1994 {
1995         iterator->addr = addr;
1996         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1997         iterator->level = vcpu->arch.mmu.shadow_root_level;
1998
1999         if (iterator->level == PT64_ROOT_LEVEL &&
2000             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2001             !vcpu->arch.mmu.direct_map)
2002                 --iterator->level;
2003
2004         if (iterator->level == PT32E_ROOT_LEVEL) {
2005                 iterator->shadow_addr
2006                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2007                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2008                 --iterator->level;
2009                 if (!iterator->shadow_addr)
2010                         iterator->level = 0;
2011         }
2012 }
2013
2014 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2015 {
2016         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2017                 return false;
2018
2019         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2020         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2021         return true;
2022 }
2023
2024 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2025                                u64 spte)
2026 {
2027         if (is_last_spte(spte, iterator->level)) {
2028                 iterator->level = 0;
2029                 return;
2030         }
2031
2032         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2033         --iterator->level;
2034 }
2035
2036 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2037 {
2038         return __shadow_walk_next(iterator, *iterator->sptep);
2039 }
2040
2041 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2042 {
2043         u64 spte;
2044
2045         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2046                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2047
2048         mmu_spte_set(sptep, spte);
2049 }
2050
2051 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2052                                    unsigned direct_access)
2053 {
2054         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2055                 struct kvm_mmu_page *child;
2056
2057                 /*
2058                  * For the direct sp, if the guest pte's dirty bit
2059                  * changed form clean to dirty, it will corrupt the
2060                  * sp's access: allow writable in the read-only sp,
2061                  * so we should update the spte at this point to get
2062                  * a new sp with the correct access.
2063                  */
2064                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2065                 if (child->role.access == direct_access)
2066                         return;
2067
2068                 drop_parent_pte(child, sptep);
2069                 kvm_flush_remote_tlbs(vcpu->kvm);
2070         }
2071 }
2072
2073 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2074                              u64 *spte)
2075 {
2076         u64 pte;
2077         struct kvm_mmu_page *child;
2078
2079         pte = *spte;
2080         if (is_shadow_present_pte(pte)) {
2081                 if (is_last_spte(pte, sp->role.level)) {
2082                         drop_spte(kvm, spte);
2083                         if (is_large_pte(pte))
2084                                 --kvm->stat.lpages;
2085                 } else {
2086                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2087                         drop_parent_pte(child, spte);
2088                 }
2089                 return true;
2090         }
2091
2092         if (is_mmio_spte(pte))
2093                 mmu_spte_clear_no_track(spte);
2094
2095         return false;
2096 }
2097
2098 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2099                                          struct kvm_mmu_page *sp)
2100 {
2101         unsigned i;
2102
2103         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2104                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2105 }
2106
2107 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2108 {
2109         mmu_page_remove_parent_pte(sp, parent_pte);
2110 }
2111
2112 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2113 {
2114         u64 *sptep;
2115         struct rmap_iterator iter;
2116
2117         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2118                 drop_parent_pte(sp, sptep);
2119 }
2120
2121 static int mmu_zap_unsync_children(struct kvm *kvm,
2122                                    struct kvm_mmu_page *parent,
2123                                    struct list_head *invalid_list)
2124 {
2125         int i, zapped = 0;
2126         struct mmu_page_path parents;
2127         struct kvm_mmu_pages pages;
2128
2129         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2130                 return 0;
2131
2132         kvm_mmu_pages_init(parent, &parents, &pages);
2133         while (mmu_unsync_walk(parent, &pages)) {
2134                 struct kvm_mmu_page *sp;
2135
2136                 for_each_sp(pages, sp, parents, i) {
2137                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2138                         mmu_pages_clear_parents(&parents);
2139                         zapped++;
2140                 }
2141                 kvm_mmu_pages_init(parent, &parents, &pages);
2142         }
2143
2144         return zapped;
2145 }
2146
2147 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2148                                     struct list_head *invalid_list)
2149 {
2150         int ret;
2151
2152         trace_kvm_mmu_prepare_zap_page(sp);
2153         ++kvm->stat.mmu_shadow_zapped;
2154         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2155         kvm_mmu_page_unlink_children(kvm, sp);
2156         kvm_mmu_unlink_parents(kvm, sp);
2157
2158         if (!sp->role.invalid && !sp->role.direct)
2159                 unaccount_shadowed(kvm, sp->gfn);
2160
2161         if (sp->unsync)
2162                 kvm_unlink_unsync_page(kvm, sp);
2163         if (!sp->root_count) {
2164                 /* Count self */
2165                 ret++;
2166                 list_move(&sp->link, invalid_list);
2167                 kvm_mod_used_mmu_pages(kvm, -1);
2168         } else {
2169                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2170
2171                 /*
2172                  * The obsolete pages can not be used on any vcpus.
2173                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2174                  */
2175                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2176                         kvm_reload_remote_mmus(kvm);
2177         }
2178
2179         sp->role.invalid = 1;
2180         return ret;
2181 }
2182
2183 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2184                                     struct list_head *invalid_list)
2185 {
2186         struct kvm_mmu_page *sp, *nsp;
2187
2188         if (list_empty(invalid_list))
2189                 return;
2190
2191         /*
2192          * wmb: make sure everyone sees our modifications to the page tables
2193          * rmb: make sure we see changes to vcpu->mode
2194          */
2195         smp_mb();
2196
2197         /*
2198          * Wait for all vcpus to exit guest mode and/or lockless shadow
2199          * page table walks.
2200          */
2201         kvm_flush_remote_tlbs(kvm);
2202
2203         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2204                 WARN_ON(!sp->role.invalid || sp->root_count);
2205                 kvm_mmu_free_page(sp);
2206         }
2207 }
2208
2209 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2210                                         struct list_head *invalid_list)
2211 {
2212         struct kvm_mmu_page *sp;
2213
2214         if (list_empty(&kvm->arch.active_mmu_pages))
2215                 return false;
2216
2217         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2218                         struct kvm_mmu_page, link);
2219         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2220
2221         return true;
2222 }
2223
2224 /*
2225  * Changing the number of mmu pages allocated to the vm
2226  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2227  */
2228 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2229 {
2230         LIST_HEAD(invalid_list);
2231
2232         spin_lock(&kvm->mmu_lock);
2233
2234         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2235                 /* Need to free some mmu pages to achieve the goal. */
2236                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2237                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2238                                 break;
2239
2240                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2241                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2242         }
2243
2244         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2245
2246         spin_unlock(&kvm->mmu_lock);
2247 }
2248
2249 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2250 {
2251         struct kvm_mmu_page *sp;
2252         LIST_HEAD(invalid_list);
2253         int r;
2254
2255         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2256         r = 0;
2257         spin_lock(&kvm->mmu_lock);
2258         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2259                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2260                          sp->role.word);
2261                 r = 1;
2262                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2263         }
2264         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2265         spin_unlock(&kvm->mmu_lock);
2266
2267         return r;
2268 }
2269 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2270
2271 /*
2272  * The function is based on mtrr_type_lookup() in
2273  * arch/x86/kernel/cpu/mtrr/generic.c
2274  */
2275 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2276                          u64 start, u64 end)
2277 {
2278         int i;
2279         u64 base, mask;
2280         u8 prev_match, curr_match;
2281         int num_var_ranges = KVM_NR_VAR_MTRR;
2282
2283         if (!mtrr_state->enabled)
2284                 return 0xFF;
2285
2286         /* Make end inclusive end, instead of exclusive */
2287         end--;
2288
2289         /* Look in fixed ranges. Just return the type as per start */
2290         if (mtrr_state->have_fixed && (start < 0x100000)) {
2291                 int idx;
2292
2293                 if (start < 0x80000) {
2294                         idx = 0;
2295                         idx += (start >> 16);
2296                         return mtrr_state->fixed_ranges[idx];
2297                 } else if (start < 0xC0000) {
2298                         idx = 1 * 8;
2299                         idx += ((start - 0x80000) >> 14);
2300                         return mtrr_state->fixed_ranges[idx];
2301                 } else if (start < 0x1000000) {
2302                         idx = 3 * 8;
2303                         idx += ((start - 0xC0000) >> 12);
2304                         return mtrr_state->fixed_ranges[idx];
2305                 }
2306         }
2307
2308         /*
2309          * Look in variable ranges
2310          * Look of multiple ranges matching this address and pick type
2311          * as per MTRR precedence
2312          */
2313         if (!(mtrr_state->enabled & 2))
2314                 return mtrr_state->def_type;
2315
2316         prev_match = 0xFF;
2317         for (i = 0; i < num_var_ranges; ++i) {
2318                 unsigned short start_state, end_state;
2319
2320                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2321                         continue;
2322
2323                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2324                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2325                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2326                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2327
2328                 start_state = ((start & mask) == (base & mask));
2329                 end_state = ((end & mask) == (base & mask));
2330                 if (start_state != end_state)
2331                         return 0xFE;
2332
2333                 if ((start & mask) != (base & mask))
2334                         continue;
2335
2336                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2337                 if (prev_match == 0xFF) {
2338                         prev_match = curr_match;
2339                         continue;
2340                 }
2341
2342                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2343                     curr_match == MTRR_TYPE_UNCACHABLE)
2344                         return MTRR_TYPE_UNCACHABLE;
2345
2346                 if ((prev_match == MTRR_TYPE_WRBACK &&
2347                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2348                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2349                      curr_match == MTRR_TYPE_WRBACK)) {
2350                         prev_match = MTRR_TYPE_WRTHROUGH;
2351                         curr_match = MTRR_TYPE_WRTHROUGH;
2352                 }
2353
2354                 if (prev_match != curr_match)
2355                         return MTRR_TYPE_UNCACHABLE;
2356         }
2357
2358         if (prev_match != 0xFF)
2359                 return prev_match;
2360
2361         return mtrr_state->def_type;
2362 }
2363
2364 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2365 {
2366         u8 mtrr;
2367
2368         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2369                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2370         if (mtrr == 0xfe || mtrr == 0xff)
2371                 mtrr = MTRR_TYPE_WRBACK;
2372         return mtrr;
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2375
2376 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2377 {
2378         trace_kvm_mmu_unsync_page(sp);
2379         ++vcpu->kvm->stat.mmu_unsync;
2380         sp->unsync = 1;
2381
2382         kvm_mmu_mark_parents_unsync(sp);
2383 }
2384
2385 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2386 {
2387         struct kvm_mmu_page *s;
2388
2389         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2390                 if (s->unsync)
2391                         continue;
2392                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2393                 __kvm_unsync_page(vcpu, s);
2394         }
2395 }
2396
2397 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2398                                   bool can_unsync)
2399 {
2400         struct kvm_mmu_page *s;
2401         bool need_unsync = false;
2402
2403         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2404                 if (!can_unsync)
2405                         return 1;
2406
2407                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2408                         return 1;
2409
2410                 if (!s->unsync)
2411                         need_unsync = true;
2412         }
2413         if (need_unsync)
2414                 kvm_unsync_pages(vcpu, gfn);
2415         return 0;
2416 }
2417
2418 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2419                     unsigned pte_access, int level,
2420                     gfn_t gfn, pfn_t pfn, bool speculative,
2421                     bool can_unsync, bool host_writable)
2422 {
2423         u64 spte;
2424         int ret = 0;
2425
2426         if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2427                 return 0;
2428
2429         spte = PT_PRESENT_MASK;
2430         if (!speculative)
2431                 spte |= shadow_accessed_mask;
2432
2433         if (pte_access & ACC_EXEC_MASK)
2434                 spte |= shadow_x_mask;
2435         else
2436                 spte |= shadow_nx_mask;
2437
2438         if (pte_access & ACC_USER_MASK)
2439                 spte |= shadow_user_mask;
2440
2441         if (level > PT_PAGE_TABLE_LEVEL)
2442                 spte |= PT_PAGE_SIZE_MASK;
2443         if (tdp_enabled)
2444                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2445                         kvm_is_mmio_pfn(pfn));
2446
2447         if (host_writable)
2448                 spte |= SPTE_HOST_WRITEABLE;
2449         else
2450                 pte_access &= ~ACC_WRITE_MASK;
2451
2452         spte |= (u64)pfn << PAGE_SHIFT;
2453
2454         if (pte_access & ACC_WRITE_MASK) {
2455
2456                 /*
2457                  * Other vcpu creates new sp in the window between
2458                  * mapping_level() and acquiring mmu-lock. We can
2459                  * allow guest to retry the access, the mapping can
2460                  * be fixed if guest refault.
2461                  */
2462                 if (level > PT_PAGE_TABLE_LEVEL &&
2463                     has_wrprotected_page(vcpu->kvm, gfn, level))
2464                         goto done;
2465
2466                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2467
2468                 /*
2469                  * Optimization: for pte sync, if spte was writable the hash
2470                  * lookup is unnecessary (and expensive). Write protection
2471                  * is responsibility of mmu_get_page / kvm_sync_page.
2472                  * Same reasoning can be applied to dirty page accounting.
2473                  */
2474                 if (!can_unsync && is_writable_pte(*sptep))
2475                         goto set_pte;
2476
2477                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2478                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2479                                  __func__, gfn);
2480                         ret = 1;
2481                         pte_access &= ~ACC_WRITE_MASK;
2482                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2483                 }
2484         }
2485
2486         if (pte_access & ACC_WRITE_MASK)
2487                 mark_page_dirty(vcpu->kvm, gfn);
2488
2489 set_pte:
2490         if (mmu_spte_update(sptep, spte))
2491                 kvm_flush_remote_tlbs(vcpu->kvm);
2492 done:
2493         return ret;
2494 }
2495
2496 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2497                          unsigned pte_access, int write_fault, int *emulate,
2498                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2499                          bool host_writable)
2500 {
2501         int was_rmapped = 0;
2502         int rmap_count;
2503
2504         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2505                  *sptep, write_fault, gfn);
2506
2507         if (is_rmap_spte(*sptep)) {
2508                 /*
2509                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2510                  * the parent of the now unreachable PTE.
2511                  */
2512                 if (level > PT_PAGE_TABLE_LEVEL &&
2513                     !is_large_pte(*sptep)) {
2514                         struct kvm_mmu_page *child;
2515                         u64 pte = *sptep;
2516
2517                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2518                         drop_parent_pte(child, sptep);
2519                         kvm_flush_remote_tlbs(vcpu->kvm);
2520                 } else if (pfn != spte_to_pfn(*sptep)) {
2521                         pgprintk("hfn old %llx new %llx\n",
2522                                  spte_to_pfn(*sptep), pfn);
2523                         drop_spte(vcpu->kvm, sptep);
2524                         kvm_flush_remote_tlbs(vcpu->kvm);
2525                 } else
2526                         was_rmapped = 1;
2527         }
2528
2529         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2530               true, host_writable)) {
2531                 if (write_fault)
2532                         *emulate = 1;
2533                 kvm_mmu_flush_tlb(vcpu);
2534         }
2535
2536         if (unlikely(is_mmio_spte(*sptep) && emulate))
2537                 *emulate = 1;
2538
2539         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2540         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2541                  is_large_pte(*sptep)? "2MB" : "4kB",
2542                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2543                  *sptep, sptep);
2544         if (!was_rmapped && is_large_pte(*sptep))
2545                 ++vcpu->kvm->stat.lpages;
2546
2547         if (is_shadow_present_pte(*sptep)) {
2548                 if (!was_rmapped) {
2549                         rmap_count = rmap_add(vcpu, sptep, gfn);
2550                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2551                                 rmap_recycle(vcpu, sptep, gfn);
2552                 }
2553         }
2554
2555         kvm_release_pfn_clean(pfn);
2556 }
2557
2558 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2559 {
2560         mmu_free_roots(vcpu);
2561 }
2562
2563 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2564 {
2565         int bit7;
2566
2567         bit7 = (gpte >> 7) & 1;
2568         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2569 }
2570
2571 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2572                                      bool no_dirty_log)
2573 {
2574         struct kvm_memory_slot *slot;
2575
2576         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2577         if (!slot)
2578                 return KVM_PFN_ERR_FAULT;
2579
2580         return gfn_to_pfn_memslot_atomic(slot, gfn);
2581 }
2582
2583 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2584                                   struct kvm_mmu_page *sp, u64 *spte,
2585                                   u64 gpte)
2586 {
2587         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2588                 goto no_present;
2589
2590         if (!is_present_gpte(gpte))
2591                 goto no_present;
2592
2593         if (!(gpte & PT_ACCESSED_MASK))
2594                 goto no_present;
2595
2596         return false;
2597
2598 no_present:
2599         drop_spte(vcpu->kvm, spte);
2600         return true;
2601 }
2602
2603 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2604                                     struct kvm_mmu_page *sp,
2605                                     u64 *start, u64 *end)
2606 {
2607         struct page *pages[PTE_PREFETCH_NUM];
2608         unsigned access = sp->role.access;
2609         int i, ret;
2610         gfn_t gfn;
2611
2612         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2613         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2614                 return -1;
2615
2616         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2617         if (ret <= 0)
2618                 return -1;
2619
2620         for (i = 0; i < ret; i++, gfn++, start++)
2621                 mmu_set_spte(vcpu, start, access, 0, NULL,
2622                              sp->role.level, gfn, page_to_pfn(pages[i]),
2623                              true, true);
2624
2625         return 0;
2626 }
2627
2628 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2629                                   struct kvm_mmu_page *sp, u64 *sptep)
2630 {
2631         u64 *spte, *start = NULL;
2632         int i;
2633
2634         WARN_ON(!sp->role.direct);
2635
2636         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2637         spte = sp->spt + i;
2638
2639         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2640                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2641                         if (!start)
2642                                 continue;
2643                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2644                                 break;
2645                         start = NULL;
2646                 } else if (!start)
2647                         start = spte;
2648         }
2649 }
2650
2651 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2652 {
2653         struct kvm_mmu_page *sp;
2654
2655         /*
2656          * Since it's no accessed bit on EPT, it's no way to
2657          * distinguish between actually accessed translations
2658          * and prefetched, so disable pte prefetch if EPT is
2659          * enabled.
2660          */
2661         if (!shadow_accessed_mask)
2662                 return;
2663
2664         sp = page_header(__pa(sptep));
2665         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2666                 return;
2667
2668         __direct_pte_prefetch(vcpu, sp, sptep);
2669 }
2670
2671 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2672                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2673                         bool prefault)
2674 {
2675         struct kvm_shadow_walk_iterator iterator;
2676         struct kvm_mmu_page *sp;
2677         int emulate = 0;
2678         gfn_t pseudo_gfn;
2679
2680         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2681                 if (iterator.level == level) {
2682                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2683                                      write, &emulate, level, gfn, pfn,
2684                                      prefault, map_writable);
2685                         direct_pte_prefetch(vcpu, iterator.sptep);
2686                         ++vcpu->stat.pf_fixed;
2687                         break;
2688                 }
2689
2690                 if (!is_shadow_present_pte(*iterator.sptep)) {
2691                         u64 base_addr = iterator.addr;
2692
2693                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2694                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2695                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2696                                               iterator.level - 1,
2697                                               1, ACC_ALL, iterator.sptep);
2698
2699                         link_shadow_page(iterator.sptep, sp);
2700                 }
2701         }
2702         return emulate;
2703 }
2704
2705 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2706 {
2707         siginfo_t info;
2708
2709         info.si_signo   = SIGBUS;
2710         info.si_errno   = 0;
2711         info.si_code    = BUS_MCEERR_AR;
2712         info.si_addr    = (void __user *)address;
2713         info.si_addr_lsb = PAGE_SHIFT;
2714
2715         send_sig_info(SIGBUS, &info, tsk);
2716 }
2717
2718 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2719 {
2720         /*
2721          * Do not cache the mmio info caused by writing the readonly gfn
2722          * into the spte otherwise read access on readonly gfn also can
2723          * caused mmio page fault and treat it as mmio access.
2724          * Return 1 to tell kvm to emulate it.
2725          */
2726         if (pfn == KVM_PFN_ERR_RO_FAULT)
2727                 return 1;
2728
2729         if (pfn == KVM_PFN_ERR_HWPOISON) {
2730                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2731                 return 0;
2732         }
2733
2734         return -EFAULT;
2735 }
2736
2737 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2738                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2739 {
2740         pfn_t pfn = *pfnp;
2741         gfn_t gfn = *gfnp;
2742         int level = *levelp;
2743
2744         /*
2745          * Check if it's a transparent hugepage. If this would be an
2746          * hugetlbfs page, level wouldn't be set to
2747          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2748          * here.
2749          */
2750         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2751             level == PT_PAGE_TABLE_LEVEL &&
2752             PageTransCompound(pfn_to_page(pfn)) &&
2753             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2754                 unsigned long mask;
2755                 /*
2756                  * mmu_notifier_retry was successful and we hold the
2757                  * mmu_lock here, so the pmd can't become splitting
2758                  * from under us, and in turn
2759                  * __split_huge_page_refcount() can't run from under
2760                  * us and we can safely transfer the refcount from
2761                  * PG_tail to PG_head as we switch the pfn to tail to
2762                  * head.
2763                  */
2764                 *levelp = level = PT_DIRECTORY_LEVEL;
2765                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2766                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2767                 if (pfn & mask) {
2768                         gfn &= ~mask;
2769                         *gfnp = gfn;
2770                         kvm_release_pfn_clean(pfn);
2771                         pfn &= ~mask;
2772                         kvm_get_pfn(pfn);
2773                         *pfnp = pfn;
2774                 }
2775         }
2776 }
2777
2778 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2779                                 pfn_t pfn, unsigned access, int *ret_val)
2780 {
2781         bool ret = true;
2782
2783         /* The pfn is invalid, report the error! */
2784         if (unlikely(is_error_pfn(pfn))) {
2785                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2786                 goto exit;
2787         }
2788
2789         if (unlikely(is_noslot_pfn(pfn)))
2790                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2791
2792         ret = false;
2793 exit:
2794         return ret;
2795 }
2796
2797 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2798 {
2799         /*
2800          * #PF can be fast only if the shadow page table is present and it
2801          * is caused by write-protect, that means we just need change the
2802          * W bit of the spte which can be done out of mmu-lock.
2803          */
2804         if (!(error_code & PFERR_PRESENT_MASK) ||
2805               !(error_code & PFERR_WRITE_MASK))
2806                 return false;
2807
2808         return true;
2809 }
2810
2811 static bool
2812 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2813 {
2814         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2815         gfn_t gfn;
2816
2817         WARN_ON(!sp->role.direct);
2818
2819         /*
2820          * The gfn of direct spte is stable since it is calculated
2821          * by sp->gfn.
2822          */
2823         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2824
2825         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2826                 mark_page_dirty(vcpu->kvm, gfn);
2827
2828         return true;
2829 }
2830
2831 /*
2832  * Return value:
2833  * - true: let the vcpu to access on the same address again.
2834  * - false: let the real page fault path to fix it.
2835  */
2836 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2837                             u32 error_code)
2838 {
2839         struct kvm_shadow_walk_iterator iterator;
2840         bool ret = false;
2841         u64 spte = 0ull;
2842
2843         if (!page_fault_can_be_fast(vcpu, error_code))
2844                 return false;
2845
2846         walk_shadow_page_lockless_begin(vcpu);
2847         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2848                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2849                         break;
2850
2851         /*
2852          * If the mapping has been changed, let the vcpu fault on the
2853          * same address again.
2854          */
2855         if (!is_rmap_spte(spte)) {
2856                 ret = true;
2857                 goto exit;
2858         }
2859
2860         if (!is_last_spte(spte, level))
2861                 goto exit;
2862
2863         /*
2864          * Check if it is a spurious fault caused by TLB lazily flushed.
2865          *
2866          * Need not check the access of upper level table entries since
2867          * they are always ACC_ALL.
2868          */
2869          if (is_writable_pte(spte)) {
2870                 ret = true;
2871                 goto exit;
2872         }
2873
2874         /*
2875          * Currently, to simplify the code, only the spte write-protected
2876          * by dirty-log can be fast fixed.
2877          */
2878         if (!spte_is_locklessly_modifiable(spte))
2879                 goto exit;
2880
2881         /*
2882          * Currently, fast page fault only works for direct mapping since
2883          * the gfn is not stable for indirect shadow page.
2884          * See Documentation/virtual/kvm/locking.txt to get more detail.
2885          */
2886         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2887 exit:
2888         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2889                               spte, ret);
2890         walk_shadow_page_lockless_end(vcpu);
2891
2892         return ret;
2893 }
2894
2895 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2896                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2897 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2898
2899 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2900                          gfn_t gfn, bool prefault)
2901 {
2902         int r;
2903         int level;
2904         int force_pt_level;
2905         pfn_t pfn;
2906         unsigned long mmu_seq;
2907         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2908
2909         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2910         if (likely(!force_pt_level)) {
2911                 level = mapping_level(vcpu, gfn);
2912                 /*
2913                  * This path builds a PAE pagetable - so we can map
2914                  * 2mb pages at maximum. Therefore check if the level
2915                  * is larger than that.
2916                  */
2917                 if (level > PT_DIRECTORY_LEVEL)
2918                         level = PT_DIRECTORY_LEVEL;
2919
2920                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2921         } else
2922                 level = PT_PAGE_TABLE_LEVEL;
2923
2924         if (fast_page_fault(vcpu, v, level, error_code))
2925                 return 0;
2926
2927         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2928         smp_rmb();
2929
2930         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2931                 return 0;
2932
2933         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2934                 return r;
2935
2936         spin_lock(&vcpu->kvm->mmu_lock);
2937         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2938                 goto out_unlock;
2939         make_mmu_pages_available(vcpu);
2940         if (likely(!force_pt_level))
2941                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2942         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2943                          prefault);
2944         spin_unlock(&vcpu->kvm->mmu_lock);
2945
2946
2947         return r;
2948
2949 out_unlock:
2950         spin_unlock(&vcpu->kvm->mmu_lock);
2951         kvm_release_pfn_clean(pfn);
2952         return 0;
2953 }
2954
2955
2956 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2957 {
2958         int i;
2959         struct kvm_mmu_page *sp;
2960         LIST_HEAD(invalid_list);
2961
2962         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2963                 return;
2964
2965         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2966             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2967              vcpu->arch.mmu.direct_map)) {
2968                 hpa_t root = vcpu->arch.mmu.root_hpa;
2969
2970                 spin_lock(&vcpu->kvm->mmu_lock);
2971                 sp = page_header(root);
2972                 --sp->root_count;
2973                 if (!sp->root_count && sp->role.invalid) {
2974                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2975                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2976                 }
2977                 spin_unlock(&vcpu->kvm->mmu_lock);
2978                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2979                 return;
2980         }
2981
2982         spin_lock(&vcpu->kvm->mmu_lock);
2983         for (i = 0; i < 4; ++i) {
2984                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2985
2986                 if (root) {
2987                         root &= PT64_BASE_ADDR_MASK;
2988                         sp = page_header(root);
2989                         --sp->root_count;
2990                         if (!sp->root_count && sp->role.invalid)
2991                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2992                                                          &invalid_list);
2993                 }
2994                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2995         }
2996         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2997         spin_unlock(&vcpu->kvm->mmu_lock);
2998         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2999 }
3000
3001 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3002 {
3003         int ret = 0;
3004
3005         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3006                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3007                 ret = 1;
3008         }
3009
3010         return ret;
3011 }
3012
3013 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3014 {
3015         struct kvm_mmu_page *sp;
3016         unsigned i;
3017
3018         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3019                 spin_lock(&vcpu->kvm->mmu_lock);
3020                 make_mmu_pages_available(vcpu);
3021                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3022                                       1, ACC_ALL, NULL);
3023                 ++sp->root_count;
3024                 spin_unlock(&vcpu->kvm->mmu_lock);
3025                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3026         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3027                 for (i = 0; i < 4; ++i) {
3028                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3029
3030                         ASSERT(!VALID_PAGE(root));
3031                         spin_lock(&vcpu->kvm->mmu_lock);
3032                         make_mmu_pages_available(vcpu);
3033                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3034                                               i << 30,
3035                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3036                                               NULL);
3037                         root = __pa(sp->spt);
3038                         ++sp->root_count;
3039                         spin_unlock(&vcpu->kvm->mmu_lock);
3040                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3041                 }
3042                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3043         } else
3044                 BUG();
3045
3046         return 0;
3047 }
3048
3049 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3050 {
3051         struct kvm_mmu_page *sp;
3052         u64 pdptr, pm_mask;
3053         gfn_t root_gfn;
3054         int i;
3055
3056         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3057
3058         if (mmu_check_root(vcpu, root_gfn))
3059                 return 1;
3060
3061         /*
3062          * Do we shadow a long mode page table? If so we need to
3063          * write-protect the guests page table root.
3064          */
3065         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3066                 hpa_t root = vcpu->arch.mmu.root_hpa;
3067
3068                 ASSERT(!VALID_PAGE(root));
3069
3070                 spin_lock(&vcpu->kvm->mmu_lock);
3071                 make_mmu_pages_available(vcpu);
3072                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3073                                       0, ACC_ALL, NULL);
3074                 root = __pa(sp->spt);
3075                 ++sp->root_count;
3076                 spin_unlock(&vcpu->kvm->mmu_lock);
3077                 vcpu->arch.mmu.root_hpa = root;
3078                 return 0;
3079         }
3080
3081         /*
3082          * We shadow a 32 bit page table. This may be a legacy 2-level
3083          * or a PAE 3-level page table. In either case we need to be aware that
3084          * the shadow page table may be a PAE or a long mode page table.
3085          */
3086         pm_mask = PT_PRESENT_MASK;
3087         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3088                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3089
3090         for (i = 0; i < 4; ++i) {
3091                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3092
3093                 ASSERT(!VALID_PAGE(root));
3094                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3095                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3096                         if (!is_present_gpte(pdptr)) {
3097                                 vcpu->arch.mmu.pae_root[i] = 0;
3098                                 continue;
3099                         }
3100                         root_gfn = pdptr >> PAGE_SHIFT;
3101                         if (mmu_check_root(vcpu, root_gfn))
3102                                 return 1;
3103                 }
3104                 spin_lock(&vcpu->kvm->mmu_lock);
3105                 make_mmu_pages_available(vcpu);
3106                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3107                                       PT32_ROOT_LEVEL, 0,
3108                                       ACC_ALL, NULL);
3109                 root = __pa(sp->spt);
3110                 ++sp->root_count;
3111                 spin_unlock(&vcpu->kvm->mmu_lock);
3112
3113                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3114         }
3115         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3116
3117         /*
3118          * If we shadow a 32 bit page table with a long mode page
3119          * table we enter this path.
3120          */
3121         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3122                 if (vcpu->arch.mmu.lm_root == NULL) {
3123                         /*
3124                          * The additional page necessary for this is only
3125                          * allocated on demand.
3126                          */
3127
3128                         u64 *lm_root;
3129
3130                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3131                         if (lm_root == NULL)
3132                                 return 1;
3133
3134                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3135
3136                         vcpu->arch.mmu.lm_root = lm_root;
3137                 }
3138
3139                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3140         }
3141
3142         return 0;
3143 }
3144
3145 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3146 {
3147         if (vcpu->arch.mmu.direct_map)
3148                 return mmu_alloc_direct_roots(vcpu);
3149         else
3150                 return mmu_alloc_shadow_roots(vcpu);
3151 }
3152
3153 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3154 {
3155         int i;
3156         struct kvm_mmu_page *sp;
3157
3158         if (vcpu->arch.mmu.direct_map)
3159                 return;
3160
3161         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3162                 return;
3163
3164         vcpu_clear_mmio_info(vcpu, ~0ul);
3165         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3166         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3167                 hpa_t root = vcpu->arch.mmu.root_hpa;
3168                 sp = page_header(root);
3169                 mmu_sync_children(vcpu, sp);
3170                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3171                 return;
3172         }
3173         for (i = 0; i < 4; ++i) {
3174                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3175
3176                 if (root && VALID_PAGE(root)) {
3177                         root &= PT64_BASE_ADDR_MASK;
3178                         sp = page_header(root);
3179                         mmu_sync_children(vcpu, sp);
3180                 }
3181         }
3182         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3183 }
3184
3185 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3186 {
3187         spin_lock(&vcpu->kvm->mmu_lock);
3188         mmu_sync_roots(vcpu);
3189         spin_unlock(&vcpu->kvm->mmu_lock);
3190 }
3191
3192 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3193                                   u32 access, struct x86_exception *exception)
3194 {
3195         if (exception)
3196                 exception->error_code = 0;
3197         return vaddr;
3198 }
3199
3200 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3201                                          u32 access,
3202                                          struct x86_exception *exception)
3203 {
3204         if (exception)
3205                 exception->error_code = 0;
3206         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3207 }
3208
3209 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3210 {
3211         if (direct)
3212                 return vcpu_match_mmio_gpa(vcpu, addr);
3213
3214         return vcpu_match_mmio_gva(vcpu, addr);
3215 }
3216
3217
3218 /*
3219  * On direct hosts, the last spte is only allows two states
3220  * for mmio page fault:
3221  *   - It is the mmio spte
3222  *   - It is zapped or it is being zapped.
3223  *
3224  * This function completely checks the spte when the last spte
3225  * is not the mmio spte.
3226  */
3227 static bool check_direct_spte_mmio_pf(u64 spte)
3228 {
3229         return __check_direct_spte_mmio_pf(spte);
3230 }
3231
3232 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3233 {
3234         struct kvm_shadow_walk_iterator iterator;
3235         u64 spte = 0ull;
3236
3237         walk_shadow_page_lockless_begin(vcpu);
3238         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3239                 if (!is_shadow_present_pte(spte))
3240                         break;
3241         walk_shadow_page_lockless_end(vcpu);
3242
3243         return spte;
3244 }
3245
3246 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3247 {
3248         u64 spte;
3249
3250         if (quickly_check_mmio_pf(vcpu, addr, direct))
3251                 return RET_MMIO_PF_EMULATE;
3252
3253         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3254
3255         if (is_mmio_spte(spte)) {
3256                 gfn_t gfn = get_mmio_spte_gfn(spte);
3257                 unsigned access = get_mmio_spte_access(spte);
3258
3259                 if (!check_mmio_spte(vcpu->kvm, spte))
3260                         return RET_MMIO_PF_INVALID;
3261
3262                 if (direct)
3263                         addr = 0;
3264
3265                 trace_handle_mmio_page_fault(addr, gfn, access);
3266                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3267                 return RET_MMIO_PF_EMULATE;
3268         }
3269
3270         /*
3271          * It's ok if the gva is remapped by other cpus on shadow guest,
3272          * it's a BUG if the gfn is not a mmio page.
3273          */
3274         if (direct && !check_direct_spte_mmio_pf(spte))
3275                 return RET_MMIO_PF_BUG;
3276
3277         /*
3278          * If the page table is zapped by other cpus, let CPU fault again on
3279          * the address.
3280          */
3281         return RET_MMIO_PF_RETRY;
3282 }
3283 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3284
3285 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3286                                   u32 error_code, bool direct)
3287 {
3288         int ret;
3289
3290         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3291         WARN_ON(ret == RET_MMIO_PF_BUG);
3292         return ret;
3293 }
3294
3295 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3296                                 u32 error_code, bool prefault)
3297 {
3298         gfn_t gfn;
3299         int r;
3300
3301         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3302
3303         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3304                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3305
3306                 if (likely(r != RET_MMIO_PF_INVALID))
3307                         return r;
3308         }
3309
3310         r = mmu_topup_memory_caches(vcpu);
3311         if (r)
3312                 return r;
3313
3314         ASSERT(vcpu);
3315         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3316
3317         gfn = gva >> PAGE_SHIFT;
3318
3319         return nonpaging_map(vcpu, gva & PAGE_MASK,
3320                              error_code, gfn, prefault);
3321 }
3322
3323 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3324 {
3325         struct kvm_arch_async_pf arch;
3326
3327         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3328         arch.gfn = gfn;
3329         arch.direct_map = vcpu->arch.mmu.direct_map;
3330         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3331
3332         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3333 }
3334
3335 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3336 {
3337         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3338                      kvm_event_needs_reinjection(vcpu)))
3339                 return false;
3340
3341         return kvm_x86_ops->interrupt_allowed(vcpu);
3342 }
3343
3344 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3345                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3346 {
3347         bool async;
3348
3349         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3350
3351         if (!async)
3352                 return false; /* *pfn has correct page already */
3353
3354         if (!prefault && can_do_async_pf(vcpu)) {
3355                 trace_kvm_try_async_get_page(gva, gfn);
3356                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3357                         trace_kvm_async_pf_doublefault(gva, gfn);
3358                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3359                         return true;
3360                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3361                         return true;
3362         }
3363
3364         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3365
3366         return false;
3367 }
3368
3369 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3370                           bool prefault)
3371 {
3372         pfn_t pfn;
3373         int r;
3374         int level;
3375         int force_pt_level;
3376         gfn_t gfn = gpa >> PAGE_SHIFT;
3377         unsigned long mmu_seq;
3378         int write = error_code & PFERR_WRITE_MASK;
3379         bool map_writable;
3380
3381         ASSERT(vcpu);
3382         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3383
3384         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3385                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3386
3387                 if (likely(r != RET_MMIO_PF_INVALID))
3388                         return r;
3389         }
3390
3391         r = mmu_topup_memory_caches(vcpu);
3392         if (r)
3393                 return r;
3394
3395         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3396         if (likely(!force_pt_level)) {
3397                 level = mapping_level(vcpu, gfn);
3398                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3399         } else
3400                 level = PT_PAGE_TABLE_LEVEL;
3401
3402         if (fast_page_fault(vcpu, gpa, level, error_code))
3403                 return 0;
3404
3405         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3406         smp_rmb();
3407
3408         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3409                 return 0;
3410
3411         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3412                 return r;
3413
3414         spin_lock(&vcpu->kvm->mmu_lock);
3415         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3416                 goto out_unlock;
3417         make_mmu_pages_available(vcpu);
3418         if (likely(!force_pt_level))
3419                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3420         r = __direct_map(vcpu, gpa, write, map_writable,
3421                          level, gfn, pfn, prefault);
3422         spin_unlock(&vcpu->kvm->mmu_lock);
3423
3424         return r;
3425
3426 out_unlock:
3427         spin_unlock(&vcpu->kvm->mmu_lock);
3428         kvm_release_pfn_clean(pfn);
3429         return 0;
3430 }
3431
3432 static void nonpaging_free(struct kvm_vcpu *vcpu)
3433 {
3434         mmu_free_roots(vcpu);
3435 }
3436
3437 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3438                                   struct kvm_mmu *context)
3439 {
3440         context->new_cr3 = nonpaging_new_cr3;
3441         context->page_fault = nonpaging_page_fault;
3442         context->gva_to_gpa = nonpaging_gva_to_gpa;
3443         context->free = nonpaging_free;
3444         context->sync_page = nonpaging_sync_page;
3445         context->invlpg = nonpaging_invlpg;
3446         context->update_pte = nonpaging_update_pte;
3447         context->root_level = 0;
3448         context->shadow_root_level = PT32E_ROOT_LEVEL;
3449         context->root_hpa = INVALID_PAGE;
3450         context->direct_map = true;
3451         context->nx = false;
3452         return 0;
3453 }
3454
3455 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3456 {
3457         ++vcpu->stat.tlb_flush;
3458         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3459 }
3460
3461 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3462 {
3463         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3464         mmu_free_roots(vcpu);
3465 }
3466
3467 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3468 {
3469         return kvm_read_cr3(vcpu);
3470 }
3471
3472 static void inject_page_fault(struct kvm_vcpu *vcpu,
3473                               struct x86_exception *fault)
3474 {
3475         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3476 }
3477
3478 static void paging_free(struct kvm_vcpu *vcpu)
3479 {
3480         nonpaging_free(vcpu);
3481 }
3482
3483 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3484 {
3485         unsigned mask;
3486
3487         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3488
3489         mask = (unsigned)~ACC_WRITE_MASK;
3490         /* Allow write access to dirty gptes */
3491         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3492         *access &= mask;
3493 }
3494
3495 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3496                            unsigned access, int *nr_present)
3497 {
3498         if (unlikely(is_mmio_spte(*sptep))) {
3499                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3500                         mmu_spte_clear_no_track(sptep);
3501                         return true;
3502                 }
3503
3504                 (*nr_present)++;
3505                 mark_mmio_spte(kvm, sptep, gfn, access);
3506                 return true;
3507         }
3508
3509         return false;
3510 }
3511
3512 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3513 {
3514         unsigned access;
3515
3516         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3517         access &= ~(gpte >> PT64_NX_SHIFT);
3518
3519         return access;
3520 }
3521
3522 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3523 {
3524         unsigned index;
3525
3526         index = level - 1;
3527         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3528         return mmu->last_pte_bitmap & (1 << index);
3529 }
3530
3531 #define PTTYPE 64
3532 #include "paging_tmpl.h"
3533 #undef PTTYPE
3534
3535 #define PTTYPE 32
3536 #include "paging_tmpl.h"
3537 #undef PTTYPE
3538
3539 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3540                                   struct kvm_mmu *context)
3541 {
3542         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3543         u64 exb_bit_rsvd = 0;
3544
3545         if (!context->nx)
3546                 exb_bit_rsvd = rsvd_bits(63, 63);
3547         switch (context->root_level) {
3548         case PT32_ROOT_LEVEL:
3549                 /* no rsvd bits for 2 level 4K page table entries */
3550                 context->rsvd_bits_mask[0][1] = 0;
3551                 context->rsvd_bits_mask[0][0] = 0;
3552                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3553
3554                 if (!is_pse(vcpu)) {
3555                         context->rsvd_bits_mask[1][1] = 0;
3556                         break;
3557                 }
3558
3559                 if (is_cpuid_PSE36())
3560                         /* 36bits PSE 4MB page */
3561                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3562                 else
3563                         /* 32 bits PSE 4MB page */
3564                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3565                 break;
3566         case PT32E_ROOT_LEVEL:
3567                 context->rsvd_bits_mask[0][2] =
3568                         rsvd_bits(maxphyaddr, 63) |
3569                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3570                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3571                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3572                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3573                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3574                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3575                         rsvd_bits(maxphyaddr, 62) |
3576                         rsvd_bits(13, 20);              /* large page */
3577                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3578                 break;
3579         case PT64_ROOT_LEVEL:
3580                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3581                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3582                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3583                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3584                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3585                         rsvd_bits(maxphyaddr, 51);
3586                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3587                         rsvd_bits(maxphyaddr, 51);
3588                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3589                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3590                         rsvd_bits(maxphyaddr, 51) |
3591                         rsvd_bits(13, 29);
3592                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3593                         rsvd_bits(maxphyaddr, 51) |
3594                         rsvd_bits(13, 20);              /* large page */
3595                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3596                 break;
3597         }
3598 }
3599
3600 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3601 {
3602         unsigned bit, byte, pfec;
3603         u8 map;
3604         bool fault, x, w, u, wf, uf, ff, smep;
3605
3606         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3607         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3608                 pfec = byte << 1;
3609                 map = 0;
3610                 wf = pfec & PFERR_WRITE_MASK;
3611                 uf = pfec & PFERR_USER_MASK;
3612                 ff = pfec & PFERR_FETCH_MASK;
3613                 for (bit = 0; bit < 8; ++bit) {
3614                         x = bit & ACC_EXEC_MASK;
3615                         w = bit & ACC_WRITE_MASK;
3616                         u = bit & ACC_USER_MASK;
3617
3618                         /* Not really needed: !nx will cause pte.nx to fault */
3619                         x |= !mmu->nx;
3620                         /* Allow supervisor writes if !cr0.wp */
3621                         w |= !is_write_protection(vcpu) && !uf;
3622                         /* Disallow supervisor fetches of user code if cr4.smep */
3623                         x &= !(smep && u && !uf);
3624
3625                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3626                         map |= fault << bit;
3627                 }
3628                 mmu->permissions[byte] = map;
3629         }
3630 }
3631
3632 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3633 {
3634         u8 map;
3635         unsigned level, root_level = mmu->root_level;
3636         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3637
3638         if (root_level == PT32E_ROOT_LEVEL)
3639                 --root_level;
3640         /* PT_PAGE_TABLE_LEVEL always terminates */
3641         map = 1 | (1 << ps_set_index);
3642         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3643                 if (level <= PT_PDPE_LEVEL
3644                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3645                         map |= 1 << (ps_set_index | (level - 1));
3646         }
3647         mmu->last_pte_bitmap = map;
3648 }
3649
3650 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3651                                         struct kvm_mmu *context,
3652                                         int level)
3653 {
3654         context->nx = is_nx(vcpu);
3655         context->root_level = level;
3656
3657         reset_rsvds_bits_mask(vcpu, context);
3658         update_permission_bitmask(vcpu, context);
3659         update_last_pte_bitmap(vcpu, context);
3660
3661         ASSERT(is_pae(vcpu));
3662         context->new_cr3 = paging_new_cr3;
3663         context->page_fault = paging64_page_fault;
3664         context->gva_to_gpa = paging64_gva_to_gpa;
3665         context->sync_page = paging64_sync_page;
3666         context->invlpg = paging64_invlpg;
3667         context->update_pte = paging64_update_pte;
3668         context->free = paging_free;
3669         context->shadow_root_level = level;
3670         context->root_hpa = INVALID_PAGE;
3671         context->direct_map = false;
3672         return 0;
3673 }
3674
3675 static int paging64_init_context(struct kvm_vcpu *vcpu,
3676                                  struct kvm_mmu *context)
3677 {
3678         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3679 }
3680
3681 static int paging32_init_context(struct kvm_vcpu *vcpu,
3682                                  struct kvm_mmu *context)
3683 {
3684         context->nx = false;
3685         context->root_level = PT32_ROOT_LEVEL;
3686
3687         reset_rsvds_bits_mask(vcpu, context);
3688         update_permission_bitmask(vcpu, context);
3689         update_last_pte_bitmap(vcpu, context);
3690
3691         context->new_cr3 = paging_new_cr3;
3692         context->page_fault = paging32_page_fault;
3693         context->gva_to_gpa = paging32_gva_to_gpa;
3694         context->free = paging_free;
3695         context->sync_page = paging32_sync_page;
3696         context->invlpg = paging32_invlpg;
3697         context->update_pte = paging32_update_pte;
3698         context->shadow_root_level = PT32E_ROOT_LEVEL;
3699         context->root_hpa = INVALID_PAGE;
3700         context->direct_map = false;
3701         return 0;
3702 }
3703
3704 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3705                                   struct kvm_mmu *context)
3706 {
3707         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3708 }
3709
3710 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3711 {
3712         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3713
3714         context->base_role.word = 0;
3715         context->new_cr3 = nonpaging_new_cr3;
3716         context->page_fault = tdp_page_fault;
3717         context->free = nonpaging_free;
3718         context->sync_page = nonpaging_sync_page;
3719         context->invlpg = nonpaging_invlpg;
3720         context->update_pte = nonpaging_update_pte;
3721         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3722         context->root_hpa = INVALID_PAGE;
3723         context->direct_map = true;
3724         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3725         context->get_cr3 = get_cr3;
3726         context->get_pdptr = kvm_pdptr_read;
3727         context->inject_page_fault = kvm_inject_page_fault;
3728
3729         if (!is_paging(vcpu)) {
3730                 context->nx = false;
3731                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3732                 context->root_level = 0;
3733         } else if (is_long_mode(vcpu)) {
3734                 context->nx = is_nx(vcpu);
3735                 context->root_level = PT64_ROOT_LEVEL;
3736                 reset_rsvds_bits_mask(vcpu, context);
3737                 context->gva_to_gpa = paging64_gva_to_gpa;
3738         } else if (is_pae(vcpu)) {
3739                 context->nx = is_nx(vcpu);
3740                 context->root_level = PT32E_ROOT_LEVEL;
3741                 reset_rsvds_bits_mask(vcpu, context);
3742                 context->gva_to_gpa = paging64_gva_to_gpa;
3743         } else {
3744                 context->nx = false;
3745                 context->root_level = PT32_ROOT_LEVEL;
3746                 reset_rsvds_bits_mask(vcpu, context);
3747                 context->gva_to_gpa = paging32_gva_to_gpa;
3748         }
3749
3750         update_permission_bitmask(vcpu, context);
3751         update_last_pte_bitmap(vcpu, context);
3752
3753         return 0;
3754 }
3755
3756 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3757 {
3758         int r;
3759         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3760         ASSERT(vcpu);
3761         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3762
3763         if (!is_paging(vcpu))
3764                 r = nonpaging_init_context(vcpu, context);
3765         else if (is_long_mode(vcpu))
3766                 r = paging64_init_context(vcpu, context);
3767         else if (is_pae(vcpu))
3768                 r = paging32E_init_context(vcpu, context);
3769         else
3770                 r = paging32_init_context(vcpu, context);
3771
3772         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3773         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3774         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3775         vcpu->arch.mmu.base_role.smep_andnot_wp
3776                 = smep && !is_write_protection(vcpu);
3777
3778         return r;
3779 }
3780 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3781
3782 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3783 {
3784         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3785
3786         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3787         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3788         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3789         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3790
3791         return r;
3792 }
3793
3794 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3795 {
3796         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3797
3798         g_context->get_cr3           = get_cr3;
3799         g_context->get_pdptr         = kvm_pdptr_read;
3800         g_context->inject_page_fault = kvm_inject_page_fault;
3801
3802         /*
3803          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3804          * translation of l2_gpa to l1_gpa addresses is done using the
3805          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3806          * functions between mmu and nested_mmu are swapped.
3807          */
3808         if (!is_paging(vcpu)) {
3809                 g_context->nx = false;
3810                 g_context->root_level = 0;
3811                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3812         } else if (is_long_mode(vcpu)) {
3813                 g_context->nx = is_nx(vcpu);
3814                 g_context->root_level = PT64_ROOT_LEVEL;
3815                 reset_rsvds_bits_mask(vcpu, g_context);
3816                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3817         } else if (is_pae(vcpu)) {
3818                 g_context->nx = is_nx(vcpu);
3819                 g_context->root_level = PT32E_ROOT_LEVEL;
3820                 reset_rsvds_bits_mask(vcpu, g_context);
3821                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3822         } else {
3823                 g_context->nx = false;
3824                 g_context->root_level = PT32_ROOT_LEVEL;
3825                 reset_rsvds_bits_mask(vcpu, g_context);
3826                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3827         }
3828
3829         update_permission_bitmask(vcpu, g_context);
3830         update_last_pte_bitmap(vcpu, g_context);
3831
3832         return 0;
3833 }
3834
3835 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3836 {
3837         if (mmu_is_nested(vcpu))
3838                 return init_kvm_nested_mmu(vcpu);
3839         else if (tdp_enabled)
3840                 return init_kvm_tdp_mmu(vcpu);
3841         else
3842                 return init_kvm_softmmu(vcpu);
3843 }
3844
3845 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3846 {
3847         ASSERT(vcpu);
3848         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3849                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3850                 vcpu->arch.mmu.free(vcpu);
3851 }
3852
3853 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3854 {
3855         destroy_kvm_mmu(vcpu);
3856         return init_kvm_mmu(vcpu);
3857 }
3858 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3859
3860 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3861 {
3862         int r;
3863
3864         r = mmu_topup_memory_caches(vcpu);
3865         if (r)
3866                 goto out;
3867         r = mmu_alloc_roots(vcpu);
3868         kvm_mmu_sync_roots(vcpu);
3869         if (r)
3870                 goto out;
3871         /* set_cr3() should ensure TLB has been flushed */
3872         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3873 out:
3874         return r;
3875 }
3876 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3877
3878 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3879 {
3880         mmu_free_roots(vcpu);
3881 }
3882 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3883
3884 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3885                                   struct kvm_mmu_page *sp, u64 *spte,
3886                                   const void *new)
3887 {
3888         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3889                 ++vcpu->kvm->stat.mmu_pde_zapped;
3890                 return;
3891         }
3892
3893         ++vcpu->kvm->stat.mmu_pte_updated;
3894         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3895 }
3896
3897 static bool need_remote_flush(u64 old, u64 new)
3898 {
3899         if (!is_shadow_present_pte(old))
3900                 return false;
3901         if (!is_shadow_present_pte(new))
3902                 return true;
3903         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3904                 return true;
3905         old ^= PT64_NX_MASK;
3906         new ^= PT64_NX_MASK;
3907         return (old & ~new & PT64_PERM_MASK) != 0;
3908 }
3909
3910 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3911                                     bool remote_flush, bool local_flush)
3912 {
3913         if (zap_page)
3914                 return;
3915
3916         if (remote_flush)
3917                 kvm_flush_remote_tlbs(vcpu->kvm);
3918         else if (local_flush)
3919                 kvm_mmu_flush_tlb(vcpu);
3920 }
3921
3922 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3923                                     const u8 *new, int *bytes)
3924 {
3925         u64 gentry;
3926         int r;
3927
3928         /*
3929          * Assume that the pte write on a page table of the same type
3930          * as the current vcpu paging mode since we update the sptes only
3931          * when they have the same mode.
3932          */
3933         if (is_pae(vcpu) && *bytes == 4) {
3934                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3935                 *gpa &= ~(gpa_t)7;
3936                 *bytes = 8;
3937                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3938                 if (r)
3939                         gentry = 0;
3940                 new = (const u8 *)&gentry;
3941         }
3942
3943         switch (*bytes) {
3944         case 4:
3945                 gentry = *(const u32 *)new;
3946                 break;
3947         case 8:
3948                 gentry = *(const u64 *)new;
3949                 break;
3950         default:
3951                 gentry = 0;
3952                 break;
3953         }
3954
3955         return gentry;
3956 }
3957
3958 /*
3959  * If we're seeing too many writes to a page, it may no longer be a page table,
3960  * or we may be forking, in which case it is better to unmap the page.
3961  */
3962 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3963 {
3964         /*
3965          * Skip write-flooding detected for the sp whose level is 1, because
3966          * it can become unsync, then the guest page is not write-protected.
3967          */
3968         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3969                 return false;
3970
3971         return ++sp->write_flooding_count >= 3;
3972 }
3973
3974 /*
3975  * Misaligned accesses are too much trouble to fix up; also, they usually
3976  * indicate a page is not used as a page table.
3977  */
3978 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3979                                     int bytes)
3980 {
3981         unsigned offset, pte_size, misaligned;
3982
3983         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3984                  gpa, bytes, sp->role.word);
3985
3986         offset = offset_in_page(gpa);
3987         pte_size = sp->role.cr4_pae ? 8 : 4;
3988
3989         /*
3990          * Sometimes, the OS only writes the last one bytes to update status
3991          * bits, for example, in linux, andb instruction is used in clear_bit().
3992          */
3993         if (!(offset & (pte_size - 1)) && bytes == 1)
3994                 return false;
3995
3996         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3997         misaligned |= bytes < 4;
3998
3999         return misaligned;
4000 }
4001
4002 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4003 {
4004         unsigned page_offset, quadrant;
4005         u64 *spte;
4006         int level;
4007
4008         page_offset = offset_in_page(gpa);
4009         level = sp->role.level;
4010         *nspte = 1;
4011         if (!sp->role.cr4_pae) {
4012                 page_offset <<= 1;      /* 32->64 */
4013                 /*
4014                  * A 32-bit pde maps 4MB while the shadow pdes map
4015                  * only 2MB.  So we need to double the offset again
4016                  * and zap two pdes instead of one.
4017                  */
4018                 if (level == PT32_ROOT_LEVEL) {
4019                         page_offset &= ~7; /* kill rounding error */
4020                         page_offset <<= 1;
4021                         *nspte = 2;
4022                 }
4023                 quadrant = page_offset >> PAGE_SHIFT;
4024                 page_offset &= ~PAGE_MASK;
4025                 if (quadrant != sp->role.quadrant)
4026                         return NULL;
4027         }
4028
4029         spte = &sp->spt[page_offset / sizeof(*spte)];
4030         return spte;
4031 }
4032
4033 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4034                        const u8 *new, int bytes)
4035 {
4036         gfn_t gfn = gpa >> PAGE_SHIFT;
4037         union kvm_mmu_page_role mask = { .word = 0 };
4038         struct kvm_mmu_page *sp;
4039         LIST_HEAD(invalid_list);
4040         u64 entry, gentry, *spte;
4041         int npte;
4042         bool remote_flush, local_flush, zap_page;
4043
4044         /*
4045          * If we don't have indirect shadow pages, it means no page is
4046          * write-protected, so we can exit simply.
4047          */
4048         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4049                 return;
4050
4051         zap_page = remote_flush = local_flush = false;
4052
4053         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4054
4055         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4056
4057         /*
4058          * No need to care whether allocation memory is successful
4059          * or not since pte prefetch is skiped if it does not have
4060          * enough objects in the cache.
4061          */
4062         mmu_topup_memory_caches(vcpu);
4063
4064         spin_lock(&vcpu->kvm->mmu_lock);
4065         ++vcpu->kvm->stat.mmu_pte_write;
4066         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4067
4068         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4069         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4070                 if (detect_write_misaligned(sp, gpa, bytes) ||
4071                       detect_write_flooding(sp)) {
4072                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4073                                                      &invalid_list);
4074                         ++vcpu->kvm->stat.mmu_flooded;
4075                         continue;
4076                 }
4077
4078                 spte = get_written_sptes(sp, gpa, &npte);
4079                 if (!spte)
4080                         continue;
4081
4082                 local_flush = true;
4083                 while (npte--) {
4084                         entry = *spte;
4085                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4086                         if (gentry &&
4087                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4088                               & mask.word) && rmap_can_add(vcpu))
4089                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4090                         if (need_remote_flush(entry, *spte))
4091                                 remote_flush = true;
4092                         ++spte;
4093                 }
4094         }
4095         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4096         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4097         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4098         spin_unlock(&vcpu->kvm->mmu_lock);
4099 }
4100
4101 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4102 {
4103         gpa_t gpa;
4104         int r;
4105
4106         if (vcpu->arch.mmu.direct_map)
4107                 return 0;
4108
4109         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4110
4111         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4112
4113         return r;
4114 }
4115 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4116
4117 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4118 {
4119         LIST_HEAD(invalid_list);
4120
4121         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4122                 return;
4123
4124         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4125                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4126                         break;
4127
4128                 ++vcpu->kvm->stat.mmu_recycled;
4129         }
4130         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4131 }
4132
4133 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4134 {
4135         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4136                 return vcpu_match_mmio_gpa(vcpu, addr);
4137
4138         return vcpu_match_mmio_gva(vcpu, addr);
4139 }
4140
4141 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4142                        void *insn, int insn_len)
4143 {
4144         int r, emulation_type = EMULTYPE_RETRY;
4145         enum emulation_result er;
4146
4147         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4148         if (r < 0)
4149                 goto out;
4150
4151         if (!r) {
4152                 r = 1;
4153                 goto out;
4154         }
4155
4156         if (is_mmio_page_fault(vcpu, cr2))
4157                 emulation_type = 0;
4158
4159         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4160
4161         switch (er) {
4162         case EMULATE_DONE:
4163                 return 1;
4164         case EMULATE_DO_MMIO:
4165                 ++vcpu->stat.mmio_exits;
4166                 /* fall through */
4167         case EMULATE_FAIL:
4168                 return 0;
4169         default:
4170                 BUG();
4171         }
4172 out:
4173         return r;
4174 }
4175 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4176
4177 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4178 {
4179         vcpu->arch.mmu.invlpg(vcpu, gva);
4180         kvm_mmu_flush_tlb(vcpu);
4181         ++vcpu->stat.invlpg;
4182 }
4183 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4184
4185 void kvm_enable_tdp(void)
4186 {
4187         tdp_enabled = true;
4188 }
4189 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4190
4191 void kvm_disable_tdp(void)
4192 {
4193         tdp_enabled = false;
4194 }
4195 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4196
4197 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4198 {
4199         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4200         if (vcpu->arch.mmu.lm_root != NULL)
4201                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4202 }
4203
4204 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4205 {
4206         struct page *page;
4207         int i;
4208
4209         ASSERT(vcpu);
4210
4211         /*
4212          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4213          * Therefore we need to allocate shadow page tables in the first
4214          * 4GB of memory, which happens to fit the DMA32 zone.
4215          */
4216         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4217         if (!page)
4218                 return -ENOMEM;
4219
4220         vcpu->arch.mmu.pae_root = page_address(page);
4221         for (i = 0; i < 4; ++i)
4222                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4223
4224         return 0;
4225 }
4226
4227 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4228 {
4229         ASSERT(vcpu);
4230
4231         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4232         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4233         vcpu->arch.mmu.translate_gpa = translate_gpa;
4234         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4235
4236         return alloc_mmu_pages(vcpu);
4237 }
4238
4239 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4240 {
4241         ASSERT(vcpu);
4242         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4243
4244         return init_kvm_mmu(vcpu);
4245 }
4246
4247 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4248 {
4249         struct kvm_memory_slot *memslot;
4250         gfn_t last_gfn;
4251         int i;
4252
4253         memslot = id_to_memslot(kvm->memslots, slot);
4254         last_gfn = memslot->base_gfn + memslot->npages - 1;
4255
4256         spin_lock(&kvm->mmu_lock);
4257
4258         for (i = PT_PAGE_TABLE_LEVEL;
4259              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4260                 unsigned long *rmapp;
4261                 unsigned long last_index, index;
4262
4263                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4264                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4265
4266                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4267                         if (*rmapp)
4268                                 __rmap_write_protect(kvm, rmapp, false);
4269
4270                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4271                                 kvm_flush_remote_tlbs(kvm);
4272                                 cond_resched_lock(&kvm->mmu_lock);
4273                         }
4274                 }
4275         }
4276
4277         kvm_flush_remote_tlbs(kvm);
4278         spin_unlock(&kvm->mmu_lock);
4279 }
4280
4281 #define BATCH_ZAP_PAGES 10
4282 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4283 {
4284         struct kvm_mmu_page *sp, *node;
4285         int batch = 0;
4286
4287 restart:
4288         list_for_each_entry_safe_reverse(sp, node,
4289               &kvm->arch.active_mmu_pages, link) {
4290                 int ret;
4291
4292                 /*
4293                  * No obsolete page exists before new created page since
4294                  * active_mmu_pages is the FIFO list.
4295                  */
4296                 if (!is_obsolete_sp(kvm, sp))
4297                         break;
4298
4299                 /*
4300                  * Since we are reversely walking the list and the invalid
4301                  * list will be moved to the head, skip the invalid page
4302                  * can help us to avoid the infinity list walking.
4303                  */
4304                 if (sp->role.invalid)
4305                         continue;
4306
4307                 /*
4308                  * Need not flush tlb since we only zap the sp with invalid
4309                  * generation number.
4310                  */
4311                 if (batch >= BATCH_ZAP_PAGES &&
4312                       cond_resched_lock(&kvm->mmu_lock)) {
4313                         batch = 0;
4314                         goto restart;
4315                 }
4316
4317                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4318                                 &kvm->arch.zapped_obsolete_pages);
4319                 batch += ret;
4320
4321                 if (ret)
4322                         goto restart;
4323         }
4324
4325         /*
4326          * Should flush tlb before free page tables since lockless-walking
4327          * may use the pages.
4328          */
4329         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4330 }
4331
4332 /*
4333  * Fast invalidate all shadow pages and use lock-break technique
4334  * to zap obsolete pages.
4335  *
4336  * It's required when memslot is being deleted or VM is being
4337  * destroyed, in these cases, we should ensure that KVM MMU does
4338  * not use any resource of the being-deleted slot or all slots
4339  * after calling the function.
4340  */
4341 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4342 {
4343         spin_lock(&kvm->mmu_lock);
4344         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4345         kvm->arch.mmu_valid_gen++;
4346
4347         /*
4348          * Notify all vcpus to reload its shadow page table
4349          * and flush TLB. Then all vcpus will switch to new
4350          * shadow page table with the new mmu_valid_gen.
4351          *
4352          * Note: we should do this under the protection of
4353          * mmu-lock, otherwise, vcpu would purge shadow page
4354          * but miss tlb flush.
4355          */
4356         kvm_reload_remote_mmus(kvm);
4357
4358         kvm_zap_obsolete_pages(kvm);
4359         spin_unlock(&kvm->mmu_lock);
4360 }
4361
4362 static void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4363 {
4364         struct kvm_mmu_page *sp, *node;
4365         LIST_HEAD(invalid_list);
4366
4367         spin_lock(&kvm->mmu_lock);
4368 restart:
4369         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4370                 if (!sp->mmio_cached)
4371                         continue;
4372                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4373                         goto restart;
4374         }
4375
4376         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4377         spin_unlock(&kvm->mmu_lock);
4378 }
4379
4380 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4381 {
4382         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4383 }
4384
4385 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4386 {
4387         /*
4388          * The very rare case: if the generation-number is round,
4389          * zap all shadow pages.
4390          *
4391          * The max value is MMIO_MAX_GEN - 1 since it is not called
4392          * when mark memslot invalid.
4393          */
4394         if (unlikely(kvm_current_mmio_generation(kvm) >= (MMIO_MAX_GEN - 1)))
4395                 kvm_mmu_zap_mmio_sptes(kvm);
4396 }
4397
4398 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4399 {
4400         struct kvm *kvm;
4401         int nr_to_scan = sc->nr_to_scan;
4402
4403         if (nr_to_scan == 0)
4404                 goto out;
4405
4406         raw_spin_lock(&kvm_lock);
4407
4408         list_for_each_entry(kvm, &vm_list, vm_list) {
4409                 int idx;
4410                 LIST_HEAD(invalid_list);
4411
4412                 /*
4413                  * Never scan more than sc->nr_to_scan VM instances.
4414                  * Will not hit this condition practically since we do not try
4415                  * to shrink more than one VM and it is very unlikely to see
4416                  * !n_used_mmu_pages so many times.
4417                  */
4418                 if (!nr_to_scan--)
4419                         break;
4420                 /*
4421                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4422                  * here. We may skip a VM instance errorneosly, but we do not
4423                  * want to shrink a VM that only started to populate its MMU
4424                  * anyway.
4425                  */
4426                 if (!kvm->arch.n_used_mmu_pages &&
4427                       !kvm_has_zapped_obsolete_pages(kvm))
4428                         continue;
4429
4430                 idx = srcu_read_lock(&kvm->srcu);
4431                 spin_lock(&kvm->mmu_lock);
4432
4433                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4434                         kvm_mmu_commit_zap_page(kvm,
4435                               &kvm->arch.zapped_obsolete_pages);
4436                         goto unlock;
4437                 }
4438
4439                 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
4440                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4441
4442 unlock:
4443                 spin_unlock(&kvm->mmu_lock);
4444                 srcu_read_unlock(&kvm->srcu, idx);
4445
4446                 list_move_tail(&kvm->vm_list, &vm_list);
4447                 break;
4448         }
4449
4450         raw_spin_unlock(&kvm_lock);
4451
4452 out:
4453         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4454 }
4455
4456 static struct shrinker mmu_shrinker = {
4457         .shrink = mmu_shrink,
4458         .seeks = DEFAULT_SEEKS * 10,
4459 };
4460
4461 static void mmu_destroy_caches(void)
4462 {
4463         if (pte_list_desc_cache)
4464                 kmem_cache_destroy(pte_list_desc_cache);
4465         if (mmu_page_header_cache)
4466                 kmem_cache_destroy(mmu_page_header_cache);
4467 }
4468
4469 int kvm_mmu_module_init(void)
4470 {
4471         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4472                                             sizeof(struct pte_list_desc),
4473                                             0, 0, NULL);
4474         if (!pte_list_desc_cache)
4475                 goto nomem;
4476
4477         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4478                                                   sizeof(struct kvm_mmu_page),
4479                                                   0, 0, NULL);
4480         if (!mmu_page_header_cache)
4481                 goto nomem;
4482
4483         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4484                 goto nomem;
4485
4486         register_shrinker(&mmu_shrinker);
4487
4488         return 0;
4489
4490 nomem:
4491         mmu_destroy_caches();
4492         return -ENOMEM;
4493 }
4494
4495 /*
4496  * Caculate mmu pages needed for kvm.
4497  */
4498 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4499 {
4500         unsigned int nr_mmu_pages;
4501         unsigned int  nr_pages = 0;
4502         struct kvm_memslots *slots;
4503         struct kvm_memory_slot *memslot;
4504
4505         slots = kvm_memslots(kvm);
4506
4507         kvm_for_each_memslot(memslot, slots)
4508                 nr_pages += memslot->npages;
4509
4510         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4511         nr_mmu_pages = max(nr_mmu_pages,
4512                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4513
4514         return nr_mmu_pages;
4515 }
4516
4517 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4518 {
4519         struct kvm_shadow_walk_iterator iterator;
4520         u64 spte;
4521         int nr_sptes = 0;
4522
4523         walk_shadow_page_lockless_begin(vcpu);
4524         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4525                 sptes[iterator.level-1] = spte;
4526                 nr_sptes++;
4527                 if (!is_shadow_present_pte(spte))
4528                         break;
4529         }
4530         walk_shadow_page_lockless_end(vcpu);
4531
4532         return nr_sptes;
4533 }
4534 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4535
4536 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4537 {
4538         ASSERT(vcpu);
4539
4540         destroy_kvm_mmu(vcpu);
4541         free_mmu_pages(vcpu);
4542         mmu_free_memory_caches(vcpu);
4543 }
4544
4545 void kvm_mmu_module_exit(void)
4546 {
4547         mmu_destroy_caches();
4548         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4549         unregister_shrinker(&mmu_shrinker);
4550         mmu_audit_disable();
4551 }