]> Pileus Git - ~andy/linux/blob - arch/x86/kvm/cpuid.c
kvm: Add KVM_GET_EMULATED_CPUID
[~andy/linux] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25
26 static u32 xstate_required_size(u64 xstate_bv)
27 {
28         int feature_bit = 0;
29         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
30
31         xstate_bv &= ~XSTATE_FPSSE;
32         while (xstate_bv) {
33                 if (xstate_bv & 0x1) {
34                         u32 eax, ebx, ecx, edx;
35                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
36                         ret = max(ret, eax + ebx);
37                 }
38
39                 xstate_bv >>= 1;
40                 feature_bit++;
41         }
42
43         return ret;
44 }
45
46 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
47 {
48         struct kvm_cpuid_entry2 *best;
49         struct kvm_lapic *apic = vcpu->arch.apic;
50
51         best = kvm_find_cpuid_entry(vcpu, 1, 0);
52         if (!best)
53                 return;
54
55         /* Update OSXSAVE bit */
56         if (cpu_has_xsave && best->function == 0x1) {
57                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
58                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
59                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
60         }
61
62         if (apic) {
63                 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
64                         apic->lapic_timer.timer_mode_mask = 3 << 17;
65                 else
66                         apic->lapic_timer.timer_mode_mask = 1 << 17;
67         }
68
69         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
70         if (!best) {
71                 vcpu->arch.guest_supported_xcr0 = 0;
72                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
73         } else {
74                 vcpu->arch.guest_supported_xcr0 =
75                         (best->eax | ((u64)best->edx << 32)) &
76                         host_xcr0 & KVM_SUPPORTED_XCR0;
77                 vcpu->arch.guest_xstate_size =
78                         xstate_required_size(vcpu->arch.guest_supported_xcr0);
79         }
80
81         kvm_pmu_cpuid_update(vcpu);
82 }
83
84 static int is_efer_nx(void)
85 {
86         unsigned long long efer = 0;
87
88         rdmsrl_safe(MSR_EFER, &efer);
89         return efer & EFER_NX;
90 }
91
92 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
93 {
94         int i;
95         struct kvm_cpuid_entry2 *e, *entry;
96
97         entry = NULL;
98         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
99                 e = &vcpu->arch.cpuid_entries[i];
100                 if (e->function == 0x80000001) {
101                         entry = e;
102                         break;
103                 }
104         }
105         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
106                 entry->edx &= ~(1 << 20);
107                 printk(KERN_INFO "kvm: guest NX capability removed\n");
108         }
109 }
110
111 /* when an old userspace process fills a new kernel module */
112 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
113                              struct kvm_cpuid *cpuid,
114                              struct kvm_cpuid_entry __user *entries)
115 {
116         int r, i;
117         struct kvm_cpuid_entry *cpuid_entries;
118
119         r = -E2BIG;
120         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
121                 goto out;
122         r = -ENOMEM;
123         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
124         if (!cpuid_entries)
125                 goto out;
126         r = -EFAULT;
127         if (copy_from_user(cpuid_entries, entries,
128                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
129                 goto out_free;
130         for (i = 0; i < cpuid->nent; i++) {
131                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
132                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
133                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
134                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
135                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
136                 vcpu->arch.cpuid_entries[i].index = 0;
137                 vcpu->arch.cpuid_entries[i].flags = 0;
138                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
139                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
140                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
141         }
142         vcpu->arch.cpuid_nent = cpuid->nent;
143         cpuid_fix_nx_cap(vcpu);
144         r = 0;
145         kvm_apic_set_version(vcpu);
146         kvm_x86_ops->cpuid_update(vcpu);
147         kvm_update_cpuid(vcpu);
148
149 out_free:
150         vfree(cpuid_entries);
151 out:
152         return r;
153 }
154
155 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
156                               struct kvm_cpuid2 *cpuid,
157                               struct kvm_cpuid_entry2 __user *entries)
158 {
159         int r;
160
161         r = -E2BIG;
162         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
163                 goto out;
164         r = -EFAULT;
165         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
166                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
167                 goto out;
168         vcpu->arch.cpuid_nent = cpuid->nent;
169         kvm_apic_set_version(vcpu);
170         kvm_x86_ops->cpuid_update(vcpu);
171         kvm_update_cpuid(vcpu);
172         return 0;
173
174 out:
175         return r;
176 }
177
178 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
179                               struct kvm_cpuid2 *cpuid,
180                               struct kvm_cpuid_entry2 __user *entries)
181 {
182         int r;
183
184         r = -E2BIG;
185         if (cpuid->nent < vcpu->arch.cpuid_nent)
186                 goto out;
187         r = -EFAULT;
188         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
189                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
190                 goto out;
191         return 0;
192
193 out:
194         cpuid->nent = vcpu->arch.cpuid_nent;
195         return r;
196 }
197
198 static void cpuid_mask(u32 *word, int wordnum)
199 {
200         *word &= boot_cpu_data.x86_capability[wordnum];
201 }
202
203 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
204                            u32 index)
205 {
206         entry->function = function;
207         entry->index = index;
208         cpuid_count(entry->function, entry->index,
209                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
210         entry->flags = 0;
211 }
212
213 static bool supported_xcr0_bit(unsigned bit)
214 {
215         u64 mask = ((u64)1 << bit);
216
217         return mask & KVM_SUPPORTED_XCR0 & host_xcr0;
218 }
219
220 #define F(x) bit(X86_FEATURE_##x)
221
222 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
223                                    u32 func, u32 index, int *nent, int maxnent)
224 {
225         return 0;
226 }
227
228 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
229                                  u32 index, int *nent, int maxnent)
230 {
231         int r;
232         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
233 #ifdef CONFIG_X86_64
234         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
235                                 ? F(GBPAGES) : 0;
236         unsigned f_lm = F(LM);
237 #else
238         unsigned f_gbpages = 0;
239         unsigned f_lm = 0;
240 #endif
241         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
242         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
243
244         /* cpuid 1.edx */
245         const u32 kvm_supported_word0_x86_features =
246                 F(FPU) | F(VME) | F(DE) | F(PSE) |
247                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
248                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
249                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
250                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
251                 0 /* Reserved, DS, ACPI */ | F(MMX) |
252                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
253                 0 /* HTT, TM, Reserved, PBE */;
254         /* cpuid 0x80000001.edx */
255         const u32 kvm_supported_word1_x86_features =
256                 F(FPU) | F(VME) | F(DE) | F(PSE) |
257                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
258                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
259                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
260                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
261                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
262                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
263                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
264         /* cpuid 1.ecx */
265         const u32 kvm_supported_word4_x86_features =
266                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
267                 0 /* DS-CPL, VMX, SMX, EST */ |
268                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
269                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
270                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
271                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
272                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
273                 F(F16C) | F(RDRAND);
274         /* cpuid 0x80000001.ecx */
275         const u32 kvm_supported_word6_x86_features =
276                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
277                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
278                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
279                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
280
281         /* cpuid 0xC0000001.edx */
282         const u32 kvm_supported_word5_x86_features =
283                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
284                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
285                 F(PMM) | F(PMM_EN);
286
287         /* cpuid 7.0.ebx */
288         const u32 kvm_supported_word9_x86_features =
289                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
290                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
291
292         /* all calls to cpuid_count() should be made on the same cpu */
293         get_cpu();
294
295         r = -E2BIG;
296
297         if (*nent >= maxnent)
298                 goto out;
299
300         do_cpuid_1_ent(entry, function, index);
301         ++*nent;
302
303         switch (function) {
304         case 0:
305                 entry->eax = min(entry->eax, (u32)0xd);
306                 break;
307         case 1:
308                 entry->edx &= kvm_supported_word0_x86_features;
309                 cpuid_mask(&entry->edx, 0);
310                 entry->ecx &= kvm_supported_word4_x86_features;
311                 cpuid_mask(&entry->ecx, 4);
312                 /* we support x2apic emulation even if host does not support
313                  * it since we emulate x2apic in software */
314                 entry->ecx |= F(X2APIC);
315                 break;
316         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
317          * may return different values. This forces us to get_cpu() before
318          * issuing the first command, and also to emulate this annoying behavior
319          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
320         case 2: {
321                 int t, times = entry->eax & 0xff;
322
323                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
324                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
325                 for (t = 1; t < times; ++t) {
326                         if (*nent >= maxnent)
327                                 goto out;
328
329                         do_cpuid_1_ent(&entry[t], function, 0);
330                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
331                         ++*nent;
332                 }
333                 break;
334         }
335         /* function 4 has additional index. */
336         case 4: {
337                 int i, cache_type;
338
339                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
340                 /* read more entries until cache_type is zero */
341                 for (i = 1; ; ++i) {
342                         if (*nent >= maxnent)
343                                 goto out;
344
345                         cache_type = entry[i - 1].eax & 0x1f;
346                         if (!cache_type)
347                                 break;
348                         do_cpuid_1_ent(&entry[i], function, i);
349                         entry[i].flags |=
350                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
351                         ++*nent;
352                 }
353                 break;
354         }
355         case 7: {
356                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
357                 /* Mask ebx against host capability word 9 */
358                 if (index == 0) {
359                         entry->ebx &= kvm_supported_word9_x86_features;
360                         cpuid_mask(&entry->ebx, 9);
361                         // TSC_ADJUST is emulated
362                         entry->ebx |= F(TSC_ADJUST);
363                 } else
364                         entry->ebx = 0;
365                 entry->eax = 0;
366                 entry->ecx = 0;
367                 entry->edx = 0;
368                 break;
369         }
370         case 9:
371                 break;
372         case 0xa: { /* Architectural Performance Monitoring */
373                 struct x86_pmu_capability cap;
374                 union cpuid10_eax eax;
375                 union cpuid10_edx edx;
376
377                 perf_get_x86_pmu_capability(&cap);
378
379                 /*
380                  * Only support guest architectural pmu on a host
381                  * with architectural pmu.
382                  */
383                 if (!cap.version)
384                         memset(&cap, 0, sizeof(cap));
385
386                 eax.split.version_id = min(cap.version, 2);
387                 eax.split.num_counters = cap.num_counters_gp;
388                 eax.split.bit_width = cap.bit_width_gp;
389                 eax.split.mask_length = cap.events_mask_len;
390
391                 edx.split.num_counters_fixed = cap.num_counters_fixed;
392                 edx.split.bit_width_fixed = cap.bit_width_fixed;
393                 edx.split.reserved = 0;
394
395                 entry->eax = eax.full;
396                 entry->ebx = cap.events_mask;
397                 entry->ecx = 0;
398                 entry->edx = edx.full;
399                 break;
400         }
401         /* function 0xb has additional index. */
402         case 0xb: {
403                 int i, level_type;
404
405                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
406                 /* read more entries until level_type is zero */
407                 for (i = 1; ; ++i) {
408                         if (*nent >= maxnent)
409                                 goto out;
410
411                         level_type = entry[i - 1].ecx & 0xff00;
412                         if (!level_type)
413                                 break;
414                         do_cpuid_1_ent(&entry[i], function, i);
415                         entry[i].flags |=
416                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
417                         ++*nent;
418                 }
419                 break;
420         }
421         case 0xd: {
422                 int idx, i;
423
424                 entry->eax &= host_xcr0 & KVM_SUPPORTED_XCR0;
425                 entry->edx &= (host_xcr0 & KVM_SUPPORTED_XCR0) >> 32;
426                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
427                 for (idx = 1, i = 1; idx < 64; ++idx) {
428                         if (*nent >= maxnent)
429                                 goto out;
430
431                         do_cpuid_1_ent(&entry[i], function, idx);
432                         if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
433                                 continue;
434                         entry[i].flags |=
435                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
436                         ++*nent;
437                         ++i;
438                 }
439                 break;
440         }
441         case KVM_CPUID_SIGNATURE: {
442                 static const char signature[12] = "KVMKVMKVM\0\0";
443                 const u32 *sigptr = (const u32 *)signature;
444                 entry->eax = KVM_CPUID_FEATURES;
445                 entry->ebx = sigptr[0];
446                 entry->ecx = sigptr[1];
447                 entry->edx = sigptr[2];
448                 break;
449         }
450         case KVM_CPUID_FEATURES:
451                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
452                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
453                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
454                              (1 << KVM_FEATURE_ASYNC_PF) |
455                              (1 << KVM_FEATURE_PV_EOI) |
456                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
457                              (1 << KVM_FEATURE_PV_UNHALT);
458
459                 if (sched_info_on())
460                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
461
462                 entry->ebx = 0;
463                 entry->ecx = 0;
464                 entry->edx = 0;
465                 break;
466         case 0x80000000:
467                 entry->eax = min(entry->eax, 0x8000001a);
468                 break;
469         case 0x80000001:
470                 entry->edx &= kvm_supported_word1_x86_features;
471                 cpuid_mask(&entry->edx, 1);
472                 entry->ecx &= kvm_supported_word6_x86_features;
473                 cpuid_mask(&entry->ecx, 6);
474                 break;
475         case 0x80000008: {
476                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
477                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
478                 unsigned phys_as = entry->eax & 0xff;
479
480                 if (!g_phys_as)
481                         g_phys_as = phys_as;
482                 entry->eax = g_phys_as | (virt_as << 8);
483                 entry->ebx = entry->edx = 0;
484                 break;
485         }
486         case 0x80000019:
487                 entry->ecx = entry->edx = 0;
488                 break;
489         case 0x8000001a:
490                 break;
491         case 0x8000001d:
492                 break;
493         /*Add support for Centaur's CPUID instruction*/
494         case 0xC0000000:
495                 /*Just support up to 0xC0000004 now*/
496                 entry->eax = min(entry->eax, 0xC0000004);
497                 break;
498         case 0xC0000001:
499                 entry->edx &= kvm_supported_word5_x86_features;
500                 cpuid_mask(&entry->edx, 5);
501                 break;
502         case 3: /* Processor serial number */
503         case 5: /* MONITOR/MWAIT */
504         case 6: /* Thermal management */
505         case 0x80000007: /* Advanced power management */
506         case 0xC0000002:
507         case 0xC0000003:
508         case 0xC0000004:
509         default:
510                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
511                 break;
512         }
513
514         kvm_x86_ops->set_supported_cpuid(function, entry);
515
516         r = 0;
517
518 out:
519         put_cpu();
520
521         return r;
522 }
523
524 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
525                         u32 idx, int *nent, int maxnent, unsigned int type)
526 {
527         if (type == KVM_GET_EMULATED_CPUID)
528                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
529
530         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
531 }
532
533 #undef F
534
535 struct kvm_cpuid_param {
536         u32 func;
537         u32 idx;
538         bool has_leaf_count;
539         bool (*qualifier)(const struct kvm_cpuid_param *param);
540 };
541
542 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
543 {
544         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
545 }
546
547 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
548                                  __u32 num_entries, unsigned int ioctl_type)
549 {
550         int i;
551
552         if (ioctl_type != KVM_GET_EMULATED_CPUID)
553                 return false;
554
555         /*
556          * We want to make sure that ->padding is being passed clean from
557          * userspace in case we want to use it for something in the future.
558          *
559          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
560          * have to give ourselves satisfied only with the emulated side. /me
561          * sheds a tear.
562          */
563         for (i = 0; i < num_entries; i++) {
564                 if (entries[i].padding[0] ||
565                     entries[i].padding[1] ||
566                     entries[i].padding[2])
567                         return true;
568         }
569         return false;
570 }
571
572 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
573                             struct kvm_cpuid_entry2 __user *entries,
574                             unsigned int type)
575 {
576         struct kvm_cpuid_entry2 *cpuid_entries;
577         int limit, nent = 0, r = -E2BIG, i;
578         u32 func;
579         static const struct kvm_cpuid_param param[] = {
580                 { .func = 0, .has_leaf_count = true },
581                 { .func = 0x80000000, .has_leaf_count = true },
582                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
583                 { .func = KVM_CPUID_SIGNATURE },
584                 { .func = KVM_CPUID_FEATURES },
585         };
586
587         if (cpuid->nent < 1)
588                 goto out;
589         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
590                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
591
592         if (sanity_check_entries(entries, cpuid->nent, type))
593                 return -EINVAL;
594
595         r = -ENOMEM;
596         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
597         if (!cpuid_entries)
598                 goto out;
599
600         r = 0;
601         for (i = 0; i < ARRAY_SIZE(param); i++) {
602                 const struct kvm_cpuid_param *ent = &param[i];
603
604                 if (ent->qualifier && !ent->qualifier(ent))
605                         continue;
606
607                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
608                                 &nent, cpuid->nent, type);
609
610                 if (r)
611                         goto out_free;
612
613                 if (!ent->has_leaf_count)
614                         continue;
615
616                 limit = cpuid_entries[nent - 1].eax;
617                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
618                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
619                                      &nent, cpuid->nent, type);
620
621                 if (r)
622                         goto out_free;
623         }
624
625         r = -EFAULT;
626         if (copy_to_user(entries, cpuid_entries,
627                          nent * sizeof(struct kvm_cpuid_entry2)))
628                 goto out_free;
629         cpuid->nent = nent;
630         r = 0;
631
632 out_free:
633         vfree(cpuid_entries);
634 out:
635         return r;
636 }
637
638 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
639 {
640         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
641         int j, nent = vcpu->arch.cpuid_nent;
642
643         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
644         /* when no next entry is found, the current entry[i] is reselected */
645         for (j = i + 1; ; j = (j + 1) % nent) {
646                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
647                 if (ej->function == e->function) {
648                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
649                         return j;
650                 }
651         }
652         return 0; /* silence gcc, even though control never reaches here */
653 }
654
655 /* find an entry with matching function, matching index (if needed), and that
656  * should be read next (if it's stateful) */
657 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
658         u32 function, u32 index)
659 {
660         if (e->function != function)
661                 return 0;
662         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
663                 return 0;
664         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
665             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
666                 return 0;
667         return 1;
668 }
669
670 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
671                                               u32 function, u32 index)
672 {
673         int i;
674         struct kvm_cpuid_entry2 *best = NULL;
675
676         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
677                 struct kvm_cpuid_entry2 *e;
678
679                 e = &vcpu->arch.cpuid_entries[i];
680                 if (is_matching_cpuid_entry(e, function, index)) {
681                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
682                                 move_to_next_stateful_cpuid_entry(vcpu, i);
683                         best = e;
684                         break;
685                 }
686         }
687         return best;
688 }
689 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
690
691 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
692 {
693         struct kvm_cpuid_entry2 *best;
694
695         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
696         if (!best || best->eax < 0x80000008)
697                 goto not_found;
698         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
699         if (best)
700                 return best->eax & 0xff;
701 not_found:
702         return 36;
703 }
704
705 /*
706  * If no match is found, check whether we exceed the vCPU's limit
707  * and return the content of the highest valid _standard_ leaf instead.
708  * This is to satisfy the CPUID specification.
709  */
710 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
711                                                   u32 function, u32 index)
712 {
713         struct kvm_cpuid_entry2 *maxlevel;
714
715         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
716         if (!maxlevel || maxlevel->eax >= function)
717                 return NULL;
718         if (function & 0x80000000) {
719                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
720                 if (!maxlevel)
721                         return NULL;
722         }
723         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
724 }
725
726 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
727 {
728         u32 function = *eax, index = *ecx;
729         struct kvm_cpuid_entry2 *best;
730
731         best = kvm_find_cpuid_entry(vcpu, function, index);
732
733         if (!best)
734                 best = check_cpuid_limit(vcpu, function, index);
735
736         if (best) {
737                 *eax = best->eax;
738                 *ebx = best->ebx;
739                 *ecx = best->ecx;
740                 *edx = best->edx;
741         } else
742                 *eax = *ebx = *ecx = *edx = 0;
743 }
744 EXPORT_SYMBOL_GPL(kvm_cpuid);
745
746 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
747 {
748         u32 function, eax, ebx, ecx, edx;
749
750         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
751         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
752         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
753         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
754         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
755         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
756         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
757         kvm_x86_ops->skip_emulated_instruction(vcpu);
758         trace_kvm_cpuid(function, eax, ebx, ecx, edx);
759 }
760 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);