]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/i8254.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "irq.h"
39 #include "i8254.h"
40
41 #ifndef CONFIG_X86_64
42 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
43 #else
44 #define mod_64(x, y) ((x) % (y))
45 #endif
46
47 #define RW_STATE_LSB 1
48 #define RW_STATE_MSB 2
49 #define RW_STATE_WORD0 3
50 #define RW_STATE_WORD1 4
51
52 /* Compute with 96 bit intermediate result: (a*b)/c */
53 static u64 muldiv64(u64 a, u32 b, u32 c)
54 {
55         union {
56                 u64 ll;
57                 struct {
58                         u32 low, high;
59                 } l;
60         } u, res;
61         u64 rl, rh;
62
63         u.ll = a;
64         rl = (u64)u.l.low * (u64)b;
65         rh = (u64)u.l.high * (u64)b;
66         rh += (rl >> 32);
67         res.l.high = div64_u64(rh, c);
68         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
69         return res.ll;
70 }
71
72 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
73 {
74         struct kvm_kpit_channel_state *c =
75                 &kvm->arch.vpit->pit_state.channels[channel];
76
77         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
78
79         switch (c->mode) {
80         default:
81         case 0:
82         case 4:
83                 /* XXX: just disable/enable counting */
84                 break;
85         case 1:
86         case 2:
87         case 3:
88         case 5:
89                 /* Restart counting on rising edge. */
90                 if (c->gate < val)
91                         c->count_load_time = ktime_get();
92                 break;
93         }
94
95         c->gate = val;
96 }
97
98 static int pit_get_gate(struct kvm *kvm, int channel)
99 {
100         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
101
102         return kvm->arch.vpit->pit_state.channels[channel].gate;
103 }
104
105 static s64 __kpit_elapsed(struct kvm *kvm)
106 {
107         s64 elapsed;
108         ktime_t remaining;
109         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
110
111         if (!ps->period)
112                 return 0;
113
114         /*
115          * The Counter does not stop when it reaches zero. In
116          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
117          * the highest count, either FFFF hex for binary counting
118          * or 9999 for BCD counting, and continues counting.
119          * Modes 2 and 3 are periodic; the Counter reloads
120          * itself with the initial count and continues counting
121          * from there.
122          */
123         remaining = hrtimer_get_remaining(&ps->timer);
124         elapsed = ps->period - ktime_to_ns(remaining);
125
126         return elapsed;
127 }
128
129 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
130                         int channel)
131 {
132         if (channel == 0)
133                 return __kpit_elapsed(kvm);
134
135         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
136 }
137
138 static int pit_get_count(struct kvm *kvm, int channel)
139 {
140         struct kvm_kpit_channel_state *c =
141                 &kvm->arch.vpit->pit_state.channels[channel];
142         s64 d, t;
143         int counter;
144
145         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
146
147         t = kpit_elapsed(kvm, c, channel);
148         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
149
150         switch (c->mode) {
151         case 0:
152         case 1:
153         case 4:
154         case 5:
155                 counter = (c->count - d) & 0xffff;
156                 break;
157         case 3:
158                 /* XXX: may be incorrect for odd counts */
159                 counter = c->count - (mod_64((2 * d), c->count));
160                 break;
161         default:
162                 counter = c->count - mod_64(d, c->count);
163                 break;
164         }
165         return counter;
166 }
167
168 static int pit_get_out(struct kvm *kvm, int channel)
169 {
170         struct kvm_kpit_channel_state *c =
171                 &kvm->arch.vpit->pit_state.channels[channel];
172         s64 d, t;
173         int out;
174
175         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
176
177         t = kpit_elapsed(kvm, c, channel);
178         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
179
180         switch (c->mode) {
181         default:
182         case 0:
183                 out = (d >= c->count);
184                 break;
185         case 1:
186                 out = (d < c->count);
187                 break;
188         case 2:
189                 out = ((mod_64(d, c->count) == 0) && (d != 0));
190                 break;
191         case 3:
192                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
193                 break;
194         case 4:
195         case 5:
196                 out = (d == c->count);
197                 break;
198         }
199
200         return out;
201 }
202
203 static void pit_latch_count(struct kvm *kvm, int channel)
204 {
205         struct kvm_kpit_channel_state *c =
206                 &kvm->arch.vpit->pit_state.channels[channel];
207
208         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
209
210         if (!c->count_latched) {
211                 c->latched_count = pit_get_count(kvm, channel);
212                 c->count_latched = c->rw_mode;
213         }
214 }
215
216 static void pit_latch_status(struct kvm *kvm, int channel)
217 {
218         struct kvm_kpit_channel_state *c =
219                 &kvm->arch.vpit->pit_state.channels[channel];
220
221         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
222
223         if (!c->status_latched) {
224                 /* TODO: Return NULL COUNT (bit 6). */
225                 c->status = ((pit_get_out(kvm, channel) << 7) |
226                                 (c->rw_mode << 4) |
227                                 (c->mode << 1) |
228                                 c->bcd);
229                 c->status_latched = 1;
230         }
231 }
232
233 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
234 {
235         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
236                                                  irq_ack_notifier);
237         int value;
238
239         spin_lock(&ps->inject_lock);
240         value = atomic_dec_return(&ps->pending);
241         if (value < 0)
242                 /* spurious acks can be generated if, for example, the
243                  * PIC is being reset.  Handle it gracefully here
244                  */
245                 atomic_inc(&ps->pending);
246         else if (value > 0)
247                 /* in this case, we had multiple outstanding pit interrupts
248                  * that we needed to inject.  Reinject
249                  */
250                 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
251         ps->irq_ack = 1;
252         spin_unlock(&ps->inject_lock);
253 }
254
255 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
256 {
257         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
258         struct hrtimer *timer;
259
260         if (!kvm_vcpu_is_bsp(vcpu) || !pit)
261                 return;
262
263         timer = &pit->pit_state.timer;
264         if (hrtimer_cancel(timer))
265                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
266 }
267
268 static void destroy_pit_timer(struct kvm_pit *pit)
269 {
270         hrtimer_cancel(&pit->pit_state.timer);
271         flush_kthread_work(&pit->expired);
272 }
273
274 static void pit_do_work(struct kthread_work *work)
275 {
276         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
277         struct kvm *kvm = pit->kvm;
278         struct kvm_vcpu *vcpu;
279         int i;
280         struct kvm_kpit_state *ps = &pit->pit_state;
281         int inject = 0;
282
283         /* Try to inject pending interrupts when
284          * last one has been acked.
285          */
286         spin_lock(&ps->inject_lock);
287         if (ps->irq_ack) {
288                 ps->irq_ack = 0;
289                 inject = 1;
290         }
291         spin_unlock(&ps->inject_lock);
292         if (inject) {
293                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
294                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
295
296                 /*
297                  * Provides NMI watchdog support via Virtual Wire mode.
298                  * The route is: PIT -> PIC -> LVT0 in NMI mode.
299                  *
300                  * Note: Our Virtual Wire implementation is simplified, only
301                  * propagating PIT interrupts to all VCPUs when they have set
302                  * LVT0 to NMI delivery. Other PIC interrupts are just sent to
303                  * VCPU0, and only if its LVT0 is in EXTINT mode.
304                  */
305                 if (kvm->arch.vapics_in_nmi_mode > 0)
306                         kvm_for_each_vcpu(i, vcpu, kvm)
307                                 kvm_apic_nmi_wd_deliver(vcpu);
308         }
309 }
310
311 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
312 {
313         struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
314         struct kvm_pit *pt = ps->kvm->arch.vpit;
315
316         if (ps->reinject || !atomic_read(&ps->pending)) {
317                 atomic_inc(&ps->pending);
318                 queue_kthread_work(&pt->worker, &pt->expired);
319         }
320
321         if (ps->is_periodic) {
322                 hrtimer_add_expires_ns(&ps->timer, ps->period);
323                 return HRTIMER_RESTART;
324         } else
325                 return HRTIMER_NORESTART;
326 }
327
328 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
329 {
330         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
331         s64 interval;
332
333         if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
334                 return;
335
336         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
337
338         pr_debug("create pit timer, interval is %llu nsec\n", interval);
339
340         /* TODO The new value only affected after the retriggered */
341         hrtimer_cancel(&ps->timer);
342         flush_kthread_work(&ps->pit->expired);
343         ps->period = interval;
344         ps->is_periodic = is_period;
345
346         ps->timer.function = pit_timer_fn;
347         ps->kvm = ps->pit->kvm;
348
349         atomic_set(&ps->pending, 0);
350         ps->irq_ack = 1;
351
352         hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
353                       HRTIMER_MODE_ABS);
354 }
355
356 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
357 {
358         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
359
360         WARN_ON(!mutex_is_locked(&ps->lock));
361
362         pr_debug("load_count val is %d, channel is %d\n", val, channel);
363
364         /*
365          * The largest possible initial count is 0; this is equivalent
366          * to 216 for binary counting and 104 for BCD counting.
367          */
368         if (val == 0)
369                 val = 0x10000;
370
371         ps->channels[channel].count = val;
372
373         if (channel != 0) {
374                 ps->channels[channel].count_load_time = ktime_get();
375                 return;
376         }
377
378         /* Two types of timer
379          * mode 1 is one shot, mode 2 is period, otherwise del timer */
380         switch (ps->channels[0].mode) {
381         case 0:
382         case 1:
383         /* FIXME: enhance mode 4 precision */
384         case 4:
385                 create_pit_timer(kvm, val, 0);
386                 break;
387         case 2:
388         case 3:
389                 create_pit_timer(kvm, val, 1);
390                 break;
391         default:
392                 destroy_pit_timer(kvm->arch.vpit);
393         }
394 }
395
396 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
397 {
398         u8 saved_mode;
399         if (hpet_legacy_start) {
400                 /* save existing mode for later reenablement */
401                 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
402                 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
403                 pit_load_count(kvm, channel, val);
404                 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
405         } else {
406                 pit_load_count(kvm, channel, val);
407         }
408 }
409
410 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
411 {
412         return container_of(dev, struct kvm_pit, dev);
413 }
414
415 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
416 {
417         return container_of(dev, struct kvm_pit, speaker_dev);
418 }
419
420 static inline int pit_in_range(gpa_t addr)
421 {
422         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
423                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
424 }
425
426 static int pit_ioport_write(struct kvm_io_device *this,
427                             gpa_t addr, int len, const void *data)
428 {
429         struct kvm_pit *pit = dev_to_pit(this);
430         struct kvm_kpit_state *pit_state = &pit->pit_state;
431         struct kvm *kvm = pit->kvm;
432         int channel, access;
433         struct kvm_kpit_channel_state *s;
434         u32 val = *(u32 *) data;
435         if (!pit_in_range(addr))
436                 return -EOPNOTSUPP;
437
438         val  &= 0xff;
439         addr &= KVM_PIT_CHANNEL_MASK;
440
441         mutex_lock(&pit_state->lock);
442
443         if (val != 0)
444                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
445                          (unsigned int)addr, len, val);
446
447         if (addr == 3) {
448                 channel = val >> 6;
449                 if (channel == 3) {
450                         /* Read-Back Command. */
451                         for (channel = 0; channel < 3; channel++) {
452                                 s = &pit_state->channels[channel];
453                                 if (val & (2 << channel)) {
454                                         if (!(val & 0x20))
455                                                 pit_latch_count(kvm, channel);
456                                         if (!(val & 0x10))
457                                                 pit_latch_status(kvm, channel);
458                                 }
459                         }
460                 } else {
461                         /* Select Counter <channel>. */
462                         s = &pit_state->channels[channel];
463                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
464                         if (access == 0) {
465                                 pit_latch_count(kvm, channel);
466                         } else {
467                                 s->rw_mode = access;
468                                 s->read_state = access;
469                                 s->write_state = access;
470                                 s->mode = (val >> 1) & 7;
471                                 if (s->mode > 5)
472                                         s->mode -= 4;
473                                 s->bcd = val & 1;
474                         }
475                 }
476         } else {
477                 /* Write Count. */
478                 s = &pit_state->channels[addr];
479                 switch (s->write_state) {
480                 default:
481                 case RW_STATE_LSB:
482                         pit_load_count(kvm, addr, val);
483                         break;
484                 case RW_STATE_MSB:
485                         pit_load_count(kvm, addr, val << 8);
486                         break;
487                 case RW_STATE_WORD0:
488                         s->write_latch = val;
489                         s->write_state = RW_STATE_WORD1;
490                         break;
491                 case RW_STATE_WORD1:
492                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
493                         s->write_state = RW_STATE_WORD0;
494                         break;
495                 }
496         }
497
498         mutex_unlock(&pit_state->lock);
499         return 0;
500 }
501
502 static int pit_ioport_read(struct kvm_io_device *this,
503                            gpa_t addr, int len, void *data)
504 {
505         struct kvm_pit *pit = dev_to_pit(this);
506         struct kvm_kpit_state *pit_state = &pit->pit_state;
507         struct kvm *kvm = pit->kvm;
508         int ret, count;
509         struct kvm_kpit_channel_state *s;
510         if (!pit_in_range(addr))
511                 return -EOPNOTSUPP;
512
513         addr &= KVM_PIT_CHANNEL_MASK;
514         if (addr == 3)
515                 return 0;
516
517         s = &pit_state->channels[addr];
518
519         mutex_lock(&pit_state->lock);
520
521         if (s->status_latched) {
522                 s->status_latched = 0;
523                 ret = s->status;
524         } else if (s->count_latched) {
525                 switch (s->count_latched) {
526                 default:
527                 case RW_STATE_LSB:
528                         ret = s->latched_count & 0xff;
529                         s->count_latched = 0;
530                         break;
531                 case RW_STATE_MSB:
532                         ret = s->latched_count >> 8;
533                         s->count_latched = 0;
534                         break;
535                 case RW_STATE_WORD0:
536                         ret = s->latched_count & 0xff;
537                         s->count_latched = RW_STATE_MSB;
538                         break;
539                 }
540         } else {
541                 switch (s->read_state) {
542                 default:
543                 case RW_STATE_LSB:
544                         count = pit_get_count(kvm, addr);
545                         ret = count & 0xff;
546                         break;
547                 case RW_STATE_MSB:
548                         count = pit_get_count(kvm, addr);
549                         ret = (count >> 8) & 0xff;
550                         break;
551                 case RW_STATE_WORD0:
552                         count = pit_get_count(kvm, addr);
553                         ret = count & 0xff;
554                         s->read_state = RW_STATE_WORD1;
555                         break;
556                 case RW_STATE_WORD1:
557                         count = pit_get_count(kvm, addr);
558                         ret = (count >> 8) & 0xff;
559                         s->read_state = RW_STATE_WORD0;
560                         break;
561                 }
562         }
563
564         if (len > sizeof(ret))
565                 len = sizeof(ret);
566         memcpy(data, (char *)&ret, len);
567
568         mutex_unlock(&pit_state->lock);
569         return 0;
570 }
571
572 static int speaker_ioport_write(struct kvm_io_device *this,
573                                 gpa_t addr, int len, const void *data)
574 {
575         struct kvm_pit *pit = speaker_to_pit(this);
576         struct kvm_kpit_state *pit_state = &pit->pit_state;
577         struct kvm *kvm = pit->kvm;
578         u32 val = *(u32 *) data;
579         if (addr != KVM_SPEAKER_BASE_ADDRESS)
580                 return -EOPNOTSUPP;
581
582         mutex_lock(&pit_state->lock);
583         pit_state->speaker_data_on = (val >> 1) & 1;
584         pit_set_gate(kvm, 2, val & 1);
585         mutex_unlock(&pit_state->lock);
586         return 0;
587 }
588
589 static int speaker_ioport_read(struct kvm_io_device *this,
590                                gpa_t addr, int len, void *data)
591 {
592         struct kvm_pit *pit = speaker_to_pit(this);
593         struct kvm_kpit_state *pit_state = &pit->pit_state;
594         struct kvm *kvm = pit->kvm;
595         unsigned int refresh_clock;
596         int ret;
597         if (addr != KVM_SPEAKER_BASE_ADDRESS)
598                 return -EOPNOTSUPP;
599
600         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
601         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
602
603         mutex_lock(&pit_state->lock);
604         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
605                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
606         if (len > sizeof(ret))
607                 len = sizeof(ret);
608         memcpy(data, (char *)&ret, len);
609         mutex_unlock(&pit_state->lock);
610         return 0;
611 }
612
613 void kvm_pit_reset(struct kvm_pit *pit)
614 {
615         int i;
616         struct kvm_kpit_channel_state *c;
617
618         mutex_lock(&pit->pit_state.lock);
619         pit->pit_state.flags = 0;
620         for (i = 0; i < 3; i++) {
621                 c = &pit->pit_state.channels[i];
622                 c->mode = 0xff;
623                 c->gate = (i != 2);
624                 pit_load_count(pit->kvm, i, 0);
625         }
626         mutex_unlock(&pit->pit_state.lock);
627
628         atomic_set(&pit->pit_state.pending, 0);
629         pit->pit_state.irq_ack = 1;
630 }
631
632 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
633 {
634         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
635
636         if (!mask) {
637                 atomic_set(&pit->pit_state.pending, 0);
638                 pit->pit_state.irq_ack = 1;
639         }
640 }
641
642 static const struct kvm_io_device_ops pit_dev_ops = {
643         .read     = pit_ioport_read,
644         .write    = pit_ioport_write,
645 };
646
647 static const struct kvm_io_device_ops speaker_dev_ops = {
648         .read     = speaker_ioport_read,
649         .write    = speaker_ioport_write,
650 };
651
652 /* Caller must hold slots_lock */
653 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
654 {
655         struct kvm_pit *pit;
656         struct kvm_kpit_state *pit_state;
657         struct pid *pid;
658         pid_t pid_nr;
659         int ret;
660
661         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
662         if (!pit)
663                 return NULL;
664
665         pit->irq_source_id = kvm_request_irq_source_id(kvm);
666         if (pit->irq_source_id < 0) {
667                 kfree(pit);
668                 return NULL;
669         }
670
671         mutex_init(&pit->pit_state.lock);
672         mutex_lock(&pit->pit_state.lock);
673         spin_lock_init(&pit->pit_state.inject_lock);
674
675         pid = get_pid(task_tgid(current));
676         pid_nr = pid_vnr(pid);
677         put_pid(pid);
678
679         init_kthread_worker(&pit->worker);
680         pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
681                                        "kvm-pit/%d", pid_nr);
682         if (IS_ERR(pit->worker_task)) {
683                 mutex_unlock(&pit->pit_state.lock);
684                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
685                 kfree(pit);
686                 return NULL;
687         }
688         init_kthread_work(&pit->expired, pit_do_work);
689
690         kvm->arch.vpit = pit;
691         pit->kvm = kvm;
692
693         pit_state = &pit->pit_state;
694         pit_state->pit = pit;
695         hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
696         pit_state->irq_ack_notifier.gsi = 0;
697         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
698         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
699         pit_state->reinject = true;
700         mutex_unlock(&pit->pit_state.lock);
701
702         kvm_pit_reset(pit);
703
704         pit->mask_notifier.func = pit_mask_notifer;
705         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
706
707         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
708         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
709                                       KVM_PIT_MEM_LENGTH, &pit->dev);
710         if (ret < 0)
711                 goto fail;
712
713         if (flags & KVM_PIT_SPEAKER_DUMMY) {
714                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
715                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
716                                               KVM_SPEAKER_BASE_ADDRESS, 4,
717                                               &pit->speaker_dev);
718                 if (ret < 0)
719                         goto fail_unregister;
720         }
721
722         return pit;
723
724 fail_unregister:
725         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
726
727 fail:
728         kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
729         kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
730         kvm_free_irq_source_id(kvm, pit->irq_source_id);
731         kthread_stop(pit->worker_task);
732         kfree(pit);
733         return NULL;
734 }
735
736 void kvm_free_pit(struct kvm *kvm)
737 {
738         struct hrtimer *timer;
739
740         if (kvm->arch.vpit) {
741                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
742                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
743                                               &kvm->arch.vpit->speaker_dev);
744                 kvm_unregister_irq_mask_notifier(kvm, 0,
745                                                &kvm->arch.vpit->mask_notifier);
746                 kvm_unregister_irq_ack_notifier(kvm,
747                                 &kvm->arch.vpit->pit_state.irq_ack_notifier);
748                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
749                 timer = &kvm->arch.vpit->pit_state.timer;
750                 hrtimer_cancel(timer);
751                 flush_kthread_work(&kvm->arch.vpit->expired);
752                 kthread_stop(kvm->arch.vpit->worker_task);
753                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
754                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
755                 kfree(kvm->arch.vpit);
756         }
757 }