]> Pileus Git - ~andy/linux/blob - arch/sparc/kernel/process_64.c
Merge tag 'for-linus-3.11-merge-window-part-1' of git://git.kernel.org/pub/scm/linux...
[~andy/linux] / arch / sparc / kernel / process_64.c
1 /*  arch/sparc64/kernel/process.c
2  *
3  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6  */
7
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 #include <asm/pcr.h>
52
53 #include "kstack.h"
54
55 /* Idle loop support on sparc64. */
56 void arch_cpu_idle(void)
57 {
58         if (tlb_type != hypervisor) {
59                 touch_nmi_watchdog();
60         } else {
61                 unsigned long pstate;
62
63                 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
64                  * the cpu sleep hypervisor call.
65                  */
66                 __asm__ __volatile__(
67                         "rdpr %%pstate, %0\n\t"
68                         "andn %0, %1, %0\n\t"
69                         "wrpr %0, %%g0, %%pstate"
70                         : "=&r" (pstate)
71                         : "i" (PSTATE_IE));
72
73                 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
74                         sun4v_cpu_yield();
75
76                 /* Re-enable interrupts. */
77                 __asm__ __volatile__(
78                         "rdpr %%pstate, %0\n\t"
79                         "or %0, %1, %0\n\t"
80                         "wrpr %0, %%g0, %%pstate"
81                         : "=&r" (pstate)
82                         : "i" (PSTATE_IE));
83         }
84         local_irq_enable();
85 }
86
87 #ifdef CONFIG_HOTPLUG_CPU
88 void arch_cpu_idle_dead()
89 {
90         sched_preempt_enable_no_resched();
91         cpu_play_dead();
92 }
93 #endif
94
95 #ifdef CONFIG_COMPAT
96 static void show_regwindow32(struct pt_regs *regs)
97 {
98         struct reg_window32 __user *rw;
99         struct reg_window32 r_w;
100         mm_segment_t old_fs;
101         
102         __asm__ __volatile__ ("flushw");
103         rw = compat_ptr((unsigned)regs->u_regs[14]);
104         old_fs = get_fs();
105         set_fs (USER_DS);
106         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
107                 set_fs (old_fs);
108                 return;
109         }
110
111         set_fs (old_fs);                        
112         printk("l0: %08x l1: %08x l2: %08x l3: %08x "
113                "l4: %08x l5: %08x l6: %08x l7: %08x\n",
114                r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
115                r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
116         printk("i0: %08x i1: %08x i2: %08x i3: %08x "
117                "i4: %08x i5: %08x i6: %08x i7: %08x\n",
118                r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
119                r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
120 }
121 #else
122 #define show_regwindow32(regs)  do { } while (0)
123 #endif
124
125 static void show_regwindow(struct pt_regs *regs)
126 {
127         struct reg_window __user *rw;
128         struct reg_window *rwk;
129         struct reg_window r_w;
130         mm_segment_t old_fs;
131
132         if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
133                 __asm__ __volatile__ ("flushw");
134                 rw = (struct reg_window __user *)
135                         (regs->u_regs[14] + STACK_BIAS);
136                 rwk = (struct reg_window *)
137                         (regs->u_regs[14] + STACK_BIAS);
138                 if (!(regs->tstate & TSTATE_PRIV)) {
139                         old_fs = get_fs();
140                         set_fs (USER_DS);
141                         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
142                                 set_fs (old_fs);
143                                 return;
144                         }
145                         rwk = &r_w;
146                         set_fs (old_fs);                        
147                 }
148         } else {
149                 show_regwindow32(regs);
150                 return;
151         }
152         printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
153                rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
154         printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
155                rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
156         printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
157                rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
158         printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
159                rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
160         if (regs->tstate & TSTATE_PRIV)
161                 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
162 }
163
164 void show_regs(struct pt_regs *regs)
165 {
166         show_regs_print_info(KERN_DEFAULT);
167
168         printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
169                regs->tpc, regs->tnpc, regs->y, print_tainted());
170         printk("TPC: <%pS>\n", (void *) regs->tpc);
171         printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
172                regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
173                regs->u_regs[3]);
174         printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
175                regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
176                regs->u_regs[7]);
177         printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
178                regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
179                regs->u_regs[11]);
180         printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
181                regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
182                regs->u_regs[15]);
183         printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
184         show_regwindow(regs);
185         show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
186 }
187
188 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
189 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
190
191 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
192                               int this_cpu)
193 {
194         struct global_reg_snapshot *rp;
195
196         flushw_all();
197
198         rp = &global_cpu_snapshot[this_cpu].reg;
199
200         rp->tstate = regs->tstate;
201         rp->tpc = regs->tpc;
202         rp->tnpc = regs->tnpc;
203         rp->o7 = regs->u_regs[UREG_I7];
204
205         if (regs->tstate & TSTATE_PRIV) {
206                 struct reg_window *rw;
207
208                 rw = (struct reg_window *)
209                         (regs->u_regs[UREG_FP] + STACK_BIAS);
210                 if (kstack_valid(tp, (unsigned long) rw)) {
211                         rp->i7 = rw->ins[7];
212                         rw = (struct reg_window *)
213                                 (rw->ins[6] + STACK_BIAS);
214                         if (kstack_valid(tp, (unsigned long) rw))
215                                 rp->rpc = rw->ins[7];
216                 }
217         } else {
218                 rp->i7 = 0;
219                 rp->rpc = 0;
220         }
221         rp->thread = tp;
222 }
223
224 /* In order to avoid hangs we do not try to synchronize with the
225  * global register dump client cpus.  The last store they make is to
226  * the thread pointer, so do a short poll waiting for that to become
227  * non-NULL.
228  */
229 static void __global_reg_poll(struct global_reg_snapshot *gp)
230 {
231         int limit = 0;
232
233         while (!gp->thread && ++limit < 100) {
234                 barrier();
235                 udelay(1);
236         }
237 }
238
239 void arch_trigger_all_cpu_backtrace(void)
240 {
241         struct thread_info *tp = current_thread_info();
242         struct pt_regs *regs = get_irq_regs();
243         unsigned long flags;
244         int this_cpu, cpu;
245
246         if (!regs)
247                 regs = tp->kregs;
248
249         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
250
251         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
252
253         this_cpu = raw_smp_processor_id();
254
255         __global_reg_self(tp, regs, this_cpu);
256
257         smp_fetch_global_regs();
258
259         for_each_online_cpu(cpu) {
260                 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
261
262                 __global_reg_poll(gp);
263
264                 tp = gp->thread;
265                 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
266                        (cpu == this_cpu ? '*' : ' '), cpu,
267                        gp->tstate, gp->tpc, gp->tnpc,
268                        ((tp && tp->task) ? tp->task->comm : "NULL"),
269                        ((tp && tp->task) ? tp->task->pid : -1));
270
271                 if (gp->tstate & TSTATE_PRIV) {
272                         printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
273                                (void *) gp->tpc,
274                                (void *) gp->o7,
275                                (void *) gp->i7,
276                                (void *) gp->rpc);
277                 } else {
278                         printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
279                                gp->tpc, gp->o7, gp->i7, gp->rpc);
280                 }
281         }
282
283         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
284
285         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
286 }
287
288 #ifdef CONFIG_MAGIC_SYSRQ
289
290 static void sysrq_handle_globreg(int key)
291 {
292         arch_trigger_all_cpu_backtrace();
293 }
294
295 static struct sysrq_key_op sparc_globalreg_op = {
296         .handler        = sysrq_handle_globreg,
297         .help_msg       = "global-regs(y)",
298         .action_msg     = "Show Global CPU Regs",
299 };
300
301 static void __global_pmu_self(int this_cpu)
302 {
303         struct global_pmu_snapshot *pp;
304         int i, num;
305
306         pp = &global_cpu_snapshot[this_cpu].pmu;
307
308         num = 1;
309         if (tlb_type == hypervisor &&
310             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
311                 num = 4;
312
313         for (i = 0; i < num; i++) {
314                 pp->pcr[i] = pcr_ops->read_pcr(i);
315                 pp->pic[i] = pcr_ops->read_pic(i);
316         }
317 }
318
319 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
320 {
321         int limit = 0;
322
323         while (!pp->pcr[0] && ++limit < 100) {
324                 barrier();
325                 udelay(1);
326         }
327 }
328
329 static void pmu_snapshot_all_cpus(void)
330 {
331         unsigned long flags;
332         int this_cpu, cpu;
333
334         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
335
336         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
337
338         this_cpu = raw_smp_processor_id();
339
340         __global_pmu_self(this_cpu);
341
342         smp_fetch_global_pmu();
343
344         for_each_online_cpu(cpu) {
345                 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
346
347                 __global_pmu_poll(pp);
348
349                 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
350                        (cpu == this_cpu ? '*' : ' '), cpu,
351                        pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
352                        pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
353         }
354
355         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
356
357         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
358 }
359
360 static void sysrq_handle_globpmu(int key)
361 {
362         pmu_snapshot_all_cpus();
363 }
364
365 static struct sysrq_key_op sparc_globalpmu_op = {
366         .handler        = sysrq_handle_globpmu,
367         .help_msg       = "global-pmu(x)",
368         .action_msg     = "Show Global PMU Regs",
369 };
370
371 static int __init sparc_sysrq_init(void)
372 {
373         int ret = register_sysrq_key('y', &sparc_globalreg_op);
374
375         if (!ret)
376                 ret = register_sysrq_key('x', &sparc_globalpmu_op);
377         return ret;
378 }
379
380 core_initcall(sparc_sysrq_init);
381
382 #endif
383
384 unsigned long thread_saved_pc(struct task_struct *tsk)
385 {
386         struct thread_info *ti = task_thread_info(tsk);
387         unsigned long ret = 0xdeadbeefUL;
388         
389         if (ti && ti->ksp) {
390                 unsigned long *sp;
391                 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
392                 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
393                     sp[14]) {
394                         unsigned long *fp;
395                         fp = (unsigned long *)(sp[14] + STACK_BIAS);
396                         if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
397                                 ret = fp[15];
398                 }
399         }
400         return ret;
401 }
402
403 /* Free current thread data structures etc.. */
404 void exit_thread(void)
405 {
406         struct thread_info *t = current_thread_info();
407
408         if (t->utraps) {
409                 if (t->utraps[0] < 2)
410                         kfree (t->utraps);
411                 else
412                         t->utraps[0]--;
413         }
414 }
415
416 void flush_thread(void)
417 {
418         struct thread_info *t = current_thread_info();
419         struct mm_struct *mm;
420
421         mm = t->task->mm;
422         if (mm)
423                 tsb_context_switch(mm);
424
425         set_thread_wsaved(0);
426
427         /* Clear FPU register state. */
428         t->fpsaved[0] = 0;
429 }
430
431 /* It's a bit more tricky when 64-bit tasks are involved... */
432 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
433 {
434         bool stack_64bit = test_thread_64bit_stack(psp);
435         unsigned long fp, distance, rval;
436
437         if (stack_64bit) {
438                 csp += STACK_BIAS;
439                 psp += STACK_BIAS;
440                 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
441                 fp += STACK_BIAS;
442                 if (test_thread_flag(TIF_32BIT))
443                         fp &= 0xffffffff;
444         } else
445                 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
446
447         /* Now align the stack as this is mandatory in the Sparc ABI
448          * due to how register windows work.  This hides the
449          * restriction from thread libraries etc.
450          */
451         csp &= ~15UL;
452
453         distance = fp - psp;
454         rval = (csp - distance);
455         if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
456                 rval = 0;
457         else if (!stack_64bit) {
458                 if (put_user(((u32)csp),
459                              &(((struct reg_window32 __user *)rval)->ins[6])))
460                         rval = 0;
461         } else {
462                 if (put_user(((u64)csp - STACK_BIAS),
463                              &(((struct reg_window __user *)rval)->ins[6])))
464                         rval = 0;
465                 else
466                         rval = rval - STACK_BIAS;
467         }
468
469         return rval;
470 }
471
472 /* Standard stuff. */
473 static inline void shift_window_buffer(int first_win, int last_win,
474                                        struct thread_info *t)
475 {
476         int i;
477
478         for (i = first_win; i < last_win; i++) {
479                 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
480                 memcpy(&t->reg_window[i], &t->reg_window[i+1],
481                        sizeof(struct reg_window));
482         }
483 }
484
485 void synchronize_user_stack(void)
486 {
487         struct thread_info *t = current_thread_info();
488         unsigned long window;
489
490         flush_user_windows();
491         if ((window = get_thread_wsaved()) != 0) {
492                 window -= 1;
493                 do {
494                         struct reg_window *rwin = &t->reg_window[window];
495                         int winsize = sizeof(struct reg_window);
496                         unsigned long sp;
497
498                         sp = t->rwbuf_stkptrs[window];
499
500                         if (test_thread_64bit_stack(sp))
501                                 sp += STACK_BIAS;
502                         else
503                                 winsize = sizeof(struct reg_window32);
504
505                         if (!copy_to_user((char __user *)sp, rwin, winsize)) {
506                                 shift_window_buffer(window, get_thread_wsaved() - 1, t);
507                                 set_thread_wsaved(get_thread_wsaved() - 1);
508                         }
509                 } while (window--);
510         }
511 }
512
513 static void stack_unaligned(unsigned long sp)
514 {
515         siginfo_t info;
516
517         info.si_signo = SIGBUS;
518         info.si_errno = 0;
519         info.si_code = BUS_ADRALN;
520         info.si_addr = (void __user *) sp;
521         info.si_trapno = 0;
522         force_sig_info(SIGBUS, &info, current);
523 }
524
525 void fault_in_user_windows(void)
526 {
527         struct thread_info *t = current_thread_info();
528         unsigned long window;
529
530         flush_user_windows();
531         window = get_thread_wsaved();
532
533         if (likely(window != 0)) {
534                 window -= 1;
535                 do {
536                         struct reg_window *rwin = &t->reg_window[window];
537                         int winsize = sizeof(struct reg_window);
538                         unsigned long sp;
539
540                         sp = t->rwbuf_stkptrs[window];
541
542                         if (test_thread_64bit_stack(sp))
543                                 sp += STACK_BIAS;
544                         else
545                                 winsize = sizeof(struct reg_window32);
546
547                         if (unlikely(sp & 0x7UL))
548                                 stack_unaligned(sp);
549
550                         if (unlikely(copy_to_user((char __user *)sp,
551                                                   rwin, winsize)))
552                                 goto barf;
553                 } while (window--);
554         }
555         set_thread_wsaved(0);
556         return;
557
558 barf:
559         set_thread_wsaved(window + 1);
560         do_exit(SIGILL);
561 }
562
563 asmlinkage long sparc_do_fork(unsigned long clone_flags,
564                               unsigned long stack_start,
565                               struct pt_regs *regs,
566                               unsigned long stack_size)
567 {
568         int __user *parent_tid_ptr, *child_tid_ptr;
569         unsigned long orig_i1 = regs->u_regs[UREG_I1];
570         long ret;
571
572 #ifdef CONFIG_COMPAT
573         if (test_thread_flag(TIF_32BIT)) {
574                 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
575                 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
576         } else
577 #endif
578         {
579                 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
580                 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
581         }
582
583         ret = do_fork(clone_flags, stack_start, stack_size,
584                       parent_tid_ptr, child_tid_ptr);
585
586         /* If we get an error and potentially restart the system
587          * call, we're screwed because copy_thread() clobbered
588          * the parent's %o1.  So detect that case and restore it
589          * here.
590          */
591         if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
592                 regs->u_regs[UREG_I1] = orig_i1;
593
594         return ret;
595 }
596
597 /* Copy a Sparc thread.  The fork() return value conventions
598  * under SunOS are nothing short of bletcherous:
599  * Parent -->  %o0 == childs  pid, %o1 == 0
600  * Child  -->  %o0 == parents pid, %o1 == 1
601  */
602 int copy_thread(unsigned long clone_flags, unsigned long sp,
603                 unsigned long arg, struct task_struct *p)
604 {
605         struct thread_info *t = task_thread_info(p);
606         struct pt_regs *regs = current_pt_regs();
607         struct sparc_stackf *parent_sf;
608         unsigned long child_stack_sz;
609         char *child_trap_frame;
610
611         /* Calculate offset to stack_frame & pt_regs */
612         child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
613         child_trap_frame = (task_stack_page(p) +
614                             (THREAD_SIZE - child_stack_sz));
615
616         t->new_child = 1;
617         t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
618         t->kregs = (struct pt_regs *) (child_trap_frame +
619                                        sizeof(struct sparc_stackf));
620         t->fpsaved[0] = 0;
621
622         if (unlikely(p->flags & PF_KTHREAD)) {
623                 memset(child_trap_frame, 0, child_stack_sz);
624                 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
625                         (current_pt_regs()->tstate + 1) & TSTATE_CWP;
626                 t->current_ds = ASI_P;
627                 t->kregs->u_regs[UREG_G1] = sp; /* function */
628                 t->kregs->u_regs[UREG_G2] = arg;
629                 return 0;
630         }
631
632         parent_sf = ((struct sparc_stackf *) regs) - 1;
633         memcpy(child_trap_frame, parent_sf, child_stack_sz);
634         if (t->flags & _TIF_32BIT) {
635                 sp &= 0x00000000ffffffffUL;
636                 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
637         }
638         t->kregs->u_regs[UREG_FP] = sp;
639         __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
640                 (regs->tstate + 1) & TSTATE_CWP;
641         t->current_ds = ASI_AIUS;
642         if (sp != regs->u_regs[UREG_FP]) {
643                 unsigned long csp;
644
645                 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
646                 if (!csp)
647                         return -EFAULT;
648                 t->kregs->u_regs[UREG_FP] = csp;
649         }
650         if (t->utraps)
651                 t->utraps[0]++;
652
653         /* Set the return value for the child. */
654         t->kregs->u_regs[UREG_I0] = current->pid;
655         t->kregs->u_regs[UREG_I1] = 1;
656
657         /* Set the second return value for the parent. */
658         regs->u_regs[UREG_I1] = 0;
659
660         if (clone_flags & CLONE_SETTLS)
661                 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
662
663         return 0;
664 }
665
666 typedef struct {
667         union {
668                 unsigned int    pr_regs[32];
669                 unsigned long   pr_dregs[16];
670         } pr_fr;
671         unsigned int __unused;
672         unsigned int    pr_fsr;
673         unsigned char   pr_qcnt;
674         unsigned char   pr_q_entrysize;
675         unsigned char   pr_en;
676         unsigned int    pr_q[64];
677 } elf_fpregset_t32;
678
679 /*
680  * fill in the fpu structure for a core dump.
681  */
682 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
683 {
684         unsigned long *kfpregs = current_thread_info()->fpregs;
685         unsigned long fprs = current_thread_info()->fpsaved[0];
686
687         if (test_thread_flag(TIF_32BIT)) {
688                 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
689
690                 if (fprs & FPRS_DL)
691                         memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
692                                sizeof(unsigned int) * 32);
693                 else
694                         memset(&fpregs32->pr_fr.pr_regs[0], 0,
695                                sizeof(unsigned int) * 32);
696                 fpregs32->pr_qcnt = 0;
697                 fpregs32->pr_q_entrysize = 8;
698                 memset(&fpregs32->pr_q[0], 0,
699                        (sizeof(unsigned int) * 64));
700                 if (fprs & FPRS_FEF) {
701                         fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
702                         fpregs32->pr_en = 1;
703                 } else {
704                         fpregs32->pr_fsr = 0;
705                         fpregs32->pr_en = 0;
706                 }
707         } else {
708                 if(fprs & FPRS_DL)
709                         memcpy(&fpregs->pr_regs[0], kfpregs,
710                                sizeof(unsigned int) * 32);
711                 else
712                         memset(&fpregs->pr_regs[0], 0,
713                                sizeof(unsigned int) * 32);
714                 if(fprs & FPRS_DU)
715                         memcpy(&fpregs->pr_regs[16], kfpregs+16,
716                                sizeof(unsigned int) * 32);
717                 else
718                         memset(&fpregs->pr_regs[16], 0,
719                                sizeof(unsigned int) * 32);
720                 if(fprs & FPRS_FEF) {
721                         fpregs->pr_fsr = current_thread_info()->xfsr[0];
722                         fpregs->pr_gsr = current_thread_info()->gsr[0];
723                 } else {
724                         fpregs->pr_fsr = fpregs->pr_gsr = 0;
725                 }
726                 fpregs->pr_fprs = fprs;
727         }
728         return 1;
729 }
730 EXPORT_SYMBOL(dump_fpu);
731
732 unsigned long get_wchan(struct task_struct *task)
733 {
734         unsigned long pc, fp, bias = 0;
735         struct thread_info *tp;
736         struct reg_window *rw;
737         unsigned long ret = 0;
738         int count = 0; 
739
740         if (!task || task == current ||
741             task->state == TASK_RUNNING)
742                 goto out;
743
744         tp = task_thread_info(task);
745         bias = STACK_BIAS;
746         fp = task_thread_info(task)->ksp + bias;
747
748         do {
749                 if (!kstack_valid(tp, fp))
750                         break;
751                 rw = (struct reg_window *) fp;
752                 pc = rw->ins[7];
753                 if (!in_sched_functions(pc)) {
754                         ret = pc;
755                         goto out;
756                 }
757                 fp = rw->ins[6] + bias;
758         } while (++count < 16);
759
760 out:
761         return ret;
762 }