]> Pileus Git - ~andy/linux/blob - arch/sparc/mm/init_64.c
Merge branch 'tip/perf/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/roste...
[~andy/linux] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51
52 #include "init_64.h"
53
54 unsigned long kern_linear_pte_xor[2] __read_mostly;
55
56 /* A bitmap, one bit for every 256MB of physical memory.  If the bit
57  * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58  * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
59  */
60 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
61
62 #ifndef CONFIG_DEBUG_PAGEALLOC
63 /* A special kernel TSB for 4MB and 256MB linear mappings.
64  * Space is allocated for this right after the trap table
65  * in arch/sparc64/kernel/head.S
66  */
67 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
68 #endif
69
70 #define MAX_BANKS       32
71
72 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
73 static int pavail_ents __devinitdata;
74
75 static int cmp_p64(const void *a, const void *b)
76 {
77         const struct linux_prom64_registers *x = a, *y = b;
78
79         if (x->phys_addr > y->phys_addr)
80                 return 1;
81         if (x->phys_addr < y->phys_addr)
82                 return -1;
83         return 0;
84 }
85
86 static void __init read_obp_memory(const char *property,
87                                    struct linux_prom64_registers *regs,
88                                    int *num_ents)
89 {
90         phandle node = prom_finddevice("/memory");
91         int prop_size = prom_getproplen(node, property);
92         int ents, ret, i;
93
94         ents = prop_size / sizeof(struct linux_prom64_registers);
95         if (ents > MAX_BANKS) {
96                 prom_printf("The machine has more %s property entries than "
97                             "this kernel can support (%d).\n",
98                             property, MAX_BANKS);
99                 prom_halt();
100         }
101
102         ret = prom_getproperty(node, property, (char *) regs, prop_size);
103         if (ret == -1) {
104                 prom_printf("Couldn't get %s property from /memory.\n");
105                 prom_halt();
106         }
107
108         /* Sanitize what we got from the firmware, by page aligning
109          * everything.
110          */
111         for (i = 0; i < ents; i++) {
112                 unsigned long base, size;
113
114                 base = regs[i].phys_addr;
115                 size = regs[i].reg_size;
116
117                 size &= PAGE_MASK;
118                 if (base & ~PAGE_MASK) {
119                         unsigned long new_base = PAGE_ALIGN(base);
120
121                         size -= new_base - base;
122                         if ((long) size < 0L)
123                                 size = 0UL;
124                         base = new_base;
125                 }
126                 if (size == 0UL) {
127                         /* If it is empty, simply get rid of it.
128                          * This simplifies the logic of the other
129                          * functions that process these arrays.
130                          */
131                         memmove(&regs[i], &regs[i + 1],
132                                 (ents - i - 1) * sizeof(regs[0]));
133                         i--;
134                         ents--;
135                         continue;
136                 }
137                 regs[i].phys_addr = base;
138                 regs[i].reg_size = size;
139         }
140
141         *num_ents = ents;
142
143         sort(regs, ents, sizeof(struct linux_prom64_registers),
144              cmp_p64, NULL);
145 }
146
147 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
148                                         sizeof(unsigned long)];
149 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
150
151 /* Kernel physical address base and size in bytes.  */
152 unsigned long kern_base __read_mostly;
153 unsigned long kern_size __read_mostly;
154
155 /* Initial ramdisk setup */
156 extern unsigned long sparc_ramdisk_image64;
157 extern unsigned int sparc_ramdisk_image;
158 extern unsigned int sparc_ramdisk_size;
159
160 struct page *mem_map_zero __read_mostly;
161 EXPORT_SYMBOL(mem_map_zero);
162
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
168
169 int num_kernel_image_mappings;
170
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
177
178 inline void flush_dcache_page_impl(struct page *page)
179 {
180         BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182         atomic_inc(&dcpage_flushes);
183 #endif
184
185 #ifdef DCACHE_ALIASING_POSSIBLE
186         __flush_dcache_page(page_address(page),
187                             ((tlb_type == spitfire) &&
188                              page_mapping(page) != NULL));
189 #else
190         if (page_mapping(page) != NULL &&
191             tlb_type == spitfire)
192                 __flush_icache_page(__pa(page_address(page)));
193 #endif
194 }
195
196 #define PG_dcache_dirty         PG_arch_1
197 #define PG_dcache_cpu_shift     32UL
198 #define PG_dcache_cpu_mask      \
199         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200
201 #define dcache_dirty_cpu(page) \
202         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203
204 static inline void set_dcache_dirty(struct page *page, int this_cpu)
205 {
206         unsigned long mask = this_cpu;
207         unsigned long non_cpu_bits;
208
209         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
212         __asm__ __volatile__("1:\n\t"
213                              "ldx       [%2], %%g7\n\t"
214                              "and       %%g7, %1, %%g1\n\t"
215                              "or        %%g1, %0, %%g1\n\t"
216                              "casx      [%2], %%g7, %%g1\n\t"
217                              "cmp       %%g7, %%g1\n\t"
218                              "bne,pn    %%xcc, 1b\n\t"
219                              " nop"
220                              : /* no outputs */
221                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222                              : "g1", "g7");
223 }
224
225 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
226 {
227         unsigned long mask = (1UL << PG_dcache_dirty);
228
229         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230                              "1:\n\t"
231                              "ldx       [%2], %%g7\n\t"
232                              "srlx      %%g7, %4, %%g1\n\t"
233                              "and       %%g1, %3, %%g1\n\t"
234                              "cmp       %%g1, %0\n\t"
235                              "bne,pn    %%icc, 2f\n\t"
236                              " andn     %%g7, %1, %%g1\n\t"
237                              "casx      [%2], %%g7, %%g1\n\t"
238                              "cmp       %%g7, %%g1\n\t"
239                              "bne,pn    %%xcc, 1b\n\t"
240                              " nop\n"
241                              "2:"
242                              : /* no outputs */
243                              : "r" (cpu), "r" (mask), "r" (&page->flags),
244                                "i" (PG_dcache_cpu_mask),
245                                "i" (PG_dcache_cpu_shift)
246                              : "g1", "g7");
247 }
248
249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250 {
251         unsigned long tsb_addr = (unsigned long) ent;
252
253         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
254                 tsb_addr = __pa(tsb_addr);
255
256         __tsb_insert(tsb_addr, tag, pte);
257 }
258
259 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
260 unsigned long _PAGE_SZBITS __read_mostly;
261
262 static void flush_dcache(unsigned long pfn)
263 {
264         struct page *page;
265
266         page = pfn_to_page(pfn);
267         if (page) {
268                 unsigned long pg_flags;
269
270                 pg_flags = page->flags;
271                 if (pg_flags & (1UL << PG_dcache_dirty)) {
272                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
273                                    PG_dcache_cpu_mask);
274                         int this_cpu = get_cpu();
275
276                         /* This is just to optimize away some function calls
277                          * in the SMP case.
278                          */
279                         if (cpu == this_cpu)
280                                 flush_dcache_page_impl(page);
281                         else
282                                 smp_flush_dcache_page_impl(page, cpu);
283
284                         clear_dcache_dirty_cpu(page, cpu);
285
286                         put_cpu();
287                 }
288         }
289 }
290
291 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
292 {
293         struct mm_struct *mm;
294         struct tsb *tsb;
295         unsigned long tag, flags;
296         unsigned long tsb_index, tsb_hash_shift;
297         pte_t pte = *ptep;
298
299         if (tlb_type != hypervisor) {
300                 unsigned long pfn = pte_pfn(pte);
301
302                 if (pfn_valid(pfn))
303                         flush_dcache(pfn);
304         }
305
306         mm = vma->vm_mm;
307
308         tsb_index = MM_TSB_BASE;
309         tsb_hash_shift = PAGE_SHIFT;
310
311         spin_lock_irqsave(&mm->context.lock, flags);
312
313 #ifdef CONFIG_HUGETLB_PAGE
314         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
315                 if ((tlb_type == hypervisor &&
316                      (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
317                     (tlb_type != hypervisor &&
318                      (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
319                         tsb_index = MM_TSB_HUGE;
320                         tsb_hash_shift = HPAGE_SHIFT;
321                 }
322         }
323 #endif
324
325         tsb = mm->context.tsb_block[tsb_index].tsb;
326         tsb += ((address >> tsb_hash_shift) &
327                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
328         tag = (address >> 22UL);
329         tsb_insert(tsb, tag, pte_val(pte));
330
331         spin_unlock_irqrestore(&mm->context.lock, flags);
332 }
333
334 void flush_dcache_page(struct page *page)
335 {
336         struct address_space *mapping;
337         int this_cpu;
338
339         if (tlb_type == hypervisor)
340                 return;
341
342         /* Do not bother with the expensive D-cache flush if it
343          * is merely the zero page.  The 'bigcore' testcase in GDB
344          * causes this case to run millions of times.
345          */
346         if (page == ZERO_PAGE(0))
347                 return;
348
349         this_cpu = get_cpu();
350
351         mapping = page_mapping(page);
352         if (mapping && !mapping_mapped(mapping)) {
353                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
354                 if (dirty) {
355                         int dirty_cpu = dcache_dirty_cpu(page);
356
357                         if (dirty_cpu == this_cpu)
358                                 goto out;
359                         smp_flush_dcache_page_impl(page, dirty_cpu);
360                 }
361                 set_dcache_dirty(page, this_cpu);
362         } else {
363                 /* We could delay the flush for the !page_mapping
364                  * case too.  But that case is for exec env/arg
365                  * pages and those are %99 certainly going to get
366                  * faulted into the tlb (and thus flushed) anyways.
367                  */
368                 flush_dcache_page_impl(page);
369         }
370
371 out:
372         put_cpu();
373 }
374 EXPORT_SYMBOL(flush_dcache_page);
375
376 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
377 {
378         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
379         if (tlb_type == spitfire) {
380                 unsigned long kaddr;
381
382                 /* This code only runs on Spitfire cpus so this is
383                  * why we can assume _PAGE_PADDR_4U.
384                  */
385                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
386                         unsigned long paddr, mask = _PAGE_PADDR_4U;
387
388                         if (kaddr >= PAGE_OFFSET)
389                                 paddr = kaddr & mask;
390                         else {
391                                 pgd_t *pgdp = pgd_offset_k(kaddr);
392                                 pud_t *pudp = pud_offset(pgdp, kaddr);
393                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
394                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
395
396                                 paddr = pte_val(*ptep) & mask;
397                         }
398                         __flush_icache_page(paddr);
399                 }
400         }
401 }
402 EXPORT_SYMBOL(flush_icache_range);
403
404 void mmu_info(struct seq_file *m)
405 {
406         if (tlb_type == cheetah)
407                 seq_printf(m, "MMU Type\t: Cheetah\n");
408         else if (tlb_type == cheetah_plus)
409                 seq_printf(m, "MMU Type\t: Cheetah+\n");
410         else if (tlb_type == spitfire)
411                 seq_printf(m, "MMU Type\t: Spitfire\n");
412         else if (tlb_type == hypervisor)
413                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
414         else
415                 seq_printf(m, "MMU Type\t: ???\n");
416
417 #ifdef CONFIG_DEBUG_DCFLUSH
418         seq_printf(m, "DCPageFlushes\t: %d\n",
419                    atomic_read(&dcpage_flushes));
420 #ifdef CONFIG_SMP
421         seq_printf(m, "DCPageFlushesXC\t: %d\n",
422                    atomic_read(&dcpage_flushes_xcall));
423 #endif /* CONFIG_SMP */
424 #endif /* CONFIG_DEBUG_DCFLUSH */
425 }
426
427 struct linux_prom_translation prom_trans[512] __read_mostly;
428 unsigned int prom_trans_ents __read_mostly;
429
430 unsigned long kern_locked_tte_data;
431
432 /* The obp translations are saved based on 8k pagesize, since obp can
433  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434  * HI_OBP_ADDRESS range are handled in ktlb.S.
435  */
436 static inline int in_obp_range(unsigned long vaddr)
437 {
438         return (vaddr >= LOW_OBP_ADDRESS &&
439                 vaddr < HI_OBP_ADDRESS);
440 }
441
442 static int cmp_ptrans(const void *a, const void *b)
443 {
444         const struct linux_prom_translation *x = a, *y = b;
445
446         if (x->virt > y->virt)
447                 return 1;
448         if (x->virt < y->virt)
449                 return -1;
450         return 0;
451 }
452
453 /* Read OBP translations property into 'prom_trans[]'.  */
454 static void __init read_obp_translations(void)
455 {
456         int n, node, ents, first, last, i;
457
458         node = prom_finddevice("/virtual-memory");
459         n = prom_getproplen(node, "translations");
460         if (unlikely(n == 0 || n == -1)) {
461                 prom_printf("prom_mappings: Couldn't get size.\n");
462                 prom_halt();
463         }
464         if (unlikely(n > sizeof(prom_trans))) {
465                 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
466                 prom_halt();
467         }
468
469         if ((n = prom_getproperty(node, "translations",
470                                   (char *)&prom_trans[0],
471                                   sizeof(prom_trans))) == -1) {
472                 prom_printf("prom_mappings: Couldn't get property.\n");
473                 prom_halt();
474         }
475
476         n = n / sizeof(struct linux_prom_translation);
477
478         ents = n;
479
480         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
481              cmp_ptrans, NULL);
482
483         /* Now kick out all the non-OBP entries.  */
484         for (i = 0; i < ents; i++) {
485                 if (in_obp_range(prom_trans[i].virt))
486                         break;
487         }
488         first = i;
489         for (; i < ents; i++) {
490                 if (!in_obp_range(prom_trans[i].virt))
491                         break;
492         }
493         last = i;
494
495         for (i = 0; i < (last - first); i++) {
496                 struct linux_prom_translation *src = &prom_trans[i + first];
497                 struct linux_prom_translation *dest = &prom_trans[i];
498
499                 *dest = *src;
500         }
501         for (; i < ents; i++) {
502                 struct linux_prom_translation *dest = &prom_trans[i];
503                 dest->virt = dest->size = dest->data = 0x0UL;
504         }
505
506         prom_trans_ents = last - first;
507
508         if (tlb_type == spitfire) {
509                 /* Clear diag TTE bits. */
510                 for (i = 0; i < prom_trans_ents; i++)
511                         prom_trans[i].data &= ~0x0003fe0000000000UL;
512         }
513
514         /* Force execute bit on.  */
515         for (i = 0; i < prom_trans_ents; i++)
516                 prom_trans[i].data |= (tlb_type == hypervisor ?
517                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
518 }
519
520 static void __init hypervisor_tlb_lock(unsigned long vaddr,
521                                        unsigned long pte,
522                                        unsigned long mmu)
523 {
524         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
525
526         if (ret != 0) {
527                 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
528                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
529                 prom_halt();
530         }
531 }
532
533 static unsigned long kern_large_tte(unsigned long paddr);
534
535 static void __init remap_kernel(void)
536 {
537         unsigned long phys_page, tte_vaddr, tte_data;
538         int i, tlb_ent = sparc64_highest_locked_tlbent();
539
540         tte_vaddr = (unsigned long) KERNBASE;
541         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
542         tte_data = kern_large_tte(phys_page);
543
544         kern_locked_tte_data = tte_data;
545
546         /* Now lock us into the TLBs via Hypervisor or OBP. */
547         if (tlb_type == hypervisor) {
548                 for (i = 0; i < num_kernel_image_mappings; i++) {
549                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
550                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
551                         tte_vaddr += 0x400000;
552                         tte_data += 0x400000;
553                 }
554         } else {
555                 for (i = 0; i < num_kernel_image_mappings; i++) {
556                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
557                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
558                         tte_vaddr += 0x400000;
559                         tte_data += 0x400000;
560                 }
561                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
562         }
563         if (tlb_type == cheetah_plus) {
564                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
565                                             CTX_CHEETAH_PLUS_NUC);
566                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
567                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
568         }
569 }
570
571
572 static void __init inherit_prom_mappings(void)
573 {
574         /* Now fixup OBP's idea about where we really are mapped. */
575         printk("Remapping the kernel... ");
576         remap_kernel();
577         printk("done.\n");
578 }
579
580 void prom_world(int enter)
581 {
582         if (!enter)
583                 set_fs((mm_segment_t) { get_thread_current_ds() });
584
585         __asm__ __volatile__("flushw");
586 }
587
588 void __flush_dcache_range(unsigned long start, unsigned long end)
589 {
590         unsigned long va;
591
592         if (tlb_type == spitfire) {
593                 int n = 0;
594
595                 for (va = start; va < end; va += 32) {
596                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
597                         if (++n >= 512)
598                                 break;
599                 }
600         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
601                 start = __pa(start);
602                 end = __pa(end);
603                 for (va = start; va < end; va += 32)
604                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
605                                              "membar #Sync"
606                                              : /* no outputs */
607                                              : "r" (va),
608                                                "i" (ASI_DCACHE_INVALIDATE));
609         }
610 }
611 EXPORT_SYMBOL(__flush_dcache_range);
612
613 /* get_new_mmu_context() uses "cache + 1".  */
614 DEFINE_SPINLOCK(ctx_alloc_lock);
615 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
616 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
617 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
618 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
619
620 /* Caller does TLB context flushing on local CPU if necessary.
621  * The caller also ensures that CTX_VALID(mm->context) is false.
622  *
623  * We must be careful about boundary cases so that we never
624  * let the user have CTX 0 (nucleus) or we ever use a CTX
625  * version of zero (and thus NO_CONTEXT would not be caught
626  * by version mis-match tests in mmu_context.h).
627  *
628  * Always invoked with interrupts disabled.
629  */
630 void get_new_mmu_context(struct mm_struct *mm)
631 {
632         unsigned long ctx, new_ctx;
633         unsigned long orig_pgsz_bits;
634         unsigned long flags;
635         int new_version;
636
637         spin_lock_irqsave(&ctx_alloc_lock, flags);
638         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
639         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
640         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
641         new_version = 0;
642         if (new_ctx >= (1 << CTX_NR_BITS)) {
643                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
644                 if (new_ctx >= ctx) {
645                         int i;
646                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
647                                 CTX_FIRST_VERSION;
648                         if (new_ctx == 1)
649                                 new_ctx = CTX_FIRST_VERSION;
650
651                         /* Don't call memset, for 16 entries that's just
652                          * plain silly...
653                          */
654                         mmu_context_bmap[0] = 3;
655                         mmu_context_bmap[1] = 0;
656                         mmu_context_bmap[2] = 0;
657                         mmu_context_bmap[3] = 0;
658                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
659                                 mmu_context_bmap[i + 0] = 0;
660                                 mmu_context_bmap[i + 1] = 0;
661                                 mmu_context_bmap[i + 2] = 0;
662                                 mmu_context_bmap[i + 3] = 0;
663                         }
664                         new_version = 1;
665                         goto out;
666                 }
667         }
668         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
669         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
670 out:
671         tlb_context_cache = new_ctx;
672         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
673         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
674
675         if (unlikely(new_version))
676                 smp_new_mmu_context_version();
677 }
678
679 static int numa_enabled = 1;
680 static int numa_debug;
681
682 static int __init early_numa(char *p)
683 {
684         if (!p)
685                 return 0;
686
687         if (strstr(p, "off"))
688                 numa_enabled = 0;
689
690         if (strstr(p, "debug"))
691                 numa_debug = 1;
692
693         return 0;
694 }
695 early_param("numa", early_numa);
696
697 #define numadbg(f, a...) \
698 do {    if (numa_debug) \
699                 printk(KERN_INFO f, ## a); \
700 } while (0)
701
702 static void __init find_ramdisk(unsigned long phys_base)
703 {
704 #ifdef CONFIG_BLK_DEV_INITRD
705         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
706                 unsigned long ramdisk_image;
707
708                 /* Older versions of the bootloader only supported a
709                  * 32-bit physical address for the ramdisk image
710                  * location, stored at sparc_ramdisk_image.  Newer
711                  * SILO versions set sparc_ramdisk_image to zero and
712                  * provide a full 64-bit physical address at
713                  * sparc_ramdisk_image64.
714                  */
715                 ramdisk_image = sparc_ramdisk_image;
716                 if (!ramdisk_image)
717                         ramdisk_image = sparc_ramdisk_image64;
718
719                 /* Another bootloader quirk.  The bootloader normalizes
720                  * the physical address to KERNBASE, so we have to
721                  * factor that back out and add in the lowest valid
722                  * physical page address to get the true physical address.
723                  */
724                 ramdisk_image -= KERNBASE;
725                 ramdisk_image += phys_base;
726
727                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
728                         ramdisk_image, sparc_ramdisk_size);
729
730                 initrd_start = ramdisk_image;
731                 initrd_end = ramdisk_image + sparc_ramdisk_size;
732
733                 memblock_reserve(initrd_start, sparc_ramdisk_size);
734
735                 initrd_start += PAGE_OFFSET;
736                 initrd_end += PAGE_OFFSET;
737         }
738 #endif
739 }
740
741 struct node_mem_mask {
742         unsigned long mask;
743         unsigned long val;
744 };
745 static struct node_mem_mask node_masks[MAX_NUMNODES];
746 static int num_node_masks;
747
748 int numa_cpu_lookup_table[NR_CPUS];
749 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
750
751 #ifdef CONFIG_NEED_MULTIPLE_NODES
752
753 struct mdesc_mblock {
754         u64     base;
755         u64     size;
756         u64     offset; /* RA-to-PA */
757 };
758 static struct mdesc_mblock *mblocks;
759 static int num_mblocks;
760
761 static unsigned long ra_to_pa(unsigned long addr)
762 {
763         int i;
764
765         for (i = 0; i < num_mblocks; i++) {
766                 struct mdesc_mblock *m = &mblocks[i];
767
768                 if (addr >= m->base &&
769                     addr < (m->base + m->size)) {
770                         addr += m->offset;
771                         break;
772                 }
773         }
774         return addr;
775 }
776
777 static int find_node(unsigned long addr)
778 {
779         int i;
780
781         addr = ra_to_pa(addr);
782         for (i = 0; i < num_node_masks; i++) {
783                 struct node_mem_mask *p = &node_masks[i];
784
785                 if ((addr & p->mask) == p->val)
786                         return i;
787         }
788         return -1;
789 }
790
791 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
792 {
793         *nid = find_node(start);
794         start += PAGE_SIZE;
795         while (start < end) {
796                 int n = find_node(start);
797
798                 if (n != *nid)
799                         break;
800                 start += PAGE_SIZE;
801         }
802
803         if (start > end)
804                 start = end;
805
806         return start;
807 }
808 #endif
809
810 /* This must be invoked after performing all of the necessary
811  * memblock_set_node() calls for 'nid'.  We need to be able to get
812  * correct data from get_pfn_range_for_nid().
813  */
814 static void __init allocate_node_data(int nid)
815 {
816         struct pglist_data *p;
817         unsigned long start_pfn, end_pfn;
818 #ifdef CONFIG_NEED_MULTIPLE_NODES
819         unsigned long paddr;
820
821         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
822         if (!paddr) {
823                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
824                 prom_halt();
825         }
826         NODE_DATA(nid) = __va(paddr);
827         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
828
829         NODE_DATA(nid)->node_id = nid;
830 #endif
831
832         p = NODE_DATA(nid);
833
834         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
835         p->node_start_pfn = start_pfn;
836         p->node_spanned_pages = end_pfn - start_pfn;
837 }
838
839 static void init_node_masks_nonnuma(void)
840 {
841         int i;
842
843         numadbg("Initializing tables for non-numa.\n");
844
845         node_masks[0].mask = node_masks[0].val = 0;
846         num_node_masks = 1;
847
848         for (i = 0; i < NR_CPUS; i++)
849                 numa_cpu_lookup_table[i] = 0;
850
851         cpumask_setall(&numa_cpumask_lookup_table[0]);
852 }
853
854 #ifdef CONFIG_NEED_MULTIPLE_NODES
855 struct pglist_data *node_data[MAX_NUMNODES];
856
857 EXPORT_SYMBOL(numa_cpu_lookup_table);
858 EXPORT_SYMBOL(numa_cpumask_lookup_table);
859 EXPORT_SYMBOL(node_data);
860
861 struct mdesc_mlgroup {
862         u64     node;
863         u64     latency;
864         u64     match;
865         u64     mask;
866 };
867 static struct mdesc_mlgroup *mlgroups;
868 static int num_mlgroups;
869
870 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
871                                    u32 cfg_handle)
872 {
873         u64 arc;
874
875         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
876                 u64 target = mdesc_arc_target(md, arc);
877                 const u64 *val;
878
879                 val = mdesc_get_property(md, target,
880                                          "cfg-handle", NULL);
881                 if (val && *val == cfg_handle)
882                         return 0;
883         }
884         return -ENODEV;
885 }
886
887 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
888                                     u32 cfg_handle)
889 {
890         u64 arc, candidate, best_latency = ~(u64)0;
891
892         candidate = MDESC_NODE_NULL;
893         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
894                 u64 target = mdesc_arc_target(md, arc);
895                 const char *name = mdesc_node_name(md, target);
896                 const u64 *val;
897
898                 if (strcmp(name, "pio-latency-group"))
899                         continue;
900
901                 val = mdesc_get_property(md, target, "latency", NULL);
902                 if (!val)
903                         continue;
904
905                 if (*val < best_latency) {
906                         candidate = target;
907                         best_latency = *val;
908                 }
909         }
910
911         if (candidate == MDESC_NODE_NULL)
912                 return -ENODEV;
913
914         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
915 }
916
917 int of_node_to_nid(struct device_node *dp)
918 {
919         const struct linux_prom64_registers *regs;
920         struct mdesc_handle *md;
921         u32 cfg_handle;
922         int count, nid;
923         u64 grp;
924
925         /* This is the right thing to do on currently supported
926          * SUN4U NUMA platforms as well, as the PCI controller does
927          * not sit behind any particular memory controller.
928          */
929         if (!mlgroups)
930                 return -1;
931
932         regs = of_get_property(dp, "reg", NULL);
933         if (!regs)
934                 return -1;
935
936         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
937
938         md = mdesc_grab();
939
940         count = 0;
941         nid = -1;
942         mdesc_for_each_node_by_name(md, grp, "group") {
943                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
944                         nid = count;
945                         break;
946                 }
947                 count++;
948         }
949
950         mdesc_release(md);
951
952         return nid;
953 }
954
955 static void __init add_node_ranges(void)
956 {
957         struct memblock_region *reg;
958
959         for_each_memblock(memory, reg) {
960                 unsigned long size = reg->size;
961                 unsigned long start, end;
962
963                 start = reg->base;
964                 end = start + size;
965                 while (start < end) {
966                         unsigned long this_end;
967                         int nid;
968
969                         this_end = memblock_nid_range(start, end, &nid);
970
971                         numadbg("Setting memblock NUMA node nid[%d] "
972                                 "start[%lx] end[%lx]\n",
973                                 nid, start, this_end);
974
975                         memblock_set_node(start, this_end - start, nid);
976                         start = this_end;
977                 }
978         }
979 }
980
981 static int __init grab_mlgroups(struct mdesc_handle *md)
982 {
983         unsigned long paddr;
984         int count = 0;
985         u64 node;
986
987         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
988                 count++;
989         if (!count)
990                 return -ENOENT;
991
992         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
993                           SMP_CACHE_BYTES);
994         if (!paddr)
995                 return -ENOMEM;
996
997         mlgroups = __va(paddr);
998         num_mlgroups = count;
999
1000         count = 0;
1001         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1002                 struct mdesc_mlgroup *m = &mlgroups[count++];
1003                 const u64 *val;
1004
1005                 m->node = node;
1006
1007                 val = mdesc_get_property(md, node, "latency", NULL);
1008                 m->latency = *val;
1009                 val = mdesc_get_property(md, node, "address-match", NULL);
1010                 m->match = *val;
1011                 val = mdesc_get_property(md, node, "address-mask", NULL);
1012                 m->mask = *val;
1013
1014                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1015                         "match[%llx] mask[%llx]\n",
1016                         count - 1, m->node, m->latency, m->match, m->mask);
1017         }
1018
1019         return 0;
1020 }
1021
1022 static int __init grab_mblocks(struct mdesc_handle *md)
1023 {
1024         unsigned long paddr;
1025         int count = 0;
1026         u64 node;
1027
1028         mdesc_for_each_node_by_name(md, node, "mblock")
1029                 count++;
1030         if (!count)
1031                 return -ENOENT;
1032
1033         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1034                           SMP_CACHE_BYTES);
1035         if (!paddr)
1036                 return -ENOMEM;
1037
1038         mblocks = __va(paddr);
1039         num_mblocks = count;
1040
1041         count = 0;
1042         mdesc_for_each_node_by_name(md, node, "mblock") {
1043                 struct mdesc_mblock *m = &mblocks[count++];
1044                 const u64 *val;
1045
1046                 val = mdesc_get_property(md, node, "base", NULL);
1047                 m->base = *val;
1048                 val = mdesc_get_property(md, node, "size", NULL);
1049                 m->size = *val;
1050                 val = mdesc_get_property(md, node,
1051                                          "address-congruence-offset", NULL);
1052                 m->offset = *val;
1053
1054                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1055                         count - 1, m->base, m->size, m->offset);
1056         }
1057
1058         return 0;
1059 }
1060
1061 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1062                                                u64 grp, cpumask_t *mask)
1063 {
1064         u64 arc;
1065
1066         cpumask_clear(mask);
1067
1068         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1069                 u64 target = mdesc_arc_target(md, arc);
1070                 const char *name = mdesc_node_name(md, target);
1071                 const u64 *id;
1072
1073                 if (strcmp(name, "cpu"))
1074                         continue;
1075                 id = mdesc_get_property(md, target, "id", NULL);
1076                 if (*id < nr_cpu_ids)
1077                         cpumask_set_cpu(*id, mask);
1078         }
1079 }
1080
1081 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1082 {
1083         int i;
1084
1085         for (i = 0; i < num_mlgroups; i++) {
1086                 struct mdesc_mlgroup *m = &mlgroups[i];
1087                 if (m->node == node)
1088                         return m;
1089         }
1090         return NULL;
1091 }
1092
1093 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1094                                       int index)
1095 {
1096         struct mdesc_mlgroup *candidate = NULL;
1097         u64 arc, best_latency = ~(u64)0;
1098         struct node_mem_mask *n;
1099
1100         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1101                 u64 target = mdesc_arc_target(md, arc);
1102                 struct mdesc_mlgroup *m = find_mlgroup(target);
1103                 if (!m)
1104                         continue;
1105                 if (m->latency < best_latency) {
1106                         candidate = m;
1107                         best_latency = m->latency;
1108                 }
1109         }
1110         if (!candidate)
1111                 return -ENOENT;
1112
1113         if (num_node_masks != index) {
1114                 printk(KERN_ERR "Inconsistent NUMA state, "
1115                        "index[%d] != num_node_masks[%d]\n",
1116                        index, num_node_masks);
1117                 return -EINVAL;
1118         }
1119
1120         n = &node_masks[num_node_masks++];
1121
1122         n->mask = candidate->mask;
1123         n->val = candidate->match;
1124
1125         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1126                 index, n->mask, n->val, candidate->latency);
1127
1128         return 0;
1129 }
1130
1131 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1132                                          int index)
1133 {
1134         cpumask_t mask;
1135         int cpu;
1136
1137         numa_parse_mdesc_group_cpus(md, grp, &mask);
1138
1139         for_each_cpu(cpu, &mask)
1140                 numa_cpu_lookup_table[cpu] = index;
1141         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1142
1143         if (numa_debug) {
1144                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1145                 for_each_cpu(cpu, &mask)
1146                         printk("%d ", cpu);
1147                 printk("]\n");
1148         }
1149
1150         return numa_attach_mlgroup(md, grp, index);
1151 }
1152
1153 static int __init numa_parse_mdesc(void)
1154 {
1155         struct mdesc_handle *md = mdesc_grab();
1156         int i, err, count;
1157         u64 node;
1158
1159         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1160         if (node == MDESC_NODE_NULL) {
1161                 mdesc_release(md);
1162                 return -ENOENT;
1163         }
1164
1165         err = grab_mblocks(md);
1166         if (err < 0)
1167                 goto out;
1168
1169         err = grab_mlgroups(md);
1170         if (err < 0)
1171                 goto out;
1172
1173         count = 0;
1174         mdesc_for_each_node_by_name(md, node, "group") {
1175                 err = numa_parse_mdesc_group(md, node, count);
1176                 if (err < 0)
1177                         break;
1178                 count++;
1179         }
1180
1181         add_node_ranges();
1182
1183         for (i = 0; i < num_node_masks; i++) {
1184                 allocate_node_data(i);
1185                 node_set_online(i);
1186         }
1187
1188         err = 0;
1189 out:
1190         mdesc_release(md);
1191         return err;
1192 }
1193
1194 static int __init numa_parse_jbus(void)
1195 {
1196         unsigned long cpu, index;
1197
1198         /* NUMA node id is encoded in bits 36 and higher, and there is
1199          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1200          */
1201         index = 0;
1202         for_each_present_cpu(cpu) {
1203                 numa_cpu_lookup_table[cpu] = index;
1204                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1205                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1206                 node_masks[index].val = cpu << 36UL;
1207
1208                 index++;
1209         }
1210         num_node_masks = index;
1211
1212         add_node_ranges();
1213
1214         for (index = 0; index < num_node_masks; index++) {
1215                 allocate_node_data(index);
1216                 node_set_online(index);
1217         }
1218
1219         return 0;
1220 }
1221
1222 static int __init numa_parse_sun4u(void)
1223 {
1224         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1225                 unsigned long ver;
1226
1227                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1228                 if ((ver >> 32UL) == __JALAPENO_ID ||
1229                     (ver >> 32UL) == __SERRANO_ID)
1230                         return numa_parse_jbus();
1231         }
1232         return -1;
1233 }
1234
1235 static int __init bootmem_init_numa(void)
1236 {
1237         int err = -1;
1238
1239         numadbg("bootmem_init_numa()\n");
1240
1241         if (numa_enabled) {
1242                 if (tlb_type == hypervisor)
1243                         err = numa_parse_mdesc();
1244                 else
1245                         err = numa_parse_sun4u();
1246         }
1247         return err;
1248 }
1249
1250 #else
1251
1252 static int bootmem_init_numa(void)
1253 {
1254         return -1;
1255 }
1256
1257 #endif
1258
1259 static void __init bootmem_init_nonnuma(void)
1260 {
1261         unsigned long top_of_ram = memblock_end_of_DRAM();
1262         unsigned long total_ram = memblock_phys_mem_size();
1263
1264         numadbg("bootmem_init_nonnuma()\n");
1265
1266         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1267                top_of_ram, total_ram);
1268         printk(KERN_INFO "Memory hole size: %ldMB\n",
1269                (top_of_ram - total_ram) >> 20);
1270
1271         init_node_masks_nonnuma();
1272         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1273         allocate_node_data(0);
1274         node_set_online(0);
1275 }
1276
1277 static unsigned long __init bootmem_init(unsigned long phys_base)
1278 {
1279         unsigned long end_pfn;
1280
1281         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1282         max_pfn = max_low_pfn = end_pfn;
1283         min_low_pfn = (phys_base >> PAGE_SHIFT);
1284
1285         if (bootmem_init_numa() < 0)
1286                 bootmem_init_nonnuma();
1287
1288         /* Dump memblock with node info. */
1289         memblock_dump_all();
1290
1291         /* XXX cpu notifier XXX */
1292
1293         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1294         sparse_init();
1295
1296         return end_pfn;
1297 }
1298
1299 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1300 static int pall_ents __initdata;
1301
1302 #ifdef CONFIG_DEBUG_PAGEALLOC
1303 static unsigned long __ref kernel_map_range(unsigned long pstart,
1304                                             unsigned long pend, pgprot_t prot)
1305 {
1306         unsigned long vstart = PAGE_OFFSET + pstart;
1307         unsigned long vend = PAGE_OFFSET + pend;
1308         unsigned long alloc_bytes = 0UL;
1309
1310         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1311                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1312                             vstart, vend);
1313                 prom_halt();
1314         }
1315
1316         while (vstart < vend) {
1317                 unsigned long this_end, paddr = __pa(vstart);
1318                 pgd_t *pgd = pgd_offset_k(vstart);
1319                 pud_t *pud;
1320                 pmd_t *pmd;
1321                 pte_t *pte;
1322
1323                 pud = pud_offset(pgd, vstart);
1324                 if (pud_none(*pud)) {
1325                         pmd_t *new;
1326
1327                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1328                         alloc_bytes += PAGE_SIZE;
1329                         pud_populate(&init_mm, pud, new);
1330                 }
1331
1332                 pmd = pmd_offset(pud, vstart);
1333                 if (!pmd_present(*pmd)) {
1334                         pte_t *new;
1335
1336                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1337                         alloc_bytes += PAGE_SIZE;
1338                         pmd_populate_kernel(&init_mm, pmd, new);
1339                 }
1340
1341                 pte = pte_offset_kernel(pmd, vstart);
1342                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1343                 if (this_end > vend)
1344                         this_end = vend;
1345
1346                 while (vstart < this_end) {
1347                         pte_val(*pte) = (paddr | pgprot_val(prot));
1348
1349                         vstart += PAGE_SIZE;
1350                         paddr += PAGE_SIZE;
1351                         pte++;
1352                 }
1353         }
1354
1355         return alloc_bytes;
1356 }
1357
1358 extern unsigned int kvmap_linear_patch[1];
1359 #endif /* CONFIG_DEBUG_PAGEALLOC */
1360
1361 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1362 {
1363         const unsigned long shift_256MB = 28;
1364         const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1365         const unsigned long size_256MB = (1UL << shift_256MB);
1366
1367         while (start < end) {
1368                 long remains;
1369
1370                 remains = end - start;
1371                 if (remains < size_256MB)
1372                         break;
1373
1374                 if (start & mask_256MB) {
1375                         start = (start + size_256MB) & ~mask_256MB;
1376                         continue;
1377                 }
1378
1379                 while (remains >= size_256MB) {
1380                         unsigned long index = start >> shift_256MB;
1381
1382                         __set_bit(index, kpte_linear_bitmap);
1383
1384                         start += size_256MB;
1385                         remains -= size_256MB;
1386                 }
1387         }
1388 }
1389
1390 static void __init init_kpte_bitmap(void)
1391 {
1392         unsigned long i;
1393
1394         for (i = 0; i < pall_ents; i++) {
1395                 unsigned long phys_start, phys_end;
1396
1397                 phys_start = pall[i].phys_addr;
1398                 phys_end = phys_start + pall[i].reg_size;
1399
1400                 mark_kpte_bitmap(phys_start, phys_end);
1401         }
1402 }
1403
1404 static void __init kernel_physical_mapping_init(void)
1405 {
1406 #ifdef CONFIG_DEBUG_PAGEALLOC
1407         unsigned long i, mem_alloced = 0UL;
1408
1409         for (i = 0; i < pall_ents; i++) {
1410                 unsigned long phys_start, phys_end;
1411
1412                 phys_start = pall[i].phys_addr;
1413                 phys_end = phys_start + pall[i].reg_size;
1414
1415                 mem_alloced += kernel_map_range(phys_start, phys_end,
1416                                                 PAGE_KERNEL);
1417         }
1418
1419         printk("Allocated %ld bytes for kernel page tables.\n",
1420                mem_alloced);
1421
1422         kvmap_linear_patch[0] = 0x01000000; /* nop */
1423         flushi(&kvmap_linear_patch[0]);
1424
1425         __flush_tlb_all();
1426 #endif
1427 }
1428
1429 #ifdef CONFIG_DEBUG_PAGEALLOC
1430 void kernel_map_pages(struct page *page, int numpages, int enable)
1431 {
1432         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1433         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1434
1435         kernel_map_range(phys_start, phys_end,
1436                          (enable ? PAGE_KERNEL : __pgprot(0)));
1437
1438         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1439                                PAGE_OFFSET + phys_end);
1440
1441         /* we should perform an IPI and flush all tlbs,
1442          * but that can deadlock->flush only current cpu.
1443          */
1444         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1445                                  PAGE_OFFSET + phys_end);
1446 }
1447 #endif
1448
1449 unsigned long __init find_ecache_flush_span(unsigned long size)
1450 {
1451         int i;
1452
1453         for (i = 0; i < pavail_ents; i++) {
1454                 if (pavail[i].reg_size >= size)
1455                         return pavail[i].phys_addr;
1456         }
1457
1458         return ~0UL;
1459 }
1460
1461 static void __init tsb_phys_patch(void)
1462 {
1463         struct tsb_ldquad_phys_patch_entry *pquad;
1464         struct tsb_phys_patch_entry *p;
1465
1466         pquad = &__tsb_ldquad_phys_patch;
1467         while (pquad < &__tsb_ldquad_phys_patch_end) {
1468                 unsigned long addr = pquad->addr;
1469
1470                 if (tlb_type == hypervisor)
1471                         *(unsigned int *) addr = pquad->sun4v_insn;
1472                 else
1473                         *(unsigned int *) addr = pquad->sun4u_insn;
1474                 wmb();
1475                 __asm__ __volatile__("flush     %0"
1476                                      : /* no outputs */
1477                                      : "r" (addr));
1478
1479                 pquad++;
1480         }
1481
1482         p = &__tsb_phys_patch;
1483         while (p < &__tsb_phys_patch_end) {
1484                 unsigned long addr = p->addr;
1485
1486                 *(unsigned int *) addr = p->insn;
1487                 wmb();
1488                 __asm__ __volatile__("flush     %0"
1489                                      : /* no outputs */
1490                                      : "r" (addr));
1491
1492                 p++;
1493         }
1494 }
1495
1496 /* Don't mark as init, we give this to the Hypervisor.  */
1497 #ifndef CONFIG_DEBUG_PAGEALLOC
1498 #define NUM_KTSB_DESCR  2
1499 #else
1500 #define NUM_KTSB_DESCR  1
1501 #endif
1502 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1503 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1504
1505 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1506 {
1507         pa >>= KTSB_PHYS_SHIFT;
1508
1509         while (start < end) {
1510                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1511
1512                 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1513                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1514
1515                 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1516                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1517
1518                 start++;
1519         }
1520 }
1521
1522 static void ktsb_phys_patch(void)
1523 {
1524         extern unsigned int __swapper_tsb_phys_patch;
1525         extern unsigned int __swapper_tsb_phys_patch_end;
1526         unsigned long ktsb_pa;
1527
1528         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1529         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1530                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1531 #ifndef CONFIG_DEBUG_PAGEALLOC
1532         {
1533         extern unsigned int __swapper_4m_tsb_phys_patch;
1534         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1535         ktsb_pa = (kern_base +
1536                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1537         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1538                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1539         }
1540 #endif
1541 }
1542
1543 static void __init sun4v_ktsb_init(void)
1544 {
1545         unsigned long ktsb_pa;
1546
1547         /* First KTSB for PAGE_SIZE mappings.  */
1548         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1549
1550         switch (PAGE_SIZE) {
1551         case 8 * 1024:
1552         default:
1553                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1554                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1555                 break;
1556
1557         case 64 * 1024:
1558                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1559                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1560                 break;
1561
1562         case 512 * 1024:
1563                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1564                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1565                 break;
1566
1567         case 4 * 1024 * 1024:
1568                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1569                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1570                 break;
1571         }
1572
1573         ktsb_descr[0].assoc = 1;
1574         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1575         ktsb_descr[0].ctx_idx = 0;
1576         ktsb_descr[0].tsb_base = ktsb_pa;
1577         ktsb_descr[0].resv = 0;
1578
1579 #ifndef CONFIG_DEBUG_PAGEALLOC
1580         /* Second KTSB for 4MB/256MB mappings.  */
1581         ktsb_pa = (kern_base +
1582                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1583
1584         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1585         ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1586                                    HV_PGSZ_MASK_256MB);
1587         ktsb_descr[1].assoc = 1;
1588         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1589         ktsb_descr[1].ctx_idx = 0;
1590         ktsb_descr[1].tsb_base = ktsb_pa;
1591         ktsb_descr[1].resv = 0;
1592 #endif
1593 }
1594
1595 void __cpuinit sun4v_ktsb_register(void)
1596 {
1597         unsigned long pa, ret;
1598
1599         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1600
1601         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1602         if (ret != 0) {
1603                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1604                             "errors with %lx\n", pa, ret);
1605                 prom_halt();
1606         }
1607 }
1608
1609 /* paging_init() sets up the page tables */
1610
1611 static unsigned long last_valid_pfn;
1612 pgd_t swapper_pg_dir[2048];
1613
1614 static void sun4u_pgprot_init(void);
1615 static void sun4v_pgprot_init(void);
1616
1617 void __init paging_init(void)
1618 {
1619         unsigned long end_pfn, shift, phys_base;
1620         unsigned long real_end, i;
1621         int node;
1622
1623         /* These build time checkes make sure that the dcache_dirty_cpu()
1624          * page->flags usage will work.
1625          *
1626          * When a page gets marked as dcache-dirty, we store the
1627          * cpu number starting at bit 32 in the page->flags.  Also,
1628          * functions like clear_dcache_dirty_cpu use the cpu mask
1629          * in 13-bit signed-immediate instruction fields.
1630          */
1631
1632         /*
1633          * Page flags must not reach into upper 32 bits that are used
1634          * for the cpu number
1635          */
1636         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1637
1638         /*
1639          * The bit fields placed in the high range must not reach below
1640          * the 32 bit boundary. Otherwise we cannot place the cpu field
1641          * at the 32 bit boundary.
1642          */
1643         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1644                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1645
1646         BUILD_BUG_ON(NR_CPUS > 4096);
1647
1648         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1649         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1650
1651         /* Invalidate both kernel TSBs.  */
1652         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1653 #ifndef CONFIG_DEBUG_PAGEALLOC
1654         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1655 #endif
1656
1657         if (tlb_type == hypervisor)
1658                 sun4v_pgprot_init();
1659         else
1660                 sun4u_pgprot_init();
1661
1662         if (tlb_type == cheetah_plus ||
1663             tlb_type == hypervisor) {
1664                 tsb_phys_patch();
1665                 ktsb_phys_patch();
1666         }
1667
1668         if (tlb_type == hypervisor) {
1669                 sun4v_patch_tlb_handlers();
1670                 sun4v_ktsb_init();
1671         }
1672
1673         /* Find available physical memory...
1674          *
1675          * Read it twice in order to work around a bug in openfirmware.
1676          * The call to grab this table itself can cause openfirmware to
1677          * allocate memory, which in turn can take away some space from
1678          * the list of available memory.  Reading it twice makes sure
1679          * we really do get the final value.
1680          */
1681         read_obp_translations();
1682         read_obp_memory("reg", &pall[0], &pall_ents);
1683         read_obp_memory("available", &pavail[0], &pavail_ents);
1684         read_obp_memory("available", &pavail[0], &pavail_ents);
1685
1686         phys_base = 0xffffffffffffffffUL;
1687         for (i = 0; i < pavail_ents; i++) {
1688                 phys_base = min(phys_base, pavail[i].phys_addr);
1689                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1690         }
1691
1692         memblock_reserve(kern_base, kern_size);
1693
1694         find_ramdisk(phys_base);
1695
1696         memblock_enforce_memory_limit(cmdline_memory_size);
1697
1698         memblock_allow_resize();
1699         memblock_dump_all();
1700
1701         set_bit(0, mmu_context_bmap);
1702
1703         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1704
1705         real_end = (unsigned long)_end;
1706         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1707         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1708                num_kernel_image_mappings);
1709
1710         /* Set kernel pgd to upper alias so physical page computations
1711          * work.
1712          */
1713         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1714         
1715         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1716
1717         /* Now can init the kernel/bad page tables. */
1718         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1719                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1720         
1721         inherit_prom_mappings();
1722         
1723         init_kpte_bitmap();
1724
1725         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1726         setup_tba();
1727
1728         __flush_tlb_all();
1729
1730         if (tlb_type == hypervisor)
1731                 sun4v_ktsb_register();
1732
1733         prom_build_devicetree();
1734         of_populate_present_mask();
1735 #ifndef CONFIG_SMP
1736         of_fill_in_cpu_data();
1737 #endif
1738
1739         if (tlb_type == hypervisor) {
1740                 sun4v_mdesc_init();
1741                 mdesc_populate_present_mask(cpu_all_mask);
1742 #ifndef CONFIG_SMP
1743                 mdesc_fill_in_cpu_data(cpu_all_mask);
1744 #endif
1745         }
1746
1747         /* Setup bootmem... */
1748         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1749
1750         /* Once the OF device tree and MDESC have been setup, we know
1751          * the list of possible cpus.  Therefore we can allocate the
1752          * IRQ stacks.
1753          */
1754         for_each_possible_cpu(i) {
1755                 node = cpu_to_node(i);
1756
1757                 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1758                                                         THREAD_SIZE,
1759                                                         THREAD_SIZE, 0);
1760                 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1761                                                         THREAD_SIZE,
1762                                                         THREAD_SIZE, 0);
1763         }
1764
1765         kernel_physical_mapping_init();
1766
1767         {
1768                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1769
1770                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1771
1772                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1773
1774                 free_area_init_nodes(max_zone_pfns);
1775         }
1776
1777         printk("Booting Linux...\n");
1778 }
1779
1780 int __devinit page_in_phys_avail(unsigned long paddr)
1781 {
1782         int i;
1783
1784         paddr &= PAGE_MASK;
1785
1786         for (i = 0; i < pavail_ents; i++) {
1787                 unsigned long start, end;
1788
1789                 start = pavail[i].phys_addr;
1790                 end = start + pavail[i].reg_size;
1791
1792                 if (paddr >= start && paddr < end)
1793                         return 1;
1794         }
1795         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1796                 return 1;
1797 #ifdef CONFIG_BLK_DEV_INITRD
1798         if (paddr >= __pa(initrd_start) &&
1799             paddr < __pa(PAGE_ALIGN(initrd_end)))
1800                 return 1;
1801 #endif
1802
1803         return 0;
1804 }
1805
1806 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1807 static int pavail_rescan_ents __initdata;
1808
1809 /* Certain OBP calls, such as fetching "available" properties, can
1810  * claim physical memory.  So, along with initializing the valid
1811  * address bitmap, what we do here is refetch the physical available
1812  * memory list again, and make sure it provides at least as much
1813  * memory as 'pavail' does.
1814  */
1815 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1816 {
1817         int i;
1818
1819         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1820
1821         for (i = 0; i < pavail_ents; i++) {
1822                 unsigned long old_start, old_end;
1823
1824                 old_start = pavail[i].phys_addr;
1825                 old_end = old_start + pavail[i].reg_size;
1826                 while (old_start < old_end) {
1827                         int n;
1828
1829                         for (n = 0; n < pavail_rescan_ents; n++) {
1830                                 unsigned long new_start, new_end;
1831
1832                                 new_start = pavail_rescan[n].phys_addr;
1833                                 new_end = new_start +
1834                                         pavail_rescan[n].reg_size;
1835
1836                                 if (new_start <= old_start &&
1837                                     new_end >= (old_start + PAGE_SIZE)) {
1838                                         set_bit(old_start >> 22, bitmap);
1839                                         goto do_next_page;
1840                                 }
1841                         }
1842
1843                         prom_printf("mem_init: Lost memory in pavail\n");
1844                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1845                                     pavail[i].phys_addr,
1846                                     pavail[i].reg_size);
1847                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1848                                     pavail_rescan[i].phys_addr,
1849                                     pavail_rescan[i].reg_size);
1850                         prom_printf("mem_init: Cannot continue, aborting.\n");
1851                         prom_halt();
1852
1853                 do_next_page:
1854                         old_start += PAGE_SIZE;
1855                 }
1856         }
1857 }
1858
1859 static void __init patch_tlb_miss_handler_bitmap(void)
1860 {
1861         extern unsigned int valid_addr_bitmap_insn[];
1862         extern unsigned int valid_addr_bitmap_patch[];
1863
1864         valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1865         mb();
1866         valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1867         flushi(&valid_addr_bitmap_insn[0]);
1868 }
1869
1870 void __init mem_init(void)
1871 {
1872         unsigned long codepages, datapages, initpages;
1873         unsigned long addr, last;
1874
1875         addr = PAGE_OFFSET + kern_base;
1876         last = PAGE_ALIGN(kern_size) + addr;
1877         while (addr < last) {
1878                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1879                 addr += PAGE_SIZE;
1880         }
1881
1882         setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1883         patch_tlb_miss_handler_bitmap();
1884
1885         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1886
1887 #ifdef CONFIG_NEED_MULTIPLE_NODES
1888         {
1889                 int i;
1890                 for_each_online_node(i) {
1891                         if (NODE_DATA(i)->node_spanned_pages != 0) {
1892                                 totalram_pages +=
1893                                         free_all_bootmem_node(NODE_DATA(i));
1894                         }
1895                 }
1896                 totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
1897         }
1898 #else
1899         totalram_pages = free_all_bootmem();
1900 #endif
1901
1902         /* We subtract one to account for the mem_map_zero page
1903          * allocated below.
1904          */
1905         totalram_pages -= 1;
1906         num_physpages = totalram_pages;
1907
1908         /*
1909          * Set up the zero page, mark it reserved, so that page count
1910          * is not manipulated when freeing the page from user ptes.
1911          */
1912         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1913         if (mem_map_zero == NULL) {
1914                 prom_printf("paging_init: Cannot alloc zero page.\n");
1915                 prom_halt();
1916         }
1917         SetPageReserved(mem_map_zero);
1918
1919         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1920         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1921         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1922         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1923         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1924         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1925
1926         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1927                nr_free_pages() << (PAGE_SHIFT-10),
1928                codepages << (PAGE_SHIFT-10),
1929                datapages << (PAGE_SHIFT-10), 
1930                initpages << (PAGE_SHIFT-10), 
1931                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1932
1933         if (tlb_type == cheetah || tlb_type == cheetah_plus)
1934                 cheetah_ecache_flush_init();
1935 }
1936
1937 void free_initmem(void)
1938 {
1939         unsigned long addr, initend;
1940         int do_free = 1;
1941
1942         /* If the physical memory maps were trimmed by kernel command
1943          * line options, don't even try freeing this initmem stuff up.
1944          * The kernel image could have been in the trimmed out region
1945          * and if so the freeing below will free invalid page structs.
1946          */
1947         if (cmdline_memory_size)
1948                 do_free = 0;
1949
1950         /*
1951          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1952          */
1953         addr = PAGE_ALIGN((unsigned long)(__init_begin));
1954         initend = (unsigned long)(__init_end) & PAGE_MASK;
1955         for (; addr < initend; addr += PAGE_SIZE) {
1956                 unsigned long page;
1957                 struct page *p;
1958
1959                 page = (addr +
1960                         ((unsigned long) __va(kern_base)) -
1961                         ((unsigned long) KERNBASE));
1962                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1963
1964                 if (do_free) {
1965                         p = virt_to_page(page);
1966
1967                         ClearPageReserved(p);
1968                         init_page_count(p);
1969                         __free_page(p);
1970                         num_physpages++;
1971                         totalram_pages++;
1972                 }
1973         }
1974 }
1975
1976 #ifdef CONFIG_BLK_DEV_INITRD
1977 void free_initrd_mem(unsigned long start, unsigned long end)
1978 {
1979         if (start < end)
1980                 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1981         for (; start < end; start += PAGE_SIZE) {
1982                 struct page *p = virt_to_page(start);
1983
1984                 ClearPageReserved(p);
1985                 init_page_count(p);
1986                 __free_page(p);
1987                 num_physpages++;
1988                 totalram_pages++;
1989         }
1990 }
1991 #endif
1992
1993 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
1994 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
1995 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1996 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1997 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1998 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1999
2000 pgprot_t PAGE_KERNEL __read_mostly;
2001 EXPORT_SYMBOL(PAGE_KERNEL);
2002
2003 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2004 pgprot_t PAGE_COPY __read_mostly;
2005
2006 pgprot_t PAGE_SHARED __read_mostly;
2007 EXPORT_SYMBOL(PAGE_SHARED);
2008
2009 unsigned long pg_iobits __read_mostly;
2010
2011 unsigned long _PAGE_IE __read_mostly;
2012 EXPORT_SYMBOL(_PAGE_IE);
2013
2014 unsigned long _PAGE_E __read_mostly;
2015 EXPORT_SYMBOL(_PAGE_E);
2016
2017 unsigned long _PAGE_CACHE __read_mostly;
2018 EXPORT_SYMBOL(_PAGE_CACHE);
2019
2020 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2021 unsigned long vmemmap_table[VMEMMAP_SIZE];
2022
2023 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2024 {
2025         unsigned long vstart = (unsigned long) start;
2026         unsigned long vend = (unsigned long) (start + nr);
2027         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2028         unsigned long phys_end = (vend - VMEMMAP_BASE);
2029         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2030         unsigned long end = VMEMMAP_ALIGN(phys_end);
2031         unsigned long pte_base;
2032
2033         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2034                     _PAGE_CP_4U | _PAGE_CV_4U |
2035                     _PAGE_P_4U | _PAGE_W_4U);
2036         if (tlb_type == hypervisor)
2037                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2038                             _PAGE_CP_4V | _PAGE_CV_4V |
2039                             _PAGE_P_4V | _PAGE_W_4V);
2040
2041         for (; addr < end; addr += VMEMMAP_CHUNK) {
2042                 unsigned long *vmem_pp =
2043                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2044                 void *block;
2045
2046                 if (!(*vmem_pp & _PAGE_VALID)) {
2047                         block = vmemmap_alloc_block(1UL << 22, node);
2048                         if (!block)
2049                                 return -ENOMEM;
2050
2051                         *vmem_pp = pte_base | __pa(block);
2052
2053                         printk(KERN_INFO "[%p-%p] page_structs=%lu "
2054                                "node=%d entry=%lu/%lu\n", start, block, nr,
2055                                node,
2056                                addr >> VMEMMAP_CHUNK_SHIFT,
2057                                VMEMMAP_SIZE);
2058                 }
2059         }
2060         return 0;
2061 }
2062 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2063
2064 static void prot_init_common(unsigned long page_none,
2065                              unsigned long page_shared,
2066                              unsigned long page_copy,
2067                              unsigned long page_readonly,
2068                              unsigned long page_exec_bit)
2069 {
2070         PAGE_COPY = __pgprot(page_copy);
2071         PAGE_SHARED = __pgprot(page_shared);
2072
2073         protection_map[0x0] = __pgprot(page_none);
2074         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2075         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2076         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2077         protection_map[0x4] = __pgprot(page_readonly);
2078         protection_map[0x5] = __pgprot(page_readonly);
2079         protection_map[0x6] = __pgprot(page_copy);
2080         protection_map[0x7] = __pgprot(page_copy);
2081         protection_map[0x8] = __pgprot(page_none);
2082         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2083         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2084         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2085         protection_map[0xc] = __pgprot(page_readonly);
2086         protection_map[0xd] = __pgprot(page_readonly);
2087         protection_map[0xe] = __pgprot(page_shared);
2088         protection_map[0xf] = __pgprot(page_shared);
2089 }
2090
2091 static void __init sun4u_pgprot_init(void)
2092 {
2093         unsigned long page_none, page_shared, page_copy, page_readonly;
2094         unsigned long page_exec_bit;
2095
2096         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2097                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2098                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2099                                 _PAGE_EXEC_4U);
2100         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2101                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2102                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2103                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2104
2105         _PAGE_IE = _PAGE_IE_4U;
2106         _PAGE_E = _PAGE_E_4U;
2107         _PAGE_CACHE = _PAGE_CACHE_4U;
2108
2109         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2110                      __ACCESS_BITS_4U | _PAGE_E_4U);
2111
2112 #ifdef CONFIG_DEBUG_PAGEALLOC
2113         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2114                 0xfffff80000000000UL;
2115 #else
2116         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2117                 0xfffff80000000000UL;
2118 #endif
2119         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2120                                    _PAGE_P_4U | _PAGE_W_4U);
2121
2122         /* XXX Should use 256MB on Panther. XXX */
2123         kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2124
2125         _PAGE_SZBITS = _PAGE_SZBITS_4U;
2126         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2127                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2128                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2129
2130
2131         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2132         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2133                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2134         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2135                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2136         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2137                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2138
2139         page_exec_bit = _PAGE_EXEC_4U;
2140
2141         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2142                          page_exec_bit);
2143 }
2144
2145 static void __init sun4v_pgprot_init(void)
2146 {
2147         unsigned long page_none, page_shared, page_copy, page_readonly;
2148         unsigned long page_exec_bit;
2149
2150         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2151                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2152                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2153                                 _PAGE_EXEC_4V);
2154         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2155
2156         _PAGE_IE = _PAGE_IE_4V;
2157         _PAGE_E = _PAGE_E_4V;
2158         _PAGE_CACHE = _PAGE_CACHE_4V;
2159
2160 #ifdef CONFIG_DEBUG_PAGEALLOC
2161         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2162                 0xfffff80000000000UL;
2163 #else
2164         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2165                 0xfffff80000000000UL;
2166 #endif
2167         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2168                                    _PAGE_P_4V | _PAGE_W_4V);
2169
2170 #ifdef CONFIG_DEBUG_PAGEALLOC
2171         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2172                 0xfffff80000000000UL;
2173 #else
2174         kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2175                 0xfffff80000000000UL;
2176 #endif
2177         kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2178                                    _PAGE_P_4V | _PAGE_W_4V);
2179
2180         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2181                      __ACCESS_BITS_4V | _PAGE_E_4V);
2182
2183         _PAGE_SZBITS = _PAGE_SZBITS_4V;
2184         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2185                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2186                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2187                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2188
2189         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2190         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2191                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2192         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2193                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2194         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2195                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2196
2197         page_exec_bit = _PAGE_EXEC_4V;
2198
2199         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2200                          page_exec_bit);
2201 }
2202
2203 unsigned long pte_sz_bits(unsigned long sz)
2204 {
2205         if (tlb_type == hypervisor) {
2206                 switch (sz) {
2207                 case 8 * 1024:
2208                 default:
2209                         return _PAGE_SZ8K_4V;
2210                 case 64 * 1024:
2211                         return _PAGE_SZ64K_4V;
2212                 case 512 * 1024:
2213                         return _PAGE_SZ512K_4V;
2214                 case 4 * 1024 * 1024:
2215                         return _PAGE_SZ4MB_4V;
2216                 }
2217         } else {
2218                 switch (sz) {
2219                 case 8 * 1024:
2220                 default:
2221                         return _PAGE_SZ8K_4U;
2222                 case 64 * 1024:
2223                         return _PAGE_SZ64K_4U;
2224                 case 512 * 1024:
2225                         return _PAGE_SZ512K_4U;
2226                 case 4 * 1024 * 1024:
2227                         return _PAGE_SZ4MB_4U;
2228                 }
2229         }
2230 }
2231
2232 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2233 {
2234         pte_t pte;
2235
2236         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2237         pte_val(pte) |= (((unsigned long)space) << 32);
2238         pte_val(pte) |= pte_sz_bits(page_size);
2239
2240         return pte;
2241 }
2242
2243 static unsigned long kern_large_tte(unsigned long paddr)
2244 {
2245         unsigned long val;
2246
2247         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2248                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2249                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2250         if (tlb_type == hypervisor)
2251                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2252                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2253                        _PAGE_EXEC_4V | _PAGE_W_4V);
2254
2255         return val | paddr;
2256 }
2257
2258 /* If not locked, zap it. */
2259 void __flush_tlb_all(void)
2260 {
2261         unsigned long pstate;
2262         int i;
2263
2264         __asm__ __volatile__("flushw\n\t"
2265                              "rdpr      %%pstate, %0\n\t"
2266                              "wrpr      %0, %1, %%pstate"
2267                              : "=r" (pstate)
2268                              : "i" (PSTATE_IE));
2269         if (tlb_type == hypervisor) {
2270                 sun4v_mmu_demap_all();
2271         } else if (tlb_type == spitfire) {
2272                 for (i = 0; i < 64; i++) {
2273                         /* Spitfire Errata #32 workaround */
2274                         /* NOTE: Always runs on spitfire, so no
2275                          *       cheetah+ page size encodings.
2276                          */
2277                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2278                                              "flush     %%g6"
2279                                              : /* No outputs */
2280                                              : "r" (0),
2281                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2282
2283                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2284                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2285                                                      "membar #Sync"
2286                                                      : /* no outputs */
2287                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2288                                 spitfire_put_dtlb_data(i, 0x0UL);
2289                         }
2290
2291                         /* Spitfire Errata #32 workaround */
2292                         /* NOTE: Always runs on spitfire, so no
2293                          *       cheetah+ page size encodings.
2294                          */
2295                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2296                                              "flush     %%g6"
2297                                              : /* No outputs */
2298                                              : "r" (0),
2299                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2300
2301                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2302                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2303                                                      "membar #Sync"
2304                                                      : /* no outputs */
2305                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2306                                 spitfire_put_itlb_data(i, 0x0UL);
2307                         }
2308                 }
2309         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2310                 cheetah_flush_dtlb_all();
2311                 cheetah_flush_itlb_all();
2312         }
2313         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2314                              : : "r" (pstate));
2315 }