]> Pileus Git - ~andy/linux/blob - arch/um/kernel/process.c
GRE: Refactor GRE tunneling code.
[~andy/linux] / arch / um / kernel / process.c
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include <as-layout.h>
27 #include <kern_util.h>
28 #include <os.h>
29 #include <skas.h>
30
31 /*
32  * This is a per-cpu array.  A processor only modifies its entry and it only
33  * cares about its entry, so it's OK if another processor is modifying its
34  * entry.
35  */
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37
38 static inline int external_pid(void)
39 {
40         /* FIXME: Need to look up userspace_pid by cpu */
41         return userspace_pid[0];
42 }
43
44 int pid_to_processor_id(int pid)
45 {
46         int i;
47
48         for (i = 0; i < ncpus; i++) {
49                 if (cpu_tasks[i].pid == pid)
50                         return i;
51         }
52         return -1;
53 }
54
55 void free_stack(unsigned long stack, int order)
56 {
57         free_pages(stack, order);
58 }
59
60 unsigned long alloc_stack(int order, int atomic)
61 {
62         unsigned long page;
63         gfp_t flags = GFP_KERNEL;
64
65         if (atomic)
66                 flags = GFP_ATOMIC;
67         page = __get_free_pages(flags, order);
68
69         return page;
70 }
71
72 static inline void set_current(struct task_struct *task)
73 {
74         cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
75                 { external_pid(), task });
76 }
77
78 extern void arch_switch_to(struct task_struct *to);
79
80 void *__switch_to(struct task_struct *from, struct task_struct *to)
81 {
82         to->thread.prev_sched = from;
83         set_current(to);
84
85         do {
86                 current->thread.saved_task = NULL;
87
88                 switch_threads(&from->thread.switch_buf,
89                                &to->thread.switch_buf);
90
91                 arch_switch_to(current);
92
93                 if (current->thread.saved_task)
94                         show_regs(&(current->thread.regs));
95                 to = current->thread.saved_task;
96                 from = current;
97         } while (current->thread.saved_task);
98
99         return current->thread.prev_sched;
100 }
101
102 void interrupt_end(void)
103 {
104         if (need_resched())
105                 schedule();
106         if (test_thread_flag(TIF_SIGPENDING))
107                 do_signal();
108         if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
109                 tracehook_notify_resume(&current->thread.regs);
110 }
111
112 void exit_thread(void)
113 {
114 }
115
116 int get_current_pid(void)
117 {
118         return task_pid_nr(current);
119 }
120
121 /*
122  * This is called magically, by its address being stuffed in a jmp_buf
123  * and being longjmp-d to.
124  */
125 void new_thread_handler(void)
126 {
127         int (*fn)(void *), n;
128         void *arg;
129
130         if (current->thread.prev_sched != NULL)
131                 schedule_tail(current->thread.prev_sched);
132         current->thread.prev_sched = NULL;
133
134         fn = current->thread.request.u.thread.proc;
135         arg = current->thread.request.u.thread.arg;
136
137         /*
138          * callback returns only if the kernel thread execs a process
139          */
140         n = fn(arg);
141         userspace(&current->thread.regs.regs);
142 }
143
144 /* Called magically, see new_thread_handler above */
145 void fork_handler(void)
146 {
147         force_flush_all();
148
149         schedule_tail(current->thread.prev_sched);
150
151         /*
152          * XXX: if interrupt_end() calls schedule, this call to
153          * arch_switch_to isn't needed. We could want to apply this to
154          * improve performance. -bb
155          */
156         arch_switch_to(current);
157
158         current->thread.prev_sched = NULL;
159
160         userspace(&current->thread.regs.regs);
161 }
162
163 int copy_thread(unsigned long clone_flags, unsigned long sp,
164                 unsigned long arg, struct task_struct * p)
165 {
166         void (*handler)(void);
167         int kthread = current->flags & PF_KTHREAD;
168         int ret = 0;
169
170         p->thread = (struct thread_struct) INIT_THREAD;
171
172         if (!kthread) {
173                 memcpy(&p->thread.regs.regs, current_pt_regs(),
174                        sizeof(p->thread.regs.regs));
175                 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
176                 if (sp != 0)
177                         REGS_SP(p->thread.regs.regs.gp) = sp;
178
179                 handler = fork_handler;
180
181                 arch_copy_thread(&current->thread.arch, &p->thread.arch);
182         } else {
183                 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
184                 p->thread.request.u.thread.proc = (int (*)(void *))sp;
185                 p->thread.request.u.thread.arg = (void *)arg;
186                 handler = new_thread_handler;
187         }
188
189         new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
190
191         if (!kthread) {
192                 clear_flushed_tls(p);
193
194                 /*
195                  * Set a new TLS for the child thread?
196                  */
197                 if (clone_flags & CLONE_SETTLS)
198                         ret = arch_copy_tls(p);
199         }
200
201         return ret;
202 }
203
204 void initial_thread_cb(void (*proc)(void *), void *arg)
205 {
206         int save_kmalloc_ok = kmalloc_ok;
207
208         kmalloc_ok = 0;
209         initial_thread_cb_skas(proc, arg);
210         kmalloc_ok = save_kmalloc_ok;
211 }
212
213 void default_idle(void)
214 {
215         unsigned long long nsecs;
216
217         while (1) {
218                 /* endless idle loop with no priority at all */
219
220                 /*
221                  * although we are an idle CPU, we do not want to
222                  * get into the scheduler unnecessarily.
223                  */
224                 if (need_resched())
225                         schedule();
226
227                 tick_nohz_idle_enter();
228                 rcu_idle_enter();
229                 nsecs = disable_timer();
230                 idle_sleep(nsecs);
231                 rcu_idle_exit();
232                 tick_nohz_idle_exit();
233         }
234 }
235
236 void cpu_idle(void)
237 {
238         cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
239         default_idle();
240 }
241
242 int __cant_sleep(void) {
243         return in_atomic() || irqs_disabled() || in_interrupt();
244         /* Is in_interrupt() really needed? */
245 }
246
247 int user_context(unsigned long sp)
248 {
249         unsigned long stack;
250
251         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
252         return stack != (unsigned long) current_thread_info();
253 }
254
255 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
256
257 void do_uml_exitcalls(void)
258 {
259         exitcall_t *call;
260
261         call = &__uml_exitcall_end;
262         while (--call >= &__uml_exitcall_begin)
263                 (*call)();
264 }
265
266 char *uml_strdup(const char *string)
267 {
268         return kstrdup(string, GFP_KERNEL);
269 }
270 EXPORT_SYMBOL(uml_strdup);
271
272 int copy_to_user_proc(void __user *to, void *from, int size)
273 {
274         return copy_to_user(to, from, size);
275 }
276
277 int copy_from_user_proc(void *to, void __user *from, int size)
278 {
279         return copy_from_user(to, from, size);
280 }
281
282 int clear_user_proc(void __user *buf, int size)
283 {
284         return clear_user(buf, size);
285 }
286
287 int strlen_user_proc(char __user *str)
288 {
289         return strlen_user(str);
290 }
291
292 int smp_sigio_handler(void)
293 {
294 #ifdef CONFIG_SMP
295         int cpu = current_thread_info()->cpu;
296         IPI_handler(cpu);
297         if (cpu != 0)
298                 return 1;
299 #endif
300         return 0;
301 }
302
303 int cpu(void)
304 {
305         return current_thread_info()->cpu;
306 }
307
308 static atomic_t using_sysemu = ATOMIC_INIT(0);
309 int sysemu_supported;
310
311 void set_using_sysemu(int value)
312 {
313         if (value > sysemu_supported)
314                 return;
315         atomic_set(&using_sysemu, value);
316 }
317
318 int get_using_sysemu(void)
319 {
320         return atomic_read(&using_sysemu);
321 }
322
323 static int sysemu_proc_show(struct seq_file *m, void *v)
324 {
325         seq_printf(m, "%d\n", get_using_sysemu());
326         return 0;
327 }
328
329 static int sysemu_proc_open(struct inode *inode, struct file *file)
330 {
331         return single_open(file, sysemu_proc_show, NULL);
332 }
333
334 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
335                                  size_t count, loff_t *pos)
336 {
337         char tmp[2];
338
339         if (copy_from_user(tmp, buf, 1))
340                 return -EFAULT;
341
342         if (tmp[0] >= '0' && tmp[0] <= '2')
343                 set_using_sysemu(tmp[0] - '0');
344         /* We use the first char, but pretend to write everything */
345         return count;
346 }
347
348 static const struct file_operations sysemu_proc_fops = {
349         .owner          = THIS_MODULE,
350         .open           = sysemu_proc_open,
351         .read           = seq_read,
352         .llseek         = seq_lseek,
353         .release        = single_release,
354         .write          = sysemu_proc_write,
355 };
356
357 int __init make_proc_sysemu(void)
358 {
359         struct proc_dir_entry *ent;
360         if (!sysemu_supported)
361                 return 0;
362
363         ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
364
365         if (ent == NULL)
366         {
367                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
368                 return 0;
369         }
370
371         return 0;
372 }
373
374 late_initcall(make_proc_sysemu);
375
376 int singlestepping(void * t)
377 {
378         struct task_struct *task = t ? t : current;
379
380         if (!(task->ptrace & PT_DTRACE))
381                 return 0;
382
383         if (task->thread.singlestep_syscall)
384                 return 1;
385
386         return 2;
387 }
388
389 /*
390  * Only x86 and x86_64 have an arch_align_stack().
391  * All other arches have "#define arch_align_stack(x) (x)"
392  * in their asm/system.h
393  * As this is included in UML from asm-um/system-generic.h,
394  * we can use it to behave as the subarch does.
395  */
396 #ifndef arch_align_stack
397 unsigned long arch_align_stack(unsigned long sp)
398 {
399         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
400                 sp -= get_random_int() % 8192;
401         return sp & ~0xf;
402 }
403 #endif
404
405 unsigned long get_wchan(struct task_struct *p)
406 {
407         unsigned long stack_page, sp, ip;
408         bool seen_sched = 0;
409
410         if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
411                 return 0;
412
413         stack_page = (unsigned long) task_stack_page(p);
414         /* Bail if the process has no kernel stack for some reason */
415         if (stack_page == 0)
416                 return 0;
417
418         sp = p->thread.switch_buf->JB_SP;
419         /*
420          * Bail if the stack pointer is below the bottom of the kernel
421          * stack for some reason
422          */
423         if (sp < stack_page)
424                 return 0;
425
426         while (sp < stack_page + THREAD_SIZE) {
427                 ip = *((unsigned long *) sp);
428                 if (in_sched_functions(ip))
429                         /* Ignore everything until we're above the scheduler */
430                         seen_sched = 1;
431                 else if (kernel_text_address(ip) && seen_sched)
432                         return ip;
433
434                 sp += sizeof(unsigned long);
435         }
436
437         return 0;
438 }
439
440 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
441 {
442         int cpu = current_thread_info()->cpu;
443
444         return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
445 }
446