]> Pileus Git - ~andy/linux/blob - arch/um/kernel/process.c
um: Use asm-generic/switch_to.h
[~andy/linux] / arch / um / kernel / process.c
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <asm/current.h>
22 #include <asm/pgtable.h>
23 #include <asm/mmu_context.h>
24 #include <asm/uaccess.h>
25 #include "as-layout.h"
26 #include "kern_util.h"
27 #include "os.h"
28 #include "skas.h"
29
30 /*
31  * This is a per-cpu array.  A processor only modifies its entry and it only
32  * cares about its entry, so it's OK if another processor is modifying its
33  * entry.
34  */
35 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
36
37 static inline int external_pid(void)
38 {
39         /* FIXME: Need to look up userspace_pid by cpu */
40         return userspace_pid[0];
41 }
42
43 int pid_to_processor_id(int pid)
44 {
45         int i;
46
47         for (i = 0; i < ncpus; i++) {
48                 if (cpu_tasks[i].pid == pid)
49                         return i;
50         }
51         return -1;
52 }
53
54 void free_stack(unsigned long stack, int order)
55 {
56         free_pages(stack, order);
57 }
58
59 unsigned long alloc_stack(int order, int atomic)
60 {
61         unsigned long page;
62         gfp_t flags = GFP_KERNEL;
63
64         if (atomic)
65                 flags = GFP_ATOMIC;
66         page = __get_free_pages(flags, order);
67
68         return page;
69 }
70
71 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
72 {
73         int pid;
74
75         current->thread.request.u.thread.proc = fn;
76         current->thread.request.u.thread.arg = arg;
77         pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
78                       &current->thread.regs, 0, NULL, NULL);
79         return pid;
80 }
81 EXPORT_SYMBOL(kernel_thread);
82
83 static inline void set_current(struct task_struct *task)
84 {
85         cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
86                 { external_pid(), task });
87 }
88
89 extern void arch_switch_to(struct task_struct *to);
90
91 void *__switch_to(struct task_struct *from, struct task_struct *to)
92 {
93         to->thread.prev_sched = from;
94         set_current(to);
95
96         do {
97                 current->thread.saved_task = NULL;
98
99                 switch_threads(&from->thread.switch_buf,
100                                &to->thread.switch_buf);
101
102                 arch_switch_to(current);
103
104                 if (current->thread.saved_task)
105                         show_regs(&(current->thread.regs));
106                 to = current->thread.saved_task;
107                 from = current;
108         } while (current->thread.saved_task);
109
110         return current->thread.prev_sched;
111 }
112
113 void interrupt_end(void)
114 {
115         if (need_resched())
116                 schedule();
117         if (test_tsk_thread_flag(current, TIF_SIGPENDING))
118                 do_signal();
119 }
120
121 void exit_thread(void)
122 {
123 }
124
125 int get_current_pid(void)
126 {
127         return task_pid_nr(current);
128 }
129
130 /*
131  * This is called magically, by its address being stuffed in a jmp_buf
132  * and being longjmp-d to.
133  */
134 void new_thread_handler(void)
135 {
136         int (*fn)(void *), n;
137         void *arg;
138
139         if (current->thread.prev_sched != NULL)
140                 schedule_tail(current->thread.prev_sched);
141         current->thread.prev_sched = NULL;
142
143         fn = current->thread.request.u.thread.proc;
144         arg = current->thread.request.u.thread.arg;
145
146         /*
147          * The return value is 1 if the kernel thread execs a process,
148          * 0 if it just exits
149          */
150         n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
151         if (n == 1) {
152                 /* Handle any immediate reschedules or signals */
153                 interrupt_end();
154                 userspace(&current->thread.regs.regs);
155         }
156         else do_exit(0);
157 }
158
159 /* Called magically, see new_thread_handler above */
160 void fork_handler(void)
161 {
162         force_flush_all();
163
164         schedule_tail(current->thread.prev_sched);
165
166         /*
167          * XXX: if interrupt_end() calls schedule, this call to
168          * arch_switch_to isn't needed. We could want to apply this to
169          * improve performance. -bb
170          */
171         arch_switch_to(current);
172
173         current->thread.prev_sched = NULL;
174
175         /* Handle any immediate reschedules or signals */
176         interrupt_end();
177
178         userspace(&current->thread.regs.regs);
179 }
180
181 int copy_thread(unsigned long clone_flags, unsigned long sp,
182                 unsigned long stack_top, struct task_struct * p,
183                 struct pt_regs *regs)
184 {
185         void (*handler)(void);
186         int ret = 0;
187
188         p->thread = (struct thread_struct) INIT_THREAD;
189
190         if (current->thread.forking) {
191                 memcpy(&p->thread.regs.regs, &regs->regs,
192                        sizeof(p->thread.regs.regs));
193                 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
194                 if (sp != 0)
195                         REGS_SP(p->thread.regs.regs.gp) = sp;
196
197                 handler = fork_handler;
198
199                 arch_copy_thread(&current->thread.arch, &p->thread.arch);
200         }
201         else {
202                 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
203                 p->thread.request.u.thread = current->thread.request.u.thread;
204                 handler = new_thread_handler;
205         }
206
207         new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
208
209         if (current->thread.forking) {
210                 clear_flushed_tls(p);
211
212                 /*
213                  * Set a new TLS for the child thread?
214                  */
215                 if (clone_flags & CLONE_SETTLS)
216                         ret = arch_copy_tls(p);
217         }
218
219         return ret;
220 }
221
222 void initial_thread_cb(void (*proc)(void *), void *arg)
223 {
224         int save_kmalloc_ok = kmalloc_ok;
225
226         kmalloc_ok = 0;
227         initial_thread_cb_skas(proc, arg);
228         kmalloc_ok = save_kmalloc_ok;
229 }
230
231 void default_idle(void)
232 {
233         unsigned long long nsecs;
234
235         while (1) {
236                 /* endless idle loop with no priority at all */
237
238                 /*
239                  * although we are an idle CPU, we do not want to
240                  * get into the scheduler unnecessarily.
241                  */
242                 if (need_resched())
243                         schedule();
244
245                 tick_nohz_idle_enter();
246                 rcu_idle_enter();
247                 nsecs = disable_timer();
248                 idle_sleep(nsecs);
249                 rcu_idle_exit();
250                 tick_nohz_idle_exit();
251         }
252 }
253
254 void cpu_idle(void)
255 {
256         cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
257         default_idle();
258 }
259
260 int __cant_sleep(void) {
261         return in_atomic() || irqs_disabled() || in_interrupt();
262         /* Is in_interrupt() really needed? */
263 }
264
265 int user_context(unsigned long sp)
266 {
267         unsigned long stack;
268
269         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
270         return stack != (unsigned long) current_thread_info();
271 }
272
273 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
274
275 void do_uml_exitcalls(void)
276 {
277         exitcall_t *call;
278
279         call = &__uml_exitcall_end;
280         while (--call >= &__uml_exitcall_begin)
281                 (*call)();
282 }
283
284 char *uml_strdup(const char *string)
285 {
286         return kstrdup(string, GFP_KERNEL);
287 }
288 EXPORT_SYMBOL(uml_strdup);
289
290 int copy_to_user_proc(void __user *to, void *from, int size)
291 {
292         return copy_to_user(to, from, size);
293 }
294
295 int copy_from_user_proc(void *to, void __user *from, int size)
296 {
297         return copy_from_user(to, from, size);
298 }
299
300 int clear_user_proc(void __user *buf, int size)
301 {
302         return clear_user(buf, size);
303 }
304
305 int strlen_user_proc(char __user *str)
306 {
307         return strlen_user(str);
308 }
309
310 int smp_sigio_handler(void)
311 {
312 #ifdef CONFIG_SMP
313         int cpu = current_thread_info()->cpu;
314         IPI_handler(cpu);
315         if (cpu != 0)
316                 return 1;
317 #endif
318         return 0;
319 }
320
321 int cpu(void)
322 {
323         return current_thread_info()->cpu;
324 }
325
326 static atomic_t using_sysemu = ATOMIC_INIT(0);
327 int sysemu_supported;
328
329 void set_using_sysemu(int value)
330 {
331         if (value > sysemu_supported)
332                 return;
333         atomic_set(&using_sysemu, value);
334 }
335
336 int get_using_sysemu(void)
337 {
338         return atomic_read(&using_sysemu);
339 }
340
341 static int sysemu_proc_show(struct seq_file *m, void *v)
342 {
343         seq_printf(m, "%d\n", get_using_sysemu());
344         return 0;
345 }
346
347 static int sysemu_proc_open(struct inode *inode, struct file *file)
348 {
349         return single_open(file, sysemu_proc_show, NULL);
350 }
351
352 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
353                                  size_t count, loff_t *pos)
354 {
355         char tmp[2];
356
357         if (copy_from_user(tmp, buf, 1))
358                 return -EFAULT;
359
360         if (tmp[0] >= '0' && tmp[0] <= '2')
361                 set_using_sysemu(tmp[0] - '0');
362         /* We use the first char, but pretend to write everything */
363         return count;
364 }
365
366 static const struct file_operations sysemu_proc_fops = {
367         .owner          = THIS_MODULE,
368         .open           = sysemu_proc_open,
369         .read           = seq_read,
370         .llseek         = seq_lseek,
371         .release        = single_release,
372         .write          = sysemu_proc_write,
373 };
374
375 int __init make_proc_sysemu(void)
376 {
377         struct proc_dir_entry *ent;
378         if (!sysemu_supported)
379                 return 0;
380
381         ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
382
383         if (ent == NULL)
384         {
385                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
386                 return 0;
387         }
388
389         return 0;
390 }
391
392 late_initcall(make_proc_sysemu);
393
394 int singlestepping(void * t)
395 {
396         struct task_struct *task = t ? t : current;
397
398         if (!(task->ptrace & PT_DTRACE))
399                 return 0;
400
401         if (task->thread.singlestep_syscall)
402                 return 1;
403
404         return 2;
405 }
406
407 /*
408  * Only x86 and x86_64 have an arch_align_stack().
409  * All other arches have "#define arch_align_stack(x) (x)"
410  * in their asm/system.h
411  * As this is included in UML from asm-um/system-generic.h,
412  * we can use it to behave as the subarch does.
413  */
414 #ifndef arch_align_stack
415 unsigned long arch_align_stack(unsigned long sp)
416 {
417         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
418                 sp -= get_random_int() % 8192;
419         return sp & ~0xf;
420 }
421 #endif
422
423 unsigned long get_wchan(struct task_struct *p)
424 {
425         unsigned long stack_page, sp, ip;
426         bool seen_sched = 0;
427
428         if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
429                 return 0;
430
431         stack_page = (unsigned long) task_stack_page(p);
432         /* Bail if the process has no kernel stack for some reason */
433         if (stack_page == 0)
434                 return 0;
435
436         sp = p->thread.switch_buf->JB_SP;
437         /*
438          * Bail if the stack pointer is below the bottom of the kernel
439          * stack for some reason
440          */
441         if (sp < stack_page)
442                 return 0;
443
444         while (sp < stack_page + THREAD_SIZE) {
445                 ip = *((unsigned long *) sp);
446                 if (in_sched_functions(ip))
447                         /* Ignore everything until we're above the scheduler */
448                         seen_sched = 1;
449                 else if (kernel_text_address(ip) && seen_sched)
450                         return ip;
451
452                 sp += sizeof(unsigned long);
453         }
454
455         return 0;
456 }
457
458 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
459 {
460         int cpu = current_thread_info()->cpu;
461
462         return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
463 }
464