]> Pileus Git - ~andy/linux/blob - arch/sparc/mm/srmmu.c
kvm, vmx: Really fix lazy FPU on nested guest
[~andy/linux] / arch / sparc / mm / srmmu.c
1 /*
2  * srmmu.c:  SRMMU specific routines for memory management.
3  *
4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9  */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
41
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
50
51 #include "srmmu.h"
52
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57
58 extern struct resource sparc_iomap;
59
60 extern unsigned long last_valid_pfn;
61
62 static pgd_t *srmmu_swapper_pg_dir;
63
64 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
65
66 #ifdef CONFIG_SMP
67 const struct sparc32_cachetlb_ops *local_ops;
68
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END       }
74 #endif
75
76 int flush_page_for_dma_global = 1;
77
78 char *srmmu_name;
79
80 ctxd_t *srmmu_ctx_table_phys;
81 static ctxd_t *srmmu_context_table;
82
83 int viking_mxcc_present;
84 static DEFINE_SPINLOCK(srmmu_context_spinlock);
85
86 static int is_hypersparc;
87
88 static int srmmu_cache_pagetables;
89
90 /* these will be initialized in srmmu_nocache_calcsize() */
91 static unsigned long srmmu_nocache_size;
92 static unsigned long srmmu_nocache_end;
93
94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
96
97 /* The context table is a nocache user with the biggest alignment needs. */
98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
99
100 void *srmmu_nocache_pool;
101 void *srmmu_nocache_bitmap;
102 static struct bit_map srmmu_nocache_map;
103
104 static inline int srmmu_pmd_none(pmd_t pmd)
105 { return !(pmd_val(pmd) & 0xFFFFFFF); }
106
107 /* XXX should we hyper_flush_whole_icache here - Anton */
108 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
109 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
110
111 void pmd_set(pmd_t *pmdp, pte_t *ptep)
112 {
113         unsigned long ptp;      /* Physical address, shifted right by 4 */
114         int i;
115
116         ptp = __nocache_pa((unsigned long) ptep) >> 4;
117         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
118                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
119                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
120         }
121 }
122
123 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
124 {
125         unsigned long ptp;      /* Physical address, shifted right by 4 */
126         int i;
127
128         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
129         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
130                 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
131                 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
132         }
133 }
134
135 /* Find an entry in the third-level page table.. */
136 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
137 {
138         void *pte;
139
140         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
141         return (pte_t *) pte +
142             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
143 }
144
145 /*
146  * size: bytes to allocate in the nocache area.
147  * align: bytes, number to align at.
148  * Returns the virtual address of the allocated area.
149  */
150 static void *__srmmu_get_nocache(int size, int align)
151 {
152         int offset;
153         unsigned long addr;
154
155         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
156                 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
157                        size);
158                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
159         }
160         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
161                 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
162                        size);
163                 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
164         }
165         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
166
167         offset = bit_map_string_get(&srmmu_nocache_map,
168                                     size >> SRMMU_NOCACHE_BITMAP_SHIFT,
169                                     align >> SRMMU_NOCACHE_BITMAP_SHIFT);
170         if (offset == -1) {
171                 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
172                        size, (int) srmmu_nocache_size,
173                        srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
174                 return 0;
175         }
176
177         addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
178         return (void *)addr;
179 }
180
181 void *srmmu_get_nocache(int size, int align)
182 {
183         void *tmp;
184
185         tmp = __srmmu_get_nocache(size, align);
186
187         if (tmp)
188                 memset(tmp, 0, size);
189
190         return tmp;
191 }
192
193 void srmmu_free_nocache(void *addr, int size)
194 {
195         unsigned long vaddr;
196         int offset;
197
198         vaddr = (unsigned long)addr;
199         if (vaddr < SRMMU_NOCACHE_VADDR) {
200                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202                 BUG();
203         }
204         if (vaddr + size > srmmu_nocache_end) {
205                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206                     vaddr, srmmu_nocache_end);
207                 BUG();
208         }
209         if (!is_power_of_2(size)) {
210                 printk("Size 0x%x is not a power of 2\n", size);
211                 BUG();
212         }
213         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
214                 printk("Size 0x%x is too small\n", size);
215                 BUG();
216         }
217         if (vaddr & (size - 1)) {
218                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
219                 BUG();
220         }
221
222         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
223         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
224
225         bit_map_clear(&srmmu_nocache_map, offset, size);
226 }
227
228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229                                                  unsigned long end);
230
231 /* Return how much physical memory we have.  */
232 static unsigned long __init probe_memory(void)
233 {
234         unsigned long total = 0;
235         int i;
236
237         for (i = 0; sp_banks[i].num_bytes; i++)
238                 total += sp_banks[i].num_bytes;
239
240         return total;
241 }
242
243 /*
244  * Reserve nocache dynamically proportionally to the amount of
245  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
246  */
247 static void __init srmmu_nocache_calcsize(void)
248 {
249         unsigned long sysmemavail = probe_memory() / 1024;
250         int srmmu_nocache_npages;
251
252         srmmu_nocache_npages =
253                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
254
255  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
256         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
257         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
258                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
259
260         /* anything above 1280 blows up */
261         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
262                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
263
264         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
265         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
266 }
267
268 static void __init srmmu_nocache_init(void)
269 {
270         unsigned int bitmap_bits;
271         pgd_t *pgd;
272         pmd_t *pmd;
273         pte_t *pte;
274         unsigned long paddr, vaddr;
275         unsigned long pteval;
276
277         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
278
279         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
280                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
281         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
282
283         srmmu_nocache_bitmap =
284                 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
285                                 SMP_CACHE_BYTES, 0UL);
286         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
287
288         srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
289         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
290         init_mm.pgd = srmmu_swapper_pg_dir;
291
292         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
293
294         paddr = __pa((unsigned long)srmmu_nocache_pool);
295         vaddr = SRMMU_NOCACHE_VADDR;
296
297         while (vaddr < srmmu_nocache_end) {
298                 pgd = pgd_offset_k(vaddr);
299                 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
300                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
301
302                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
303
304                 if (srmmu_cache_pagetables)
305                         pteval |= SRMMU_CACHE;
306
307                 set_pte(__nocache_fix(pte), __pte(pteval));
308
309                 vaddr += PAGE_SIZE;
310                 paddr += PAGE_SIZE;
311         }
312
313         flush_cache_all();
314         flush_tlb_all();
315 }
316
317 pgd_t *get_pgd_fast(void)
318 {
319         pgd_t *pgd = NULL;
320
321         pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322         if (pgd) {
323                 pgd_t *init = pgd_offset_k(0);
324                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
325                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
326                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
327         }
328
329         return pgd;
330 }
331
332 /*
333  * Hardware needs alignment to 256 only, but we align to whole page size
334  * to reduce fragmentation problems due to the buddy principle.
335  * XXX Provide actual fragmentation statistics in /proc.
336  *
337  * Alignments up to the page size are the same for physical and virtual
338  * addresses of the nocache area.
339  */
340 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
341 {
342         unsigned long pte;
343         struct page *page;
344
345         if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
346                 return NULL;
347         page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
348         if (!pgtable_page_ctor(page)) {
349                 __free_page(page);
350                 return NULL;
351         }
352         return page;
353 }
354
355 void pte_free(struct mm_struct *mm, pgtable_t pte)
356 {
357         unsigned long p;
358
359         pgtable_page_dtor(pte);
360         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
361         if (p == 0)
362                 BUG();
363         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
364
365         /* free non cached virtual address*/
366         srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
367 }
368
369 /* context handling - a dynamically sized pool is used */
370 #define NO_CONTEXT      -1
371
372 struct ctx_list {
373         struct ctx_list *next;
374         struct ctx_list *prev;
375         unsigned int ctx_number;
376         struct mm_struct *ctx_mm;
377 };
378
379 static struct ctx_list *ctx_list_pool;
380 static struct ctx_list ctx_free;
381 static struct ctx_list ctx_used;
382
383 /* At boot time we determine the number of contexts */
384 static int num_contexts;
385
386 static inline void remove_from_ctx_list(struct ctx_list *entry)
387 {
388         entry->next->prev = entry->prev;
389         entry->prev->next = entry->next;
390 }
391
392 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
393 {
394         entry->next = head;
395         (entry->prev = head->prev)->next = entry;
396         head->prev = entry;
397 }
398 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
399 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
400
401
402 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
403 {
404         struct ctx_list *ctxp;
405
406         ctxp = ctx_free.next;
407         if (ctxp != &ctx_free) {
408                 remove_from_ctx_list(ctxp);
409                 add_to_used_ctxlist(ctxp);
410                 mm->context = ctxp->ctx_number;
411                 ctxp->ctx_mm = mm;
412                 return;
413         }
414         ctxp = ctx_used.next;
415         if (ctxp->ctx_mm == old_mm)
416                 ctxp = ctxp->next;
417         if (ctxp == &ctx_used)
418                 panic("out of mmu contexts");
419         flush_cache_mm(ctxp->ctx_mm);
420         flush_tlb_mm(ctxp->ctx_mm);
421         remove_from_ctx_list(ctxp);
422         add_to_used_ctxlist(ctxp);
423         ctxp->ctx_mm->context = NO_CONTEXT;
424         ctxp->ctx_mm = mm;
425         mm->context = ctxp->ctx_number;
426 }
427
428 static inline void free_context(int context)
429 {
430         struct ctx_list *ctx_old;
431
432         ctx_old = ctx_list_pool + context;
433         remove_from_ctx_list(ctx_old);
434         add_to_free_ctxlist(ctx_old);
435 }
436
437 static void __init sparc_context_init(int numctx)
438 {
439         int ctx;
440         unsigned long size;
441
442         size = numctx * sizeof(struct ctx_list);
443         ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
444
445         for (ctx = 0; ctx < numctx; ctx++) {
446                 struct ctx_list *clist;
447
448                 clist = (ctx_list_pool + ctx);
449                 clist->ctx_number = ctx;
450                 clist->ctx_mm = NULL;
451         }
452         ctx_free.next = ctx_free.prev = &ctx_free;
453         ctx_used.next = ctx_used.prev = &ctx_used;
454         for (ctx = 0; ctx < numctx; ctx++)
455                 add_to_free_ctxlist(ctx_list_pool + ctx);
456 }
457
458 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
459                struct task_struct *tsk)
460 {
461         if (mm->context == NO_CONTEXT) {
462                 spin_lock(&srmmu_context_spinlock);
463                 alloc_context(old_mm, mm);
464                 spin_unlock(&srmmu_context_spinlock);
465                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
466         }
467
468         if (sparc_cpu_model == sparc_leon)
469                 leon_switch_mm();
470
471         if (is_hypersparc)
472                 hyper_flush_whole_icache();
473
474         srmmu_set_context(mm->context);
475 }
476
477 /* Low level IO area allocation on the SRMMU. */
478 static inline void srmmu_mapioaddr(unsigned long physaddr,
479                                    unsigned long virt_addr, int bus_type)
480 {
481         pgd_t *pgdp;
482         pmd_t *pmdp;
483         pte_t *ptep;
484         unsigned long tmp;
485
486         physaddr &= PAGE_MASK;
487         pgdp = pgd_offset_k(virt_addr);
488         pmdp = pmd_offset(pgdp, virt_addr);
489         ptep = pte_offset_kernel(pmdp, virt_addr);
490         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
491
492         /* I need to test whether this is consistent over all
493          * sun4m's.  The bus_type represents the upper 4 bits of
494          * 36-bit physical address on the I/O space lines...
495          */
496         tmp |= (bus_type << 28);
497         tmp |= SRMMU_PRIV;
498         __flush_page_to_ram(virt_addr);
499         set_pte(ptep, __pte(tmp));
500 }
501
502 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
503                       unsigned long xva, unsigned int len)
504 {
505         while (len != 0) {
506                 len -= PAGE_SIZE;
507                 srmmu_mapioaddr(xpa, xva, bus);
508                 xva += PAGE_SIZE;
509                 xpa += PAGE_SIZE;
510         }
511         flush_tlb_all();
512 }
513
514 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
515 {
516         pgd_t *pgdp;
517         pmd_t *pmdp;
518         pte_t *ptep;
519
520         pgdp = pgd_offset_k(virt_addr);
521         pmdp = pmd_offset(pgdp, virt_addr);
522         ptep = pte_offset_kernel(pmdp, virt_addr);
523
524         /* No need to flush uncacheable page. */
525         __pte_clear(ptep);
526 }
527
528 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
529 {
530         while (len != 0) {
531                 len -= PAGE_SIZE;
532                 srmmu_unmapioaddr(virt_addr);
533                 virt_addr += PAGE_SIZE;
534         }
535         flush_tlb_all();
536 }
537
538 /* tsunami.S */
539 extern void tsunami_flush_cache_all(void);
540 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
541 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
542 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
543 extern void tsunami_flush_page_to_ram(unsigned long page);
544 extern void tsunami_flush_page_for_dma(unsigned long page);
545 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
546 extern void tsunami_flush_tlb_all(void);
547 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
548 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
549 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
550 extern void tsunami_setup_blockops(void);
551
552 /* swift.S */
553 extern void swift_flush_cache_all(void);
554 extern void swift_flush_cache_mm(struct mm_struct *mm);
555 extern void swift_flush_cache_range(struct vm_area_struct *vma,
556                                     unsigned long start, unsigned long end);
557 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
558 extern void swift_flush_page_to_ram(unsigned long page);
559 extern void swift_flush_page_for_dma(unsigned long page);
560 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
561 extern void swift_flush_tlb_all(void);
562 extern void swift_flush_tlb_mm(struct mm_struct *mm);
563 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
564                                   unsigned long start, unsigned long end);
565 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
566
567 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
568 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
569 {
570         int cctx, ctx1;
571
572         page &= PAGE_MASK;
573         if ((ctx1 = vma->vm_mm->context) != -1) {
574                 cctx = srmmu_get_context();
575 /* Is context # ever different from current context? P3 */
576                 if (cctx != ctx1) {
577                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
578                         srmmu_set_context(ctx1);
579                         swift_flush_page(page);
580                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
581                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
582                         srmmu_set_context(cctx);
583                 } else {
584                          /* Rm. prot. bits from virt. c. */
585                         /* swift_flush_cache_all(); */
586                         /* swift_flush_cache_page(vma, page); */
587                         swift_flush_page(page);
588
589                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
590                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
591                         /* same as above: srmmu_flush_tlb_page() */
592                 }
593         }
594 }
595 #endif
596
597 /*
598  * The following are all MBUS based SRMMU modules, and therefore could
599  * be found in a multiprocessor configuration.  On the whole, these
600  * chips seems to be much more touchy about DVMA and page tables
601  * with respect to cache coherency.
602  */
603
604 /* viking.S */
605 extern void viking_flush_cache_all(void);
606 extern void viking_flush_cache_mm(struct mm_struct *mm);
607 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
608                                      unsigned long end);
609 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
610 extern void viking_flush_page_to_ram(unsigned long page);
611 extern void viking_flush_page_for_dma(unsigned long page);
612 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
613 extern void viking_flush_page(unsigned long page);
614 extern void viking_mxcc_flush_page(unsigned long page);
615 extern void viking_flush_tlb_all(void);
616 extern void viking_flush_tlb_mm(struct mm_struct *mm);
617 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
618                                    unsigned long end);
619 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
620                                   unsigned long page);
621 extern void sun4dsmp_flush_tlb_all(void);
622 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
623 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
624                                    unsigned long end);
625 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
626                                   unsigned long page);
627
628 /* hypersparc.S */
629 extern void hypersparc_flush_cache_all(void);
630 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
631 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
632 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
633 extern void hypersparc_flush_page_to_ram(unsigned long page);
634 extern void hypersparc_flush_page_for_dma(unsigned long page);
635 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
636 extern void hypersparc_flush_tlb_all(void);
637 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
638 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
639 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
640 extern void hypersparc_setup_blockops(void);
641
642 /*
643  * NOTE: All of this startup code assumes the low 16mb (approx.) of
644  *       kernel mappings are done with one single contiguous chunk of
645  *       ram.  On small ram machines (classics mainly) we only get
646  *       around 8mb mapped for us.
647  */
648
649 static void __init early_pgtable_allocfail(char *type)
650 {
651         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
652         prom_halt();
653 }
654
655 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
656                                                         unsigned long end)
657 {
658         pgd_t *pgdp;
659         pmd_t *pmdp;
660         pte_t *ptep;
661
662         while (start < end) {
663                 pgdp = pgd_offset_k(start);
664                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
665                         pmdp = __srmmu_get_nocache(
666                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
667                         if (pmdp == NULL)
668                                 early_pgtable_allocfail("pmd");
669                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
670                         pgd_set(__nocache_fix(pgdp), pmdp);
671                 }
672                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
673                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
674                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
675                         if (ptep == NULL)
676                                 early_pgtable_allocfail("pte");
677                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
678                         pmd_set(__nocache_fix(pmdp), ptep);
679                 }
680                 if (start > (0xffffffffUL - PMD_SIZE))
681                         break;
682                 start = (start + PMD_SIZE) & PMD_MASK;
683         }
684 }
685
686 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
687                                                   unsigned long end)
688 {
689         pgd_t *pgdp;
690         pmd_t *pmdp;
691         pte_t *ptep;
692
693         while (start < end) {
694                 pgdp = pgd_offset_k(start);
695                 if (pgd_none(*pgdp)) {
696                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
697                         if (pmdp == NULL)
698                                 early_pgtable_allocfail("pmd");
699                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
700                         pgd_set(pgdp, pmdp);
701                 }
702                 pmdp = pmd_offset(pgdp, start);
703                 if (srmmu_pmd_none(*pmdp)) {
704                         ptep = __srmmu_get_nocache(PTE_SIZE,
705                                                              PTE_SIZE);
706                         if (ptep == NULL)
707                                 early_pgtable_allocfail("pte");
708                         memset(ptep, 0, PTE_SIZE);
709                         pmd_set(pmdp, ptep);
710                 }
711                 if (start > (0xffffffffUL - PMD_SIZE))
712                         break;
713                 start = (start + PMD_SIZE) & PMD_MASK;
714         }
715 }
716
717 /* These flush types are not available on all chips... */
718 static inline unsigned long srmmu_probe(unsigned long vaddr)
719 {
720         unsigned long retval;
721
722         if (sparc_cpu_model != sparc_leon) {
723
724                 vaddr &= PAGE_MASK;
725                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
726                                      "=r" (retval) :
727                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
728         } else {
729                 retval = leon_swprobe(vaddr, 0);
730         }
731         return retval;
732 }
733
734 /*
735  * This is much cleaner than poking around physical address space
736  * looking at the prom's page table directly which is what most
737  * other OS's do.  Yuck... this is much better.
738  */
739 static void __init srmmu_inherit_prom_mappings(unsigned long start,
740                                                unsigned long end)
741 {
742         unsigned long probed;
743         unsigned long addr;
744         pgd_t *pgdp;
745         pmd_t *pmdp;
746         pte_t *ptep;
747         int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
748
749         while (start <= end) {
750                 if (start == 0)
751                         break; /* probably wrap around */
752                 if (start == 0xfef00000)
753                         start = KADB_DEBUGGER_BEGVM;
754                 probed = srmmu_probe(start);
755                 if (!probed) {
756                         /* continue probing until we find an entry */
757                         start += PAGE_SIZE;
758                         continue;
759                 }
760
761                 /* A red snapper, see what it really is. */
762                 what = 0;
763                 addr = start - PAGE_SIZE;
764
765                 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
766                         if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
767                                 what = 1;
768                 }
769
770                 if (!(start & ~(SRMMU_PGDIR_MASK))) {
771                         if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
772                                 what = 2;
773                 }
774
775                 pgdp = pgd_offset_k(start);
776                 if (what == 2) {
777                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
778                         start += SRMMU_PGDIR_SIZE;
779                         continue;
780                 }
781                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
782                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
783                                                    SRMMU_PMD_TABLE_SIZE);
784                         if (pmdp == NULL)
785                                 early_pgtable_allocfail("pmd");
786                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
787                         pgd_set(__nocache_fix(pgdp), pmdp);
788                 }
789                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
790                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
791                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
792                         if (ptep == NULL)
793                                 early_pgtable_allocfail("pte");
794                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
795                         pmd_set(__nocache_fix(pmdp), ptep);
796                 }
797                 if (what == 1) {
798                         /* We bend the rule where all 16 PTPs in a pmd_t point
799                          * inside the same PTE page, and we leak a perfectly
800                          * good hardware PTE piece. Alternatives seem worse.
801                          */
802                         unsigned int x; /* Index of HW PMD in soft cluster */
803                         unsigned long *val;
804                         x = (start >> PMD_SHIFT) & 15;
805                         val = &pmdp->pmdv[x];
806                         *(unsigned long *)__nocache_fix(val) = probed;
807                         start += SRMMU_REAL_PMD_SIZE;
808                         continue;
809                 }
810                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
811                 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
812                 start += PAGE_SIZE;
813         }
814 }
815
816 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
817
818 /* Create a third-level SRMMU 16MB page mapping. */
819 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
820 {
821         pgd_t *pgdp = pgd_offset_k(vaddr);
822         unsigned long big_pte;
823
824         big_pte = KERNEL_PTE(phys_base >> 4);
825         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
826 }
827
828 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
829 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
830 {
831         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
832         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
833         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
834         /* Map "low" memory only */
835         const unsigned long min_vaddr = PAGE_OFFSET;
836         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
837
838         if (vstart < min_vaddr || vstart >= max_vaddr)
839                 return vstart;
840
841         if (vend > max_vaddr || vend < min_vaddr)
842                 vend = max_vaddr;
843
844         while (vstart < vend) {
845                 do_large_mapping(vstart, pstart);
846                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
847         }
848         return vstart;
849 }
850
851 static void __init map_kernel(void)
852 {
853         int i;
854
855         if (phys_base > 0) {
856                 do_large_mapping(PAGE_OFFSET, phys_base);
857         }
858
859         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
860                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
861         }
862 }
863
864 void (*poke_srmmu)(void) = NULL;
865
866 extern unsigned long bootmem_init(unsigned long *pages_avail);
867
868 void __init srmmu_paging_init(void)
869 {
870         int i;
871         phandle cpunode;
872         char node_str[128];
873         pgd_t *pgd;
874         pmd_t *pmd;
875         pte_t *pte;
876         unsigned long pages_avail;
877
878         init_mm.context = (unsigned long) NO_CONTEXT;
879         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
880
881         if (sparc_cpu_model == sun4d)
882                 num_contexts = 65536; /* We know it is Viking */
883         else {
884                 /* Find the number of contexts on the srmmu. */
885                 cpunode = prom_getchild(prom_root_node);
886                 num_contexts = 0;
887                 while (cpunode != 0) {
888                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
889                         if (!strcmp(node_str, "cpu")) {
890                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
891                                 break;
892                         }
893                         cpunode = prom_getsibling(cpunode);
894                 }
895         }
896
897         if (!num_contexts) {
898                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
899                 prom_halt();
900         }
901
902         pages_avail = 0;
903         last_valid_pfn = bootmem_init(&pages_avail);
904
905         srmmu_nocache_calcsize();
906         srmmu_nocache_init();
907         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
908         map_kernel();
909
910         /* ctx table has to be physically aligned to its size */
911         srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
912         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
913
914         for (i = 0; i < num_contexts; i++)
915                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
916
917         flush_cache_all();
918         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
919 #ifdef CONFIG_SMP
920         /* Stop from hanging here... */
921         local_ops->tlb_all();
922 #else
923         flush_tlb_all();
924 #endif
925         poke_srmmu();
926
927         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
928         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
929
930         srmmu_allocate_ptable_skeleton(
931                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
932         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
933
934         pgd = pgd_offset_k(PKMAP_BASE);
935         pmd = pmd_offset(pgd, PKMAP_BASE);
936         pte = pte_offset_kernel(pmd, PKMAP_BASE);
937         pkmap_page_table = pte;
938
939         flush_cache_all();
940         flush_tlb_all();
941
942         sparc_context_init(num_contexts);
943
944         kmap_init();
945
946         {
947                 unsigned long zones_size[MAX_NR_ZONES];
948                 unsigned long zholes_size[MAX_NR_ZONES];
949                 unsigned long npages;
950                 int znum;
951
952                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
953                         zones_size[znum] = zholes_size[znum] = 0;
954
955                 npages = max_low_pfn - pfn_base;
956
957                 zones_size[ZONE_DMA] = npages;
958                 zholes_size[ZONE_DMA] = npages - pages_avail;
959
960                 npages = highend_pfn - max_low_pfn;
961                 zones_size[ZONE_HIGHMEM] = npages;
962                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
963
964                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
965         }
966 }
967
968 void mmu_info(struct seq_file *m)
969 {
970         seq_printf(m,
971                    "MMU type\t: %s\n"
972                    "contexts\t: %d\n"
973                    "nocache total\t: %ld\n"
974                    "nocache used\t: %d\n",
975                    srmmu_name,
976                    num_contexts,
977                    srmmu_nocache_size,
978                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
979 }
980
981 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
982 {
983         mm->context = NO_CONTEXT;
984         return 0;
985 }
986
987 void destroy_context(struct mm_struct *mm)
988 {
989
990         if (mm->context != NO_CONTEXT) {
991                 flush_cache_mm(mm);
992                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
993                 flush_tlb_mm(mm);
994                 spin_lock(&srmmu_context_spinlock);
995                 free_context(mm->context);
996                 spin_unlock(&srmmu_context_spinlock);
997                 mm->context = NO_CONTEXT;
998         }
999 }
1000
1001 /* Init various srmmu chip types. */
1002 static void __init srmmu_is_bad(void)
1003 {
1004         prom_printf("Could not determine SRMMU chip type.\n");
1005         prom_halt();
1006 }
1007
1008 static void __init init_vac_layout(void)
1009 {
1010         phandle nd;
1011         int cache_lines;
1012         char node_str[128];
1013 #ifdef CONFIG_SMP
1014         int cpu = 0;
1015         unsigned long max_size = 0;
1016         unsigned long min_line_size = 0x10000000;
1017 #endif
1018
1019         nd = prom_getchild(prom_root_node);
1020         while ((nd = prom_getsibling(nd)) != 0) {
1021                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1022                 if (!strcmp(node_str, "cpu")) {
1023                         vac_line_size = prom_getint(nd, "cache-line-size");
1024                         if (vac_line_size == -1) {
1025                                 prom_printf("can't determine cache-line-size, halting.\n");
1026                                 prom_halt();
1027                         }
1028                         cache_lines = prom_getint(nd, "cache-nlines");
1029                         if (cache_lines == -1) {
1030                                 prom_printf("can't determine cache-nlines, halting.\n");
1031                                 prom_halt();
1032                         }
1033
1034                         vac_cache_size = cache_lines * vac_line_size;
1035 #ifdef CONFIG_SMP
1036                         if (vac_cache_size > max_size)
1037                                 max_size = vac_cache_size;
1038                         if (vac_line_size < min_line_size)
1039                                 min_line_size = vac_line_size;
1040                         //FIXME: cpus not contiguous!!
1041                         cpu++;
1042                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1043                                 break;
1044 #else
1045                         break;
1046 #endif
1047                 }
1048         }
1049         if (nd == 0) {
1050                 prom_printf("No CPU nodes found, halting.\n");
1051                 prom_halt();
1052         }
1053 #ifdef CONFIG_SMP
1054         vac_cache_size = max_size;
1055         vac_line_size = min_line_size;
1056 #endif
1057         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1058                (int)vac_cache_size, (int)vac_line_size);
1059 }
1060
1061 static void poke_hypersparc(void)
1062 {
1063         volatile unsigned long clear;
1064         unsigned long mreg = srmmu_get_mmureg();
1065
1066         hyper_flush_unconditional_combined();
1067
1068         mreg &= ~(HYPERSPARC_CWENABLE);
1069         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1070         mreg |= (HYPERSPARC_CMODE);
1071
1072         srmmu_set_mmureg(mreg);
1073
1074 #if 0 /* XXX I think this is bad news... -DaveM */
1075         hyper_clear_all_tags();
1076 #endif
1077
1078         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1079         hyper_flush_whole_icache();
1080         clear = srmmu_get_faddr();
1081         clear = srmmu_get_fstatus();
1082 }
1083
1084 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1085         .cache_all      = hypersparc_flush_cache_all,
1086         .cache_mm       = hypersparc_flush_cache_mm,
1087         .cache_page     = hypersparc_flush_cache_page,
1088         .cache_range    = hypersparc_flush_cache_range,
1089         .tlb_all        = hypersparc_flush_tlb_all,
1090         .tlb_mm         = hypersparc_flush_tlb_mm,
1091         .tlb_page       = hypersparc_flush_tlb_page,
1092         .tlb_range      = hypersparc_flush_tlb_range,
1093         .page_to_ram    = hypersparc_flush_page_to_ram,
1094         .sig_insns      = hypersparc_flush_sig_insns,
1095         .page_for_dma   = hypersparc_flush_page_for_dma,
1096 };
1097
1098 static void __init init_hypersparc(void)
1099 {
1100         srmmu_name = "ROSS HyperSparc";
1101         srmmu_modtype = HyperSparc;
1102
1103         init_vac_layout();
1104
1105         is_hypersparc = 1;
1106         sparc32_cachetlb_ops = &hypersparc_ops;
1107
1108         poke_srmmu = poke_hypersparc;
1109
1110         hypersparc_setup_blockops();
1111 }
1112
1113 static void poke_swift(void)
1114 {
1115         unsigned long mreg;
1116
1117         /* Clear any crap from the cache or else... */
1118         swift_flush_cache_all();
1119
1120         /* Enable I & D caches */
1121         mreg = srmmu_get_mmureg();
1122         mreg |= (SWIFT_IE | SWIFT_DE);
1123         /*
1124          * The Swift branch folding logic is completely broken.  At
1125          * trap time, if things are just right, if can mistakenly
1126          * think that a trap is coming from kernel mode when in fact
1127          * it is coming from user mode (it mis-executes the branch in
1128          * the trap code).  So you see things like crashme completely
1129          * hosing your machine which is completely unacceptable.  Turn
1130          * this shit off... nice job Fujitsu.
1131          */
1132         mreg &= ~(SWIFT_BF);
1133         srmmu_set_mmureg(mreg);
1134 }
1135
1136 static const struct sparc32_cachetlb_ops swift_ops = {
1137         .cache_all      = swift_flush_cache_all,
1138         .cache_mm       = swift_flush_cache_mm,
1139         .cache_page     = swift_flush_cache_page,
1140         .cache_range    = swift_flush_cache_range,
1141         .tlb_all        = swift_flush_tlb_all,
1142         .tlb_mm         = swift_flush_tlb_mm,
1143         .tlb_page       = swift_flush_tlb_page,
1144         .tlb_range      = swift_flush_tlb_range,
1145         .page_to_ram    = swift_flush_page_to_ram,
1146         .sig_insns      = swift_flush_sig_insns,
1147         .page_for_dma   = swift_flush_page_for_dma,
1148 };
1149
1150 #define SWIFT_MASKID_ADDR  0x10003018
1151 static void __init init_swift(void)
1152 {
1153         unsigned long swift_rev;
1154
1155         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1156                              "srl %0, 0x18, %0\n\t" :
1157                              "=r" (swift_rev) :
1158                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1159         srmmu_name = "Fujitsu Swift";
1160         switch (swift_rev) {
1161         case 0x11:
1162         case 0x20:
1163         case 0x23:
1164         case 0x30:
1165                 srmmu_modtype = Swift_lots_o_bugs;
1166                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1167                 /*
1168                  * Gee george, I wonder why Sun is so hush hush about
1169                  * this hardware bug... really braindamage stuff going
1170                  * on here.  However I think we can find a way to avoid
1171                  * all of the workaround overhead under Linux.  Basically,
1172                  * any page fault can cause kernel pages to become user
1173                  * accessible (the mmu gets confused and clears some of
1174                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1175                  * horrible eh?  But wait, after extensive testing it appears
1176                  * that if you use pgd_t level large kernel pte's (like the
1177                  * 4MB pages on the Pentium) the bug does not get tripped
1178                  * at all.  This avoids almost all of the major overhead.
1179                  * Welcome to a world where your vendor tells you to,
1180                  * "apply this kernel patch" instead of "sorry for the
1181                  * broken hardware, send it back and we'll give you
1182                  * properly functioning parts"
1183                  */
1184                 break;
1185         case 0x25:
1186         case 0x31:
1187                 srmmu_modtype = Swift_bad_c;
1188                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1189                 /*
1190                  * You see Sun allude to this hardware bug but never
1191                  * admit things directly, they'll say things like,
1192                  * "the Swift chip cache problems" or similar.
1193                  */
1194                 break;
1195         default:
1196                 srmmu_modtype = Swift_ok;
1197                 break;
1198         }
1199
1200         sparc32_cachetlb_ops = &swift_ops;
1201         flush_page_for_dma_global = 0;
1202
1203         /*
1204          * Are you now convinced that the Swift is one of the
1205          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1206          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1207          * you examined the microcode of the Swift you'd find
1208          * XXX's all over the place.
1209          */
1210         poke_srmmu = poke_swift;
1211 }
1212
1213 static void turbosparc_flush_cache_all(void)
1214 {
1215         flush_user_windows();
1216         turbosparc_idflash_clear();
1217 }
1218
1219 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1220 {
1221         FLUSH_BEGIN(mm)
1222         flush_user_windows();
1223         turbosparc_idflash_clear();
1224         FLUSH_END
1225 }
1226
1227 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1228 {
1229         FLUSH_BEGIN(vma->vm_mm)
1230         flush_user_windows();
1231         turbosparc_idflash_clear();
1232         FLUSH_END
1233 }
1234
1235 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1236 {
1237         FLUSH_BEGIN(vma->vm_mm)
1238         flush_user_windows();
1239         if (vma->vm_flags & VM_EXEC)
1240                 turbosparc_flush_icache();
1241         turbosparc_flush_dcache();
1242         FLUSH_END
1243 }
1244
1245 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1246 static void turbosparc_flush_page_to_ram(unsigned long page)
1247 {
1248 #ifdef TURBOSPARC_WRITEBACK
1249         volatile unsigned long clear;
1250
1251         if (srmmu_probe(page))
1252                 turbosparc_flush_page_cache(page);
1253         clear = srmmu_get_fstatus();
1254 #endif
1255 }
1256
1257 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1258 {
1259 }
1260
1261 static void turbosparc_flush_page_for_dma(unsigned long page)
1262 {
1263         turbosparc_flush_dcache();
1264 }
1265
1266 static void turbosparc_flush_tlb_all(void)
1267 {
1268         srmmu_flush_whole_tlb();
1269 }
1270
1271 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1272 {
1273         FLUSH_BEGIN(mm)
1274         srmmu_flush_whole_tlb();
1275         FLUSH_END
1276 }
1277
1278 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1279 {
1280         FLUSH_BEGIN(vma->vm_mm)
1281         srmmu_flush_whole_tlb();
1282         FLUSH_END
1283 }
1284
1285 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1286 {
1287         FLUSH_BEGIN(vma->vm_mm)
1288         srmmu_flush_whole_tlb();
1289         FLUSH_END
1290 }
1291
1292
1293 static void poke_turbosparc(void)
1294 {
1295         unsigned long mreg = srmmu_get_mmureg();
1296         unsigned long ccreg;
1297
1298         /* Clear any crap from the cache or else... */
1299         turbosparc_flush_cache_all();
1300         /* Temporarily disable I & D caches */
1301         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1302         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1303         srmmu_set_mmureg(mreg);
1304
1305         ccreg = turbosparc_get_ccreg();
1306
1307 #ifdef TURBOSPARC_WRITEBACK
1308         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1309         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1310                         /* Write-back D-cache, emulate VLSI
1311                          * abortion number three, not number one */
1312 #else
1313         /* For now let's play safe, optimize later */
1314         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1315                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1316         ccreg &= ~(TURBOSPARC_uS2);
1317                         /* Emulate VLSI abortion number three, not number one */
1318 #endif
1319
1320         switch (ccreg & 7) {
1321         case 0: /* No SE cache */
1322         case 7: /* Test mode */
1323                 break;
1324         default:
1325                 ccreg |= (TURBOSPARC_SCENABLE);
1326         }
1327         turbosparc_set_ccreg(ccreg);
1328
1329         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1330         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1331         srmmu_set_mmureg(mreg);
1332 }
1333
1334 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1335         .cache_all      = turbosparc_flush_cache_all,
1336         .cache_mm       = turbosparc_flush_cache_mm,
1337         .cache_page     = turbosparc_flush_cache_page,
1338         .cache_range    = turbosparc_flush_cache_range,
1339         .tlb_all        = turbosparc_flush_tlb_all,
1340         .tlb_mm         = turbosparc_flush_tlb_mm,
1341         .tlb_page       = turbosparc_flush_tlb_page,
1342         .tlb_range      = turbosparc_flush_tlb_range,
1343         .page_to_ram    = turbosparc_flush_page_to_ram,
1344         .sig_insns      = turbosparc_flush_sig_insns,
1345         .page_for_dma   = turbosparc_flush_page_for_dma,
1346 };
1347
1348 static void __init init_turbosparc(void)
1349 {
1350         srmmu_name = "Fujitsu TurboSparc";
1351         srmmu_modtype = TurboSparc;
1352         sparc32_cachetlb_ops = &turbosparc_ops;
1353         poke_srmmu = poke_turbosparc;
1354 }
1355
1356 static void poke_tsunami(void)
1357 {
1358         unsigned long mreg = srmmu_get_mmureg();
1359
1360         tsunami_flush_icache();
1361         tsunami_flush_dcache();
1362         mreg &= ~TSUNAMI_ITD;
1363         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1364         srmmu_set_mmureg(mreg);
1365 }
1366
1367 static const struct sparc32_cachetlb_ops tsunami_ops = {
1368         .cache_all      = tsunami_flush_cache_all,
1369         .cache_mm       = tsunami_flush_cache_mm,
1370         .cache_page     = tsunami_flush_cache_page,
1371         .cache_range    = tsunami_flush_cache_range,
1372         .tlb_all        = tsunami_flush_tlb_all,
1373         .tlb_mm         = tsunami_flush_tlb_mm,
1374         .tlb_page       = tsunami_flush_tlb_page,
1375         .tlb_range      = tsunami_flush_tlb_range,
1376         .page_to_ram    = tsunami_flush_page_to_ram,
1377         .sig_insns      = tsunami_flush_sig_insns,
1378         .page_for_dma   = tsunami_flush_page_for_dma,
1379 };
1380
1381 static void __init init_tsunami(void)
1382 {
1383         /*
1384          * Tsunami's pretty sane, Sun and TI actually got it
1385          * somewhat right this time.  Fujitsu should have
1386          * taken some lessons from them.
1387          */
1388
1389         srmmu_name = "TI Tsunami";
1390         srmmu_modtype = Tsunami;
1391         sparc32_cachetlb_ops = &tsunami_ops;
1392         poke_srmmu = poke_tsunami;
1393
1394         tsunami_setup_blockops();
1395 }
1396
1397 static void poke_viking(void)
1398 {
1399         unsigned long mreg = srmmu_get_mmureg();
1400         static int smp_catch;
1401
1402         if (viking_mxcc_present) {
1403                 unsigned long mxcc_control = mxcc_get_creg();
1404
1405                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1406                 mxcc_control &= ~(MXCC_CTL_RRC);
1407                 mxcc_set_creg(mxcc_control);
1408
1409                 /*
1410                  * We don't need memory parity checks.
1411                  * XXX This is a mess, have to dig out later. ecd.
1412                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1413                  */
1414
1415                 /* We do cache ptables on MXCC. */
1416                 mreg |= VIKING_TCENABLE;
1417         } else {
1418                 unsigned long bpreg;
1419
1420                 mreg &= ~(VIKING_TCENABLE);
1421                 if (smp_catch++) {
1422                         /* Must disable mixed-cmd mode here for other cpu's. */
1423                         bpreg = viking_get_bpreg();
1424                         bpreg &= ~(VIKING_ACTION_MIX);
1425                         viking_set_bpreg(bpreg);
1426
1427                         /* Just in case PROM does something funny. */
1428                         msi_set_sync();
1429                 }
1430         }
1431
1432         mreg |= VIKING_SPENABLE;
1433         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1434         mreg |= VIKING_SBENABLE;
1435         mreg &= ~(VIKING_ACENABLE);
1436         srmmu_set_mmureg(mreg);
1437 }
1438
1439 static struct sparc32_cachetlb_ops viking_ops = {
1440         .cache_all      = viking_flush_cache_all,
1441         .cache_mm       = viking_flush_cache_mm,
1442         .cache_page     = viking_flush_cache_page,
1443         .cache_range    = viking_flush_cache_range,
1444         .tlb_all        = viking_flush_tlb_all,
1445         .tlb_mm         = viking_flush_tlb_mm,
1446         .tlb_page       = viking_flush_tlb_page,
1447         .tlb_range      = viking_flush_tlb_range,
1448         .page_to_ram    = viking_flush_page_to_ram,
1449         .sig_insns      = viking_flush_sig_insns,
1450         .page_for_dma   = viking_flush_page_for_dma,
1451 };
1452
1453 #ifdef CONFIG_SMP
1454 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1455  * perform the local TLB flush and all the other cpus will see it.
1456  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1457  * that requires that we add some synchronization to these flushes.
1458  *
1459  * The bug is that the fifo which keeps track of all the pending TLB
1460  * broadcasts in the system is an entry or two too small, so if we
1461  * have too many going at once we'll overflow that fifo and lose a TLB
1462  * flush resulting in corruption.
1463  *
1464  * Our workaround is to take a global spinlock around the TLB flushes,
1465  * which guarentees we won't ever have too many pending.  It's a big
1466  * hammer, but a semaphore like system to make sure we only have N TLB
1467  * flushes going at once will require SMP locking anyways so there's
1468  * no real value in trying any harder than this.
1469  */
1470 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1471         .cache_all      = viking_flush_cache_all,
1472         .cache_mm       = viking_flush_cache_mm,
1473         .cache_page     = viking_flush_cache_page,
1474         .cache_range    = viking_flush_cache_range,
1475         .tlb_all        = sun4dsmp_flush_tlb_all,
1476         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1477         .tlb_page       = sun4dsmp_flush_tlb_page,
1478         .tlb_range      = sun4dsmp_flush_tlb_range,
1479         .page_to_ram    = viking_flush_page_to_ram,
1480         .sig_insns      = viking_flush_sig_insns,
1481         .page_for_dma   = viking_flush_page_for_dma,
1482 };
1483 #endif
1484
1485 static void __init init_viking(void)
1486 {
1487         unsigned long mreg = srmmu_get_mmureg();
1488
1489         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1490         if (mreg & VIKING_MMODE) {
1491                 srmmu_name = "TI Viking";
1492                 viking_mxcc_present = 0;
1493                 msi_set_sync();
1494
1495                 /*
1496                  * We need this to make sure old viking takes no hits
1497                  * on it's cache for dma snoops to workaround the
1498                  * "load from non-cacheable memory" interrupt bug.
1499                  * This is only necessary because of the new way in
1500                  * which we use the IOMMU.
1501                  */
1502                 viking_ops.page_for_dma = viking_flush_page;
1503 #ifdef CONFIG_SMP
1504                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1505 #endif
1506                 flush_page_for_dma_global = 0;
1507         } else {
1508                 srmmu_name = "TI Viking/MXCC";
1509                 viking_mxcc_present = 1;
1510                 srmmu_cache_pagetables = 1;
1511         }
1512
1513         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1514                 &viking_ops;
1515 #ifdef CONFIG_SMP
1516         if (sparc_cpu_model == sun4d)
1517                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1518                         &viking_sun4d_smp_ops;
1519 #endif
1520
1521         poke_srmmu = poke_viking;
1522 }
1523
1524 /* Probe for the srmmu chip version. */
1525 static void __init get_srmmu_type(void)
1526 {
1527         unsigned long mreg, psr;
1528         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1529
1530         srmmu_modtype = SRMMU_INVAL_MOD;
1531         hwbug_bitmask = 0;
1532
1533         mreg = srmmu_get_mmureg(); psr = get_psr();
1534         mod_typ = (mreg & 0xf0000000) >> 28;
1535         mod_rev = (mreg & 0x0f000000) >> 24;
1536         psr_typ = (psr >> 28) & 0xf;
1537         psr_vers = (psr >> 24) & 0xf;
1538
1539         /* First, check for sparc-leon. */
1540         if (sparc_cpu_model == sparc_leon) {
1541                 init_leon();
1542                 return;
1543         }
1544
1545         /* Second, check for HyperSparc or Cypress. */
1546         if (mod_typ == 1) {
1547                 switch (mod_rev) {
1548                 case 7:
1549                         /* UP or MP Hypersparc */
1550                         init_hypersparc();
1551                         break;
1552                 case 0:
1553                 case 2:
1554                 case 10:
1555                 case 11:
1556                 case 12:
1557                 case 13:
1558                 case 14:
1559                 case 15:
1560                 default:
1561                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1562                         prom_halt();
1563                         break;
1564                 }
1565                 return;
1566         }
1567
1568         /* Now Fujitsu TurboSparc. It might happen that it is
1569          * in Swift emulation mode, so we will check later...
1570          */
1571         if (psr_typ == 0 && psr_vers == 5) {
1572                 init_turbosparc();
1573                 return;
1574         }
1575
1576         /* Next check for Fujitsu Swift. */
1577         if (psr_typ == 0 && psr_vers == 4) {
1578                 phandle cpunode;
1579                 char node_str[128];
1580
1581                 /* Look if it is not a TurboSparc emulating Swift... */
1582                 cpunode = prom_getchild(prom_root_node);
1583                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1584                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1585                         if (!strcmp(node_str, "cpu")) {
1586                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1587                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1588                                         init_turbosparc();
1589                                         return;
1590                                 }
1591                                 break;
1592                         }
1593                 }
1594
1595                 init_swift();
1596                 return;
1597         }
1598
1599         /* Now the Viking family of srmmu. */
1600         if (psr_typ == 4 &&
1601            ((psr_vers == 0) ||
1602             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1603                 init_viking();
1604                 return;
1605         }
1606
1607         /* Finally the Tsunami. */
1608         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1609                 init_tsunami();
1610                 return;
1611         }
1612
1613         /* Oh well */
1614         srmmu_is_bad();
1615 }
1616
1617 #ifdef CONFIG_SMP
1618 /* Local cross-calls. */
1619 static void smp_flush_page_for_dma(unsigned long page)
1620 {
1621         xc1((smpfunc_t) local_ops->page_for_dma, page);
1622         local_ops->page_for_dma(page);
1623 }
1624
1625 static void smp_flush_cache_all(void)
1626 {
1627         xc0((smpfunc_t) local_ops->cache_all);
1628         local_ops->cache_all();
1629 }
1630
1631 static void smp_flush_tlb_all(void)
1632 {
1633         xc0((smpfunc_t) local_ops->tlb_all);
1634         local_ops->tlb_all();
1635 }
1636
1637 static void smp_flush_cache_mm(struct mm_struct *mm)
1638 {
1639         if (mm->context != NO_CONTEXT) {
1640                 cpumask_t cpu_mask;
1641                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1642                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1643                 if (!cpumask_empty(&cpu_mask))
1644                         xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1645                 local_ops->cache_mm(mm);
1646         }
1647 }
1648
1649 static void smp_flush_tlb_mm(struct mm_struct *mm)
1650 {
1651         if (mm->context != NO_CONTEXT) {
1652                 cpumask_t cpu_mask;
1653                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1654                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1655                 if (!cpumask_empty(&cpu_mask)) {
1656                         xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1657                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1658                                 cpumask_copy(mm_cpumask(mm),
1659                                              cpumask_of(smp_processor_id()));
1660                 }
1661                 local_ops->tlb_mm(mm);
1662         }
1663 }
1664
1665 static void smp_flush_cache_range(struct vm_area_struct *vma,
1666                                   unsigned long start,
1667                                   unsigned long end)
1668 {
1669         struct mm_struct *mm = vma->vm_mm;
1670
1671         if (mm->context != NO_CONTEXT) {
1672                 cpumask_t cpu_mask;
1673                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1674                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1675                 if (!cpumask_empty(&cpu_mask))
1676                         xc3((smpfunc_t) local_ops->cache_range,
1677                             (unsigned long) vma, start, end);
1678                 local_ops->cache_range(vma, start, end);
1679         }
1680 }
1681
1682 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1683                                 unsigned long start,
1684                                 unsigned long end)
1685 {
1686         struct mm_struct *mm = vma->vm_mm;
1687
1688         if (mm->context != NO_CONTEXT) {
1689                 cpumask_t cpu_mask;
1690                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1691                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1692                 if (!cpumask_empty(&cpu_mask))
1693                         xc3((smpfunc_t) local_ops->tlb_range,
1694                             (unsigned long) vma, start, end);
1695                 local_ops->tlb_range(vma, start, end);
1696         }
1697 }
1698
1699 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1700 {
1701         struct mm_struct *mm = vma->vm_mm;
1702
1703         if (mm->context != NO_CONTEXT) {
1704                 cpumask_t cpu_mask;
1705                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1706                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1707                 if (!cpumask_empty(&cpu_mask))
1708                         xc2((smpfunc_t) local_ops->cache_page,
1709                             (unsigned long) vma, page);
1710                 local_ops->cache_page(vma, page);
1711         }
1712 }
1713
1714 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1715 {
1716         struct mm_struct *mm = vma->vm_mm;
1717
1718         if (mm->context != NO_CONTEXT) {
1719                 cpumask_t cpu_mask;
1720                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1721                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1722                 if (!cpumask_empty(&cpu_mask))
1723                         xc2((smpfunc_t) local_ops->tlb_page,
1724                             (unsigned long) vma, page);
1725                 local_ops->tlb_page(vma, page);
1726         }
1727 }
1728
1729 static void smp_flush_page_to_ram(unsigned long page)
1730 {
1731         /* Current theory is that those who call this are the one's
1732          * who have just dirtied their cache with the pages contents
1733          * in kernel space, therefore we only run this on local cpu.
1734          *
1735          * XXX This experiment failed, research further... -DaveM
1736          */
1737 #if 1
1738         xc1((smpfunc_t) local_ops->page_to_ram, page);
1739 #endif
1740         local_ops->page_to_ram(page);
1741 }
1742
1743 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1744 {
1745         cpumask_t cpu_mask;
1746         cpumask_copy(&cpu_mask, mm_cpumask(mm));
1747         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1748         if (!cpumask_empty(&cpu_mask))
1749                 xc2((smpfunc_t) local_ops->sig_insns,
1750                     (unsigned long) mm, insn_addr);
1751         local_ops->sig_insns(mm, insn_addr);
1752 }
1753
1754 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1755         .cache_all      = smp_flush_cache_all,
1756         .cache_mm       = smp_flush_cache_mm,
1757         .cache_page     = smp_flush_cache_page,
1758         .cache_range    = smp_flush_cache_range,
1759         .tlb_all        = smp_flush_tlb_all,
1760         .tlb_mm         = smp_flush_tlb_mm,
1761         .tlb_page       = smp_flush_tlb_page,
1762         .tlb_range      = smp_flush_tlb_range,
1763         .page_to_ram    = smp_flush_page_to_ram,
1764         .sig_insns      = smp_flush_sig_insns,
1765         .page_for_dma   = smp_flush_page_for_dma,
1766 };
1767 #endif
1768
1769 /* Load up routines and constants for sun4m and sun4d mmu */
1770 void __init load_mmu(void)
1771 {
1772         extern void ld_mmu_iommu(void);
1773         extern void ld_mmu_iounit(void);
1774
1775         /* Functions */
1776         get_srmmu_type();
1777
1778 #ifdef CONFIG_SMP
1779         /* El switcheroo... */
1780         local_ops = sparc32_cachetlb_ops;
1781
1782         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1783                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1784                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1785                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1786                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1787         }
1788
1789         if (poke_srmmu == poke_viking) {
1790                 /* Avoid unnecessary cross calls. */
1791                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1792                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1793                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1794                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1795
1796                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1797                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1798                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1799         }
1800
1801         /* It really is const after this point. */
1802         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1803                 &smp_cachetlb_ops;
1804 #endif
1805
1806         if (sparc_cpu_model == sun4d)
1807                 ld_mmu_iounit();
1808         else
1809                 ld_mmu_iommu();
1810 #ifdef CONFIG_SMP
1811         if (sparc_cpu_model == sun4d)
1812                 sun4d_init_smp();
1813         else if (sparc_cpu_model == sparc_leon)
1814                 leon_init_smp();
1815         else
1816                 sun4m_init_smp();
1817 #endif
1818 }