]> Pileus Git - ~andy/linux/blob - arch/x86/kernel/i387.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / arch / x86 / kernel / i387.c
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *      Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <linux/module.h>
9 #include <linux/regset.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12
13 #include <asm/sigcontext.h>
14 #include <asm/processor.h>
15 #include <asm/math_emu.h>
16 #include <asm/uaccess.h>
17 #include <asm/ptrace.h>
18 #include <asm/i387.h>
19 #include <asm/fpu-internal.h>
20 #include <asm/user.h>
21
22 /*
23  * Were we in an interrupt that interrupted kernel mode?
24  *
25  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
26  * pair does nothing at all: the thread must not have fpu (so
27  * that we don't try to save the FPU state), and TS must
28  * be set (so that the clts/stts pair does nothing that is
29  * visible in the interrupted kernel thread).
30  *
31  * Except for the eagerfpu case when we return 1 unless we've already
32  * been eager and saved the state in kernel_fpu_begin().
33  */
34 static inline bool interrupted_kernel_fpu_idle(void)
35 {
36         if (use_eager_fpu())
37                 return __thread_has_fpu(current);
38
39         return !__thread_has_fpu(current) &&
40                 (read_cr0() & X86_CR0_TS);
41 }
42
43 /*
44  * Were we in user mode (or vm86 mode) when we were
45  * interrupted?
46  *
47  * Doing kernel_fpu_begin/end() is ok if we are running
48  * in an interrupt context from user mode - we'll just
49  * save the FPU state as required.
50  */
51 static inline bool interrupted_user_mode(void)
52 {
53         struct pt_regs *regs = get_irq_regs();
54         return regs && user_mode_vm(regs);
55 }
56
57 /*
58  * Can we use the FPU in kernel mode with the
59  * whole "kernel_fpu_begin/end()" sequence?
60  *
61  * It's always ok in process context (ie "not interrupt")
62  * but it is sometimes ok even from an irq.
63  */
64 bool irq_fpu_usable(void)
65 {
66         return !in_interrupt() ||
67                 interrupted_user_mode() ||
68                 interrupted_kernel_fpu_idle();
69 }
70 EXPORT_SYMBOL(irq_fpu_usable);
71
72 void __kernel_fpu_begin(void)
73 {
74         struct task_struct *me = current;
75
76         if (__thread_has_fpu(me)) {
77                 __thread_clear_has_fpu(me);
78                 __save_init_fpu(me);
79                 /* We do 'stts()' in __kernel_fpu_end() */
80         } else if (!use_eager_fpu()) {
81                 this_cpu_write(fpu_owner_task, NULL);
82                 clts();
83         }
84 }
85 EXPORT_SYMBOL(__kernel_fpu_begin);
86
87 void __kernel_fpu_end(void)
88 {
89         if (use_eager_fpu()) {
90                 /*
91                  * For eager fpu, most the time, tsk_used_math() is true.
92                  * Restore the user math as we are done with the kernel usage.
93                  * At few instances during thread exit, signal handling etc,
94                  * tsk_used_math() is false. Those few places will take proper
95                  * actions, so we don't need to restore the math here.
96                  */
97                 if (likely(tsk_used_math(current)))
98                         math_state_restore();
99         } else {
100                 stts();
101         }
102 }
103 EXPORT_SYMBOL(__kernel_fpu_end);
104
105 void unlazy_fpu(struct task_struct *tsk)
106 {
107         preempt_disable();
108         if (__thread_has_fpu(tsk)) {
109                 __save_init_fpu(tsk);
110                 __thread_fpu_end(tsk);
111         } else
112                 tsk->thread.fpu_counter = 0;
113         preempt_enable();
114 }
115 EXPORT_SYMBOL(unlazy_fpu);
116
117 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
118 unsigned int xstate_size;
119 EXPORT_SYMBOL_GPL(xstate_size);
120 static struct i387_fxsave_struct fx_scratch;
121
122 static void mxcsr_feature_mask_init(void)
123 {
124         unsigned long mask = 0;
125
126         if (cpu_has_fxsr) {
127                 memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
128                 asm volatile("fxsave %0" : "+m" (fx_scratch));
129                 mask = fx_scratch.mxcsr_mask;
130                 if (mask == 0)
131                         mask = 0x0000ffbf;
132         }
133         mxcsr_feature_mask &= mask;
134 }
135
136 static void init_thread_xstate(void)
137 {
138         /*
139          * Note that xstate_size might be overwriten later during
140          * xsave_init().
141          */
142
143         if (!cpu_has_fpu) {
144                 /*
145                  * Disable xsave as we do not support it if i387
146                  * emulation is enabled.
147                  */
148                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
149                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
150                 xstate_size = sizeof(struct i387_soft_struct);
151                 return;
152         }
153
154         if (cpu_has_fxsr)
155                 xstate_size = sizeof(struct i387_fxsave_struct);
156         else
157                 xstate_size = sizeof(struct i387_fsave_struct);
158 }
159
160 /*
161  * Called at bootup to set up the initial FPU state that is later cloned
162  * into all processes.
163  */
164
165 void fpu_init(void)
166 {
167         unsigned long cr0;
168         unsigned long cr4_mask = 0;
169
170 #ifndef CONFIG_MATH_EMULATION
171         if (!cpu_has_fpu) {
172                 pr_emerg("No FPU found and no math emulation present\n");
173                 pr_emerg("Giving up\n");
174                 for (;;)
175                         asm volatile("hlt");
176         }
177 #endif
178         if (cpu_has_fxsr)
179                 cr4_mask |= X86_CR4_OSFXSR;
180         if (cpu_has_xmm)
181                 cr4_mask |= X86_CR4_OSXMMEXCPT;
182         if (cr4_mask)
183                 set_in_cr4(cr4_mask);
184
185         cr0 = read_cr0();
186         cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
187         if (!cpu_has_fpu)
188                 cr0 |= X86_CR0_EM;
189         write_cr0(cr0);
190
191         /*
192          * init_thread_xstate is only called once to avoid overriding
193          * xstate_size during boot time or during CPU hotplug.
194          */
195         if (xstate_size == 0)
196                 init_thread_xstate();
197
198         mxcsr_feature_mask_init();
199         xsave_init();
200         eager_fpu_init();
201 }
202
203 void fpu_finit(struct fpu *fpu)
204 {
205         if (!cpu_has_fpu) {
206                 finit_soft_fpu(&fpu->state->soft);
207                 return;
208         }
209
210         if (cpu_has_fxsr) {
211                 fx_finit(&fpu->state->fxsave);
212         } else {
213                 struct i387_fsave_struct *fp = &fpu->state->fsave;
214                 memset(fp, 0, xstate_size);
215                 fp->cwd = 0xffff037fu;
216                 fp->swd = 0xffff0000u;
217                 fp->twd = 0xffffffffu;
218                 fp->fos = 0xffff0000u;
219         }
220 }
221 EXPORT_SYMBOL_GPL(fpu_finit);
222
223 /*
224  * The _current_ task is using the FPU for the first time
225  * so initialize it and set the mxcsr to its default
226  * value at reset if we support XMM instructions and then
227  * remember the current task has used the FPU.
228  */
229 int init_fpu(struct task_struct *tsk)
230 {
231         int ret;
232
233         if (tsk_used_math(tsk)) {
234                 if (cpu_has_fpu && tsk == current)
235                         unlazy_fpu(tsk);
236                 tsk->thread.fpu.last_cpu = ~0;
237                 return 0;
238         }
239
240         /*
241          * Memory allocation at the first usage of the FPU and other state.
242          */
243         ret = fpu_alloc(&tsk->thread.fpu);
244         if (ret)
245                 return ret;
246
247         fpu_finit(&tsk->thread.fpu);
248
249         set_stopped_child_used_math(tsk);
250         return 0;
251 }
252 EXPORT_SYMBOL_GPL(init_fpu);
253
254 /*
255  * The xstateregs_active() routine is the same as the fpregs_active() routine,
256  * as the "regset->n" for the xstate regset will be updated based on the feature
257  * capabilites supported by the xsave.
258  */
259 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
260 {
261         return tsk_used_math(target) ? regset->n : 0;
262 }
263
264 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
265 {
266         return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
267 }
268
269 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
270                 unsigned int pos, unsigned int count,
271                 void *kbuf, void __user *ubuf)
272 {
273         int ret;
274
275         if (!cpu_has_fxsr)
276                 return -ENODEV;
277
278         ret = init_fpu(target);
279         if (ret)
280                 return ret;
281
282         sanitize_i387_state(target);
283
284         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
285                                    &target->thread.fpu.state->fxsave, 0, -1);
286 }
287
288 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
289                 unsigned int pos, unsigned int count,
290                 const void *kbuf, const void __user *ubuf)
291 {
292         int ret;
293
294         if (!cpu_has_fxsr)
295                 return -ENODEV;
296
297         ret = init_fpu(target);
298         if (ret)
299                 return ret;
300
301         sanitize_i387_state(target);
302
303         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
304                                  &target->thread.fpu.state->fxsave, 0, -1);
305
306         /*
307          * mxcsr reserved bits must be masked to zero for security reasons.
308          */
309         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
310
311         /*
312          * update the header bits in the xsave header, indicating the
313          * presence of FP and SSE state.
314          */
315         if (cpu_has_xsave)
316                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
317
318         return ret;
319 }
320
321 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
322                 unsigned int pos, unsigned int count,
323                 void *kbuf, void __user *ubuf)
324 {
325         int ret;
326
327         if (!cpu_has_xsave)
328                 return -ENODEV;
329
330         ret = init_fpu(target);
331         if (ret)
332                 return ret;
333
334         /*
335          * Copy the 48bytes defined by the software first into the xstate
336          * memory layout in the thread struct, so that we can copy the entire
337          * xstateregs to the user using one user_regset_copyout().
338          */
339         memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
340                xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
341
342         /*
343          * Copy the xstate memory layout.
344          */
345         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
346                                   &target->thread.fpu.state->xsave, 0, -1);
347         return ret;
348 }
349
350 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
351                   unsigned int pos, unsigned int count,
352                   const void *kbuf, const void __user *ubuf)
353 {
354         int ret;
355         struct xsave_hdr_struct *xsave_hdr;
356
357         if (!cpu_has_xsave)
358                 return -ENODEV;
359
360         ret = init_fpu(target);
361         if (ret)
362                 return ret;
363
364         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
365                                  &target->thread.fpu.state->xsave, 0, -1);
366
367         /*
368          * mxcsr reserved bits must be masked to zero for security reasons.
369          */
370         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
371
372         xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
373
374         xsave_hdr->xstate_bv &= pcntxt_mask;
375         /*
376          * These bits must be zero.
377          */
378         xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
379
380         return ret;
381 }
382
383 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
384
385 /*
386  * FPU tag word conversions.
387  */
388
389 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
390 {
391         unsigned int tmp; /* to avoid 16 bit prefixes in the code */
392
393         /* Transform each pair of bits into 01 (valid) or 00 (empty) */
394         tmp = ~twd;
395         tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
396         /* and move the valid bits to the lower byte. */
397         tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
398         tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
399         tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
400
401         return tmp;
402 }
403
404 #define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
405 #define FP_EXP_TAG_VALID        0
406 #define FP_EXP_TAG_ZERO         1
407 #define FP_EXP_TAG_SPECIAL      2
408 #define FP_EXP_TAG_EMPTY        3
409
410 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
411 {
412         struct _fpxreg *st;
413         u32 tos = (fxsave->swd >> 11) & 7;
414         u32 twd = (unsigned long) fxsave->twd;
415         u32 tag;
416         u32 ret = 0xffff0000u;
417         int i;
418
419         for (i = 0; i < 8; i++, twd >>= 1) {
420                 if (twd & 0x1) {
421                         st = FPREG_ADDR(fxsave, (i - tos) & 7);
422
423                         switch (st->exponent & 0x7fff) {
424                         case 0x7fff:
425                                 tag = FP_EXP_TAG_SPECIAL;
426                                 break;
427                         case 0x0000:
428                                 if (!st->significand[0] &&
429                                     !st->significand[1] &&
430                                     !st->significand[2] &&
431                                     !st->significand[3])
432                                         tag = FP_EXP_TAG_ZERO;
433                                 else
434                                         tag = FP_EXP_TAG_SPECIAL;
435                                 break;
436                         default:
437                                 if (st->significand[3] & 0x8000)
438                                         tag = FP_EXP_TAG_VALID;
439                                 else
440                                         tag = FP_EXP_TAG_SPECIAL;
441                                 break;
442                         }
443                 } else {
444                         tag = FP_EXP_TAG_EMPTY;
445                 }
446                 ret |= tag << (2 * i);
447         }
448         return ret;
449 }
450
451 /*
452  * FXSR floating point environment conversions.
453  */
454
455 void
456 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
457 {
458         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
459         struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
460         struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
461         int i;
462
463         env->cwd = fxsave->cwd | 0xffff0000u;
464         env->swd = fxsave->swd | 0xffff0000u;
465         env->twd = twd_fxsr_to_i387(fxsave);
466
467 #ifdef CONFIG_X86_64
468         env->fip = fxsave->rip;
469         env->foo = fxsave->rdp;
470         /*
471          * should be actually ds/cs at fpu exception time, but
472          * that information is not available in 64bit mode.
473          */
474         env->fcs = task_pt_regs(tsk)->cs;
475         if (tsk == current) {
476                 savesegment(ds, env->fos);
477         } else {
478                 env->fos = tsk->thread.ds;
479         }
480         env->fos |= 0xffff0000;
481 #else
482         env->fip = fxsave->fip;
483         env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
484         env->foo = fxsave->foo;
485         env->fos = fxsave->fos;
486 #endif
487
488         for (i = 0; i < 8; ++i)
489                 memcpy(&to[i], &from[i], sizeof(to[0]));
490 }
491
492 void convert_to_fxsr(struct task_struct *tsk,
493                      const struct user_i387_ia32_struct *env)
494
495 {
496         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
497         struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
498         struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
499         int i;
500
501         fxsave->cwd = env->cwd;
502         fxsave->swd = env->swd;
503         fxsave->twd = twd_i387_to_fxsr(env->twd);
504         fxsave->fop = (u16) ((u32) env->fcs >> 16);
505 #ifdef CONFIG_X86_64
506         fxsave->rip = env->fip;
507         fxsave->rdp = env->foo;
508         /* cs and ds ignored */
509 #else
510         fxsave->fip = env->fip;
511         fxsave->fcs = (env->fcs & 0xffff);
512         fxsave->foo = env->foo;
513         fxsave->fos = env->fos;
514 #endif
515
516         for (i = 0; i < 8; ++i)
517                 memcpy(&to[i], &from[i], sizeof(from[0]));
518 }
519
520 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
521                unsigned int pos, unsigned int count,
522                void *kbuf, void __user *ubuf)
523 {
524         struct user_i387_ia32_struct env;
525         int ret;
526
527         ret = init_fpu(target);
528         if (ret)
529                 return ret;
530
531         if (!static_cpu_has(X86_FEATURE_FPU))
532                 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
533
534         if (!cpu_has_fxsr)
535                 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
536                                            &target->thread.fpu.state->fsave, 0,
537                                            -1);
538
539         sanitize_i387_state(target);
540
541         if (kbuf && pos == 0 && count == sizeof(env)) {
542                 convert_from_fxsr(kbuf, target);
543                 return 0;
544         }
545
546         convert_from_fxsr(&env, target);
547
548         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
549 }
550
551 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
552                unsigned int pos, unsigned int count,
553                const void *kbuf, const void __user *ubuf)
554 {
555         struct user_i387_ia32_struct env;
556         int ret;
557
558         ret = init_fpu(target);
559         if (ret)
560                 return ret;
561
562         sanitize_i387_state(target);
563
564         if (!static_cpu_has(X86_FEATURE_FPU))
565                 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
566
567         if (!cpu_has_fxsr)
568                 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
569                                           &target->thread.fpu.state->fsave, 0,
570                                           -1);
571
572         if (pos > 0 || count < sizeof(env))
573                 convert_from_fxsr(&env, target);
574
575         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
576         if (!ret)
577                 convert_to_fxsr(target, &env);
578
579         /*
580          * update the header bit in the xsave header, indicating the
581          * presence of FP.
582          */
583         if (cpu_has_xsave)
584                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
585         return ret;
586 }
587
588 /*
589  * FPU state for core dumps.
590  * This is only used for a.out dumps now.
591  * It is declared generically using elf_fpregset_t (which is
592  * struct user_i387_struct) but is in fact only used for 32-bit
593  * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
594  */
595 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
596 {
597         struct task_struct *tsk = current;
598         int fpvalid;
599
600         fpvalid = !!used_math();
601         if (fpvalid)
602                 fpvalid = !fpregs_get(tsk, NULL,
603                                       0, sizeof(struct user_i387_ia32_struct),
604                                       fpu, NULL);
605
606         return fpvalid;
607 }
608 EXPORT_SYMBOL(dump_fpu);
609
610 #endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
611
612 static int __init no_387(char *s)
613 {
614         setup_clear_cpu_cap(X86_FEATURE_FPU);
615         return 1;
616 }
617
618 __setup("no387", no_387);
619
620 void fpu_detect(struct cpuinfo_x86 *c)
621 {
622         unsigned long cr0;
623         u16 fsw, fcw;
624
625         fsw = fcw = 0xffff;
626
627         cr0 = read_cr0();
628         cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
629         write_cr0(cr0);
630
631         asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
632                      : "+m" (fsw), "+m" (fcw));
633
634         if (fsw == 0 && (fcw & 0x103f) == 0x003f)
635                 set_cpu_cap(c, X86_FEATURE_FPU);
636         else
637                 clear_cpu_cap(c, X86_FEATURE_FPU);
638
639         /* The final cr0 value is set in fpu_init() */
640 }