]> Pileus Git - ~andy/linux/blob - arch/s390/kernel/smp.c
x86-64, reboot: Be more paranoid in 64-bit reboot=bios
[~andy/linux] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999,2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/timer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include "entry.h"
48
49 enum {
50         sigp_sense = 1,
51         sigp_external_call = 2,
52         sigp_emergency_signal = 3,
53         sigp_start = 4,
54         sigp_stop = 5,
55         sigp_restart = 6,
56         sigp_stop_and_store_status = 9,
57         sigp_initial_cpu_reset = 11,
58         sigp_cpu_reset = 12,
59         sigp_set_prefix = 13,
60         sigp_store_status_at_address = 14,
61         sigp_store_extended_status_at_address = 15,
62         sigp_set_architecture = 18,
63         sigp_conditional_emergency_signal = 19,
64         sigp_sense_running = 21,
65 };
66
67 enum {
68         sigp_order_code_accepted = 0,
69         sigp_status_stored = 1,
70         sigp_busy = 2,
71         sigp_not_operational = 3,
72 };
73
74 enum {
75         ec_schedule = 0,
76         ec_call_function,
77         ec_call_function_single,
78         ec_stop_cpu,
79 };
80
81 enum {
82         CPU_STATE_STANDBY,
83         CPU_STATE_CONFIGURED,
84 };
85
86 struct pcpu {
87         struct cpu cpu;
88         struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
89         unsigned long async_stack;      /* async stack for the cpu */
90         unsigned long panic_stack;      /* panic stack for the cpu */
91         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
92         int state;                      /* physical cpu state */
93         u32 status;                     /* last status received via sigp */
94         u16 address;                    /* physical cpu address */
95 };
96
97 static u8 boot_cpu_type;
98 static u16 boot_cpu_address;
99 static struct pcpu pcpu_devices[NR_CPUS];
100
101 DEFINE_MUTEX(smp_cpu_state_mutex);
102
103 /*
104  * Signal processor helper functions.
105  */
106 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
107 {
108         register unsigned int reg1 asm ("1") = parm;
109         int cc;
110
111         asm volatile(
112                 "       sigp    %1,%2,0(%3)\n"
113                 "       ipm     %0\n"
114                 "       srl     %0,28\n"
115                 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
116         if (status && cc == 1)
117                 *status = reg1;
118         return cc;
119 }
120
121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
122 {
123         int cc;
124
125         while (1) {
126                 cc = __pcpu_sigp(addr, order, parm, status);
127                 if (cc != sigp_busy)
128                         return cc;
129                 cpu_relax();
130         }
131 }
132
133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134 {
135         int cc, retry;
136
137         for (retry = 0; ; retry++) {
138                 cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
139                 if (cc != sigp_busy)
140                         break;
141                 if (retry >= 3)
142                         udelay(10);
143         }
144         return cc;
145 }
146
147 static inline int pcpu_stopped(struct pcpu *pcpu)
148 {
149         if (__pcpu_sigp(pcpu->address, sigp_sense,
150                         0, &pcpu->status) != sigp_status_stored)
151                 return 0;
152         /* Check for stopped and check stop state */
153         return !!(pcpu->status & 0x50);
154 }
155
156 static inline int pcpu_running(struct pcpu *pcpu)
157 {
158         if (__pcpu_sigp(pcpu->address, sigp_sense_running,
159                         0, &pcpu->status) != sigp_status_stored)
160                 return 1;
161         /* Check for running status */
162         return !(pcpu->status & 0x400);
163 }
164
165 /*
166  * Find struct pcpu by cpu address.
167  */
168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
169 {
170         int cpu;
171
172         for_each_cpu(cpu, mask)
173                 if (pcpu_devices[cpu].address == address)
174                         return pcpu_devices + cpu;
175         return NULL;
176 }
177
178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179 {
180         int order;
181
182         set_bit(ec_bit, &pcpu->ec_mask);
183         order = pcpu_running(pcpu) ?
184                 sigp_external_call : sigp_emergency_signal;
185         pcpu_sigp_retry(pcpu, order, 0);
186 }
187
188 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189 {
190         struct _lowcore *lc;
191
192         if (pcpu != &pcpu_devices[0]) {
193                 pcpu->lowcore = (struct _lowcore *)
194                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
195                 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
196                 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
197                 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
198                         goto out;
199         }
200         lc = pcpu->lowcore;
201         memcpy(lc, &S390_lowcore, 512);
202         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
203         lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
204         lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
205         lc->cpu_nr = cpu;
206 #ifndef CONFIG_64BIT
207         if (MACHINE_HAS_IEEE) {
208                 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
209                 if (!lc->extended_save_area_addr)
210                         goto out;
211         }
212 #else
213         if (vdso_alloc_per_cpu(lc))
214                 goto out;
215 #endif
216         lowcore_ptr[cpu] = lc;
217         pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc);
218         return 0;
219 out:
220         if (pcpu != &pcpu_devices[0]) {
221                 free_page(pcpu->panic_stack);
222                 free_pages(pcpu->async_stack, ASYNC_ORDER);
223                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
224         }
225         return -ENOMEM;
226 }
227
228 #ifdef CONFIG_HOTPLUG_CPU
229
230 static void pcpu_free_lowcore(struct pcpu *pcpu)
231 {
232         pcpu_sigp_retry(pcpu, sigp_set_prefix, 0);
233         lowcore_ptr[pcpu - pcpu_devices] = NULL;
234 #ifndef CONFIG_64BIT
235         if (MACHINE_HAS_IEEE) {
236                 struct _lowcore *lc = pcpu->lowcore;
237
238                 free_page((unsigned long) lc->extended_save_area_addr);
239                 lc->extended_save_area_addr = 0;
240         }
241 #else
242         vdso_free_per_cpu(pcpu->lowcore);
243 #endif
244         if (pcpu != &pcpu_devices[0]) {
245                 free_page(pcpu->panic_stack);
246                 free_pages(pcpu->async_stack, ASYNC_ORDER);
247                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
248         }
249 }
250
251 #endif /* CONFIG_HOTPLUG_CPU */
252
253 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
254 {
255         struct _lowcore *lc = pcpu->lowcore;
256
257         atomic_inc(&init_mm.context.attach_count);
258         lc->cpu_nr = cpu;
259         lc->percpu_offset = __per_cpu_offset[cpu];
260         lc->kernel_asce = S390_lowcore.kernel_asce;
261         lc->machine_flags = S390_lowcore.machine_flags;
262         lc->ftrace_func = S390_lowcore.ftrace_func;
263         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
264         __ctl_store(lc->cregs_save_area, 0, 15);
265         save_access_regs((unsigned int *) lc->access_regs_save_area);
266         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
267                MAX_FACILITY_BIT/8);
268 }
269
270 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
271 {
272         struct _lowcore *lc = pcpu->lowcore;
273         struct thread_info *ti = task_thread_info(tsk);
274
275         lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
276         lc->thread_info = (unsigned long) task_thread_info(tsk);
277         lc->current_task = (unsigned long) tsk;
278         lc->user_timer = ti->user_timer;
279         lc->system_timer = ti->system_timer;
280         lc->steal_timer = 0;
281 }
282
283 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
284 {
285         struct _lowcore *lc = pcpu->lowcore;
286
287         lc->restart_stack = lc->kernel_stack;
288         lc->restart_fn = (unsigned long) func;
289         lc->restart_data = (unsigned long) data;
290         lc->restart_source = -1UL;
291         pcpu_sigp_retry(pcpu, sigp_restart, 0);
292 }
293
294 /*
295  * Call function via PSW restart on pcpu and stop the current cpu.
296  */
297 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
298                           void *data, unsigned long stack)
299 {
300         struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
301         struct {
302                 unsigned long   stack;
303                 void            *func;
304                 void            *data;
305                 unsigned long   source;
306         } restart = { stack, func, data, stap() };
307
308         __load_psw_mask(psw_kernel_bits);
309         if (pcpu->address == restart.source)
310                 func(data);     /* should not return */
311         /* Stop target cpu (if func returns this stops the current cpu). */
312         pcpu_sigp_retry(pcpu, sigp_stop, 0);
313         /* Restart func on the target cpu and stop the current cpu. */
314         memcpy_absolute(&lc->restart_stack, &restart, sizeof(restart));
315         asm volatile(
316                 "0:     sigp    0,%0,6  # sigp restart to target cpu\n"
317                 "       brc     2,0b    # busy, try again\n"
318                 "1:     sigp    0,%1,5  # sigp stop to current cpu\n"
319                 "       brc     2,1b    # busy, try again\n"
320                 : : "d" (pcpu->address), "d" (restart.source) : "0", "1", "cc");
321         for (;;) ;
322 }
323
324 /*
325  * Call function on an online CPU.
326  */
327 void smp_call_online_cpu(void (*func)(void *), void *data)
328 {
329         struct pcpu *pcpu;
330
331         /* Use the current cpu if it is online. */
332         pcpu = pcpu_find_address(cpu_online_mask, stap());
333         if (!pcpu)
334                 /* Use the first online cpu. */
335                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
336         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
337 }
338
339 /*
340  * Call function on the ipl CPU.
341  */
342 void smp_call_ipl_cpu(void (*func)(void *), void *data)
343 {
344         pcpu_delegate(&pcpu_devices[0], func, data,
345                       pcpu_devices->panic_stack + PAGE_SIZE);
346 }
347
348 int smp_find_processor_id(u16 address)
349 {
350         int cpu;
351
352         for_each_present_cpu(cpu)
353                 if (pcpu_devices[cpu].address == address)
354                         return cpu;
355         return -1;
356 }
357
358 int smp_vcpu_scheduled(int cpu)
359 {
360         return pcpu_running(pcpu_devices + cpu);
361 }
362
363 void smp_yield(void)
364 {
365         if (MACHINE_HAS_DIAG44)
366                 asm volatile("diag 0,0,0x44");
367 }
368
369 void smp_yield_cpu(int cpu)
370 {
371         if (MACHINE_HAS_DIAG9C)
372                 asm volatile("diag %0,0,0x9c"
373                              : : "d" (pcpu_devices[cpu].address));
374         else if (MACHINE_HAS_DIAG44)
375                 asm volatile("diag 0,0,0x44");
376 }
377
378 /*
379  * Send cpus emergency shutdown signal. This gives the cpus the
380  * opportunity to complete outstanding interrupts.
381  */
382 void smp_emergency_stop(cpumask_t *cpumask)
383 {
384         u64 end;
385         int cpu;
386
387         end = get_clock() + (1000000UL << 12);
388         for_each_cpu(cpu, cpumask) {
389                 struct pcpu *pcpu = pcpu_devices + cpu;
390                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
391                 while (__pcpu_sigp(pcpu->address, sigp_emergency_signal,
392                                    0, NULL) == sigp_busy &&
393                        get_clock() < end)
394                         cpu_relax();
395         }
396         while (get_clock() < end) {
397                 for_each_cpu(cpu, cpumask)
398                         if (pcpu_stopped(pcpu_devices + cpu))
399                                 cpumask_clear_cpu(cpu, cpumask);
400                 if (cpumask_empty(cpumask))
401                         break;
402                 cpu_relax();
403         }
404 }
405
406 /*
407  * Stop all cpus but the current one.
408  */
409 void smp_send_stop(void)
410 {
411         cpumask_t cpumask;
412         int cpu;
413
414         /* Disable all interrupts/machine checks */
415         __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
416         trace_hardirqs_off();
417
418         debug_set_critical();
419         cpumask_copy(&cpumask, cpu_online_mask);
420         cpumask_clear_cpu(smp_processor_id(), &cpumask);
421
422         if (oops_in_progress)
423                 smp_emergency_stop(&cpumask);
424
425         /* stop all processors */
426         for_each_cpu(cpu, &cpumask) {
427                 struct pcpu *pcpu = pcpu_devices + cpu;
428                 pcpu_sigp_retry(pcpu, sigp_stop, 0);
429                 while (!pcpu_stopped(pcpu))
430                         cpu_relax();
431         }
432 }
433
434 /*
435  * Stop the current cpu.
436  */
437 void smp_stop_cpu(void)
438 {
439         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
440         for (;;) ;
441 }
442
443 /*
444  * This is the main routine where commands issued by other
445  * cpus are handled.
446  */
447 static void do_ext_call_interrupt(struct ext_code ext_code,
448                                   unsigned int param32, unsigned long param64)
449 {
450         unsigned long bits;
451         int cpu;
452
453         cpu = smp_processor_id();
454         if (ext_code.code == 0x1202)
455                 kstat_cpu(cpu).irqs[EXTINT_EXC]++;
456         else
457                 kstat_cpu(cpu).irqs[EXTINT_EMS]++;
458         /*
459          * handle bit signal external calls
460          */
461         bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
462
463         if (test_bit(ec_stop_cpu, &bits))
464                 smp_stop_cpu();
465
466         if (test_bit(ec_schedule, &bits))
467                 scheduler_ipi();
468
469         if (test_bit(ec_call_function, &bits))
470                 generic_smp_call_function_interrupt();
471
472         if (test_bit(ec_call_function_single, &bits))
473                 generic_smp_call_function_single_interrupt();
474
475 }
476
477 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
478 {
479         int cpu;
480
481         for_each_cpu(cpu, mask)
482                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
483 }
484
485 void arch_send_call_function_single_ipi(int cpu)
486 {
487         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
488 }
489
490 #ifndef CONFIG_64BIT
491 /*
492  * this function sends a 'purge tlb' signal to another CPU.
493  */
494 static void smp_ptlb_callback(void *info)
495 {
496         __tlb_flush_local();
497 }
498
499 void smp_ptlb_all(void)
500 {
501         on_each_cpu(smp_ptlb_callback, NULL, 1);
502 }
503 EXPORT_SYMBOL(smp_ptlb_all);
504 #endif /* ! CONFIG_64BIT */
505
506 /*
507  * this function sends a 'reschedule' IPI to another CPU.
508  * it goes straight through and wastes no time serializing
509  * anything. Worst case is that we lose a reschedule ...
510  */
511 void smp_send_reschedule(int cpu)
512 {
513         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
514 }
515
516 /*
517  * parameter area for the set/clear control bit callbacks
518  */
519 struct ec_creg_mask_parms {
520         unsigned long orval;
521         unsigned long andval;
522         int cr;
523 };
524
525 /*
526  * callback for setting/clearing control bits
527  */
528 static void smp_ctl_bit_callback(void *info)
529 {
530         struct ec_creg_mask_parms *pp = info;
531         unsigned long cregs[16];
532
533         __ctl_store(cregs, 0, 15);
534         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
535         __ctl_load(cregs, 0, 15);
536 }
537
538 /*
539  * Set a bit in a control register of all cpus
540  */
541 void smp_ctl_set_bit(int cr, int bit)
542 {
543         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
544
545         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
546 }
547 EXPORT_SYMBOL(smp_ctl_set_bit);
548
549 /*
550  * Clear a bit in a control register of all cpus
551  */
552 void smp_ctl_clear_bit(int cr, int bit)
553 {
554         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
555
556         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
557 }
558 EXPORT_SYMBOL(smp_ctl_clear_bit);
559
560 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
561
562 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
563 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
564
565 static void __init smp_get_save_area(int cpu, u16 address)
566 {
567         void *lc = pcpu_devices[0].lowcore;
568         struct save_area *save_area;
569
570         if (is_kdump_kernel())
571                 return;
572         if (!OLDMEM_BASE && (address == boot_cpu_address ||
573                              ipl_info.type != IPL_TYPE_FCP_DUMP))
574                 return;
575         if (cpu >= NR_CPUS) {
576                 pr_warning("CPU %i exceeds the maximum %i and is excluded "
577                            "from the dump\n", cpu, NR_CPUS - 1);
578                 return;
579         }
580         save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
581         if (!save_area)
582                 panic("could not allocate memory for save area\n");
583         zfcpdump_save_areas[cpu] = save_area;
584 #ifdef CONFIG_CRASH_DUMP
585         if (address == boot_cpu_address) {
586                 /* Copy the registers of the boot cpu. */
587                 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
588                                  SAVE_AREA_BASE - PAGE_SIZE, 0);
589                 return;
590         }
591 #endif
592         /* Get the registers of a non-boot cpu. */
593         __pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL);
594         memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
595 }
596
597 int smp_store_status(int cpu)
598 {
599         struct pcpu *pcpu;
600
601         pcpu = pcpu_devices + cpu;
602         if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status,
603                               0, NULL) != sigp_order_code_accepted)
604                 return -EIO;
605         return 0;
606 }
607
608 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
609
610 static inline void smp_get_save_area(int cpu, u16 address) { }
611
612 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
613
614 static struct sclp_cpu_info *smp_get_cpu_info(void)
615 {
616         static int use_sigp_detection;
617         struct sclp_cpu_info *info;
618         int address;
619
620         info = kzalloc(sizeof(*info), GFP_KERNEL);
621         if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
622                 use_sigp_detection = 1;
623                 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
624                         if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) ==
625                             sigp_not_operational)
626                                 continue;
627                         info->cpu[info->configured].address = address;
628                         info->configured++;
629                 }
630                 info->combined = info->configured;
631         }
632         return info;
633 }
634
635 static int __devinit smp_add_present_cpu(int cpu);
636
637 static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
638                                        int sysfs_add)
639 {
640         struct pcpu *pcpu;
641         cpumask_t avail;
642         int cpu, nr, i;
643
644         nr = 0;
645         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
646         cpu = cpumask_first(&avail);
647         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
648                 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
649                         continue;
650                 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
651                         continue;
652                 pcpu = pcpu_devices + cpu;
653                 pcpu->address = info->cpu[i].address;
654                 pcpu->state = (cpu >= info->configured) ?
655                         CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
656                 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
657                 set_cpu_present(cpu, true);
658                 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
659                         set_cpu_present(cpu, false);
660                 else
661                         nr++;
662                 cpu = cpumask_next(cpu, &avail);
663         }
664         return nr;
665 }
666
667 static void __init smp_detect_cpus(void)
668 {
669         unsigned int cpu, c_cpus, s_cpus;
670         struct sclp_cpu_info *info;
671
672         info = smp_get_cpu_info();
673         if (!info)
674                 panic("smp_detect_cpus failed to allocate memory\n");
675         if (info->has_cpu_type) {
676                 for (cpu = 0; cpu < info->combined; cpu++) {
677                         if (info->cpu[cpu].address != boot_cpu_address)
678                                 continue;
679                         /* The boot cpu dictates the cpu type. */
680                         boot_cpu_type = info->cpu[cpu].type;
681                         break;
682                 }
683         }
684         c_cpus = s_cpus = 0;
685         for (cpu = 0; cpu < info->combined; cpu++) {
686                 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
687                         continue;
688                 if (cpu < info->configured) {
689                         smp_get_save_area(c_cpus, info->cpu[cpu].address);
690                         c_cpus++;
691                 } else
692                         s_cpus++;
693         }
694         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
695         get_online_cpus();
696         __smp_rescan_cpus(info, 0);
697         put_online_cpus();
698         kfree(info);
699 }
700
701 /*
702  *      Activate a secondary processor.
703  */
704 static void __cpuinit smp_start_secondary(void *cpuvoid)
705 {
706         S390_lowcore.last_update_clock = get_clock();
707         S390_lowcore.restart_stack = (unsigned long) restart_stack;
708         S390_lowcore.restart_fn = (unsigned long) do_restart;
709         S390_lowcore.restart_data = 0;
710         S390_lowcore.restart_source = -1UL;
711         restore_access_regs(S390_lowcore.access_regs_save_area);
712         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
713         __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
714         cpu_init();
715         preempt_disable();
716         init_cpu_timer();
717         init_cpu_vtimer();
718         pfault_init();
719         notify_cpu_starting(smp_processor_id());
720         ipi_call_lock();
721         set_cpu_online(smp_processor_id(), true);
722         ipi_call_unlock();
723         local_irq_enable();
724         /* cpu_idle will call schedule for us */
725         cpu_idle();
726 }
727
728 /* Upping and downing of CPUs */
729 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
730 {
731         struct pcpu *pcpu;
732         int rc;
733
734         pcpu = pcpu_devices + cpu;
735         if (pcpu->state != CPU_STATE_CONFIGURED)
736                 return -EIO;
737         if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) !=
738             sigp_order_code_accepted)
739                 return -EIO;
740
741         rc = pcpu_alloc_lowcore(pcpu, cpu);
742         if (rc)
743                 return rc;
744         pcpu_prepare_secondary(pcpu, cpu);
745         pcpu_attach_task(pcpu, tidle);
746         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
747         while (!cpu_online(cpu))
748                 cpu_relax();
749         return 0;
750 }
751
752 static int __init setup_possible_cpus(char *s)
753 {
754         int max, cpu;
755
756         if (kstrtoint(s, 0, &max) < 0)
757                 return 0;
758         init_cpu_possible(cpumask_of(0));
759         for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
760                 set_cpu_possible(cpu, true);
761         return 0;
762 }
763 early_param("possible_cpus", setup_possible_cpus);
764
765 #ifdef CONFIG_HOTPLUG_CPU
766
767 int __cpu_disable(void)
768 {
769         unsigned long cregs[16];
770
771         set_cpu_online(smp_processor_id(), false);
772         /* Disable pseudo page faults on this cpu. */
773         pfault_fini();
774         /* Disable interrupt sources via control register. */
775         __ctl_store(cregs, 0, 15);
776         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
777         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
778         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
779         __ctl_load(cregs, 0, 15);
780         return 0;
781 }
782
783 void __cpu_die(unsigned int cpu)
784 {
785         struct pcpu *pcpu;
786
787         /* Wait until target cpu is down */
788         pcpu = pcpu_devices + cpu;
789         while (!pcpu_stopped(pcpu))
790                 cpu_relax();
791         pcpu_free_lowcore(pcpu);
792         atomic_dec(&init_mm.context.attach_count);
793 }
794
795 void __noreturn cpu_die(void)
796 {
797         idle_task_exit();
798         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
799         for (;;) ;
800 }
801
802 #endif /* CONFIG_HOTPLUG_CPU */
803
804 void __init smp_prepare_cpus(unsigned int max_cpus)
805 {
806         /* request the 0x1201 emergency signal external interrupt */
807         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
808                 panic("Couldn't request external interrupt 0x1201");
809         /* request the 0x1202 external call external interrupt */
810         if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
811                 panic("Couldn't request external interrupt 0x1202");
812         smp_detect_cpus();
813 }
814
815 void __init smp_prepare_boot_cpu(void)
816 {
817         struct pcpu *pcpu = pcpu_devices;
818
819         boot_cpu_address = stap();
820         pcpu->state = CPU_STATE_CONFIGURED;
821         pcpu->address = boot_cpu_address;
822         pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
823         pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
824         pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
825         S390_lowcore.percpu_offset = __per_cpu_offset[0];
826         cpu_set_polarization(0, POLARIZATION_UNKNOWN);
827         set_cpu_present(0, true);
828         set_cpu_online(0, true);
829 }
830
831 void __init smp_cpus_done(unsigned int max_cpus)
832 {
833 }
834
835 void __init smp_setup_processor_id(void)
836 {
837         S390_lowcore.cpu_nr = 0;
838 }
839
840 /*
841  * the frequency of the profiling timer can be changed
842  * by writing a multiplier value into /proc/profile.
843  *
844  * usually you want to run this on all CPUs ;)
845  */
846 int setup_profiling_timer(unsigned int multiplier)
847 {
848         return 0;
849 }
850
851 #ifdef CONFIG_HOTPLUG_CPU
852 static ssize_t cpu_configure_show(struct device *dev,
853                                   struct device_attribute *attr, char *buf)
854 {
855         ssize_t count;
856
857         mutex_lock(&smp_cpu_state_mutex);
858         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
859         mutex_unlock(&smp_cpu_state_mutex);
860         return count;
861 }
862
863 static ssize_t cpu_configure_store(struct device *dev,
864                                    struct device_attribute *attr,
865                                    const char *buf, size_t count)
866 {
867         struct pcpu *pcpu;
868         int cpu, val, rc;
869         char delim;
870
871         if (sscanf(buf, "%d %c", &val, &delim) != 1)
872                 return -EINVAL;
873         if (val != 0 && val != 1)
874                 return -EINVAL;
875         get_online_cpus();
876         mutex_lock(&smp_cpu_state_mutex);
877         rc = -EBUSY;
878         /* disallow configuration changes of online cpus and cpu 0 */
879         cpu = dev->id;
880         if (cpu_online(cpu) || cpu == 0)
881                 goto out;
882         pcpu = pcpu_devices + cpu;
883         rc = 0;
884         switch (val) {
885         case 0:
886                 if (pcpu->state != CPU_STATE_CONFIGURED)
887                         break;
888                 rc = sclp_cpu_deconfigure(pcpu->address);
889                 if (rc)
890                         break;
891                 pcpu->state = CPU_STATE_STANDBY;
892                 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
893                 topology_expect_change();
894                 break;
895         case 1:
896                 if (pcpu->state != CPU_STATE_STANDBY)
897                         break;
898                 rc = sclp_cpu_configure(pcpu->address);
899                 if (rc)
900                         break;
901                 pcpu->state = CPU_STATE_CONFIGURED;
902                 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
903                 topology_expect_change();
904                 break;
905         default:
906                 break;
907         }
908 out:
909         mutex_unlock(&smp_cpu_state_mutex);
910         put_online_cpus();
911         return rc ? rc : count;
912 }
913 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
914 #endif /* CONFIG_HOTPLUG_CPU */
915
916 static ssize_t show_cpu_address(struct device *dev,
917                                 struct device_attribute *attr, char *buf)
918 {
919         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
920 }
921 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
922
923 static struct attribute *cpu_common_attrs[] = {
924 #ifdef CONFIG_HOTPLUG_CPU
925         &dev_attr_configure.attr,
926 #endif
927         &dev_attr_address.attr,
928         NULL,
929 };
930
931 static struct attribute_group cpu_common_attr_group = {
932         .attrs = cpu_common_attrs,
933 };
934
935 static ssize_t show_idle_count(struct device *dev,
936                                 struct device_attribute *attr, char *buf)
937 {
938         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
939         unsigned long long idle_count;
940         unsigned int sequence;
941
942         do {
943                 sequence = ACCESS_ONCE(idle->sequence);
944                 idle_count = ACCESS_ONCE(idle->idle_count);
945                 if (ACCESS_ONCE(idle->idle_enter))
946                         idle_count++;
947         } while ((sequence & 1) || (idle->sequence != sequence));
948         return sprintf(buf, "%llu\n", idle_count);
949 }
950 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
951
952 static ssize_t show_idle_time(struct device *dev,
953                                 struct device_attribute *attr, char *buf)
954 {
955         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
956         unsigned long long now, idle_time, idle_enter, idle_exit;
957         unsigned int sequence;
958
959         do {
960                 now = get_clock();
961                 sequence = ACCESS_ONCE(idle->sequence);
962                 idle_time = ACCESS_ONCE(idle->idle_time);
963                 idle_enter = ACCESS_ONCE(idle->idle_enter);
964                 idle_exit = ACCESS_ONCE(idle->idle_exit);
965         } while ((sequence & 1) || (idle->sequence != sequence));
966         idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
967         return sprintf(buf, "%llu\n", idle_time >> 12);
968 }
969 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
970
971 static struct attribute *cpu_online_attrs[] = {
972         &dev_attr_idle_count.attr,
973         &dev_attr_idle_time_us.attr,
974         NULL,
975 };
976
977 static struct attribute_group cpu_online_attr_group = {
978         .attrs = cpu_online_attrs,
979 };
980
981 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
982                                     unsigned long action, void *hcpu)
983 {
984         unsigned int cpu = (unsigned int)(long)hcpu;
985         struct cpu *c = &pcpu_devices[cpu].cpu;
986         struct device *s = &c->dev;
987         struct s390_idle_data *idle;
988         int err = 0;
989
990         switch (action) {
991         case CPU_ONLINE:
992         case CPU_ONLINE_FROZEN:
993                 idle = &per_cpu(s390_idle, cpu);
994                 memset(idle, 0, sizeof(struct s390_idle_data));
995                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
996                 break;
997         case CPU_DEAD:
998         case CPU_DEAD_FROZEN:
999                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1000                 break;
1001         }
1002         return notifier_from_errno(err);
1003 }
1004
1005 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1006         .notifier_call = smp_cpu_notify,
1007 };
1008
1009 static int __devinit smp_add_present_cpu(int cpu)
1010 {
1011         struct cpu *c = &pcpu_devices[cpu].cpu;
1012         struct device *s = &c->dev;
1013         int rc;
1014
1015         c->hotpluggable = 1;
1016         rc = register_cpu(c, cpu);
1017         if (rc)
1018                 goto out;
1019         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1020         if (rc)
1021                 goto out_cpu;
1022         if (cpu_online(cpu)) {
1023                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1024                 if (rc)
1025                         goto out_online;
1026         }
1027         rc = topology_cpu_init(c);
1028         if (rc)
1029                 goto out_topology;
1030         return 0;
1031
1032 out_topology:
1033         if (cpu_online(cpu))
1034                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1035 out_online:
1036         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1037 out_cpu:
1038 #ifdef CONFIG_HOTPLUG_CPU
1039         unregister_cpu(c);
1040 #endif
1041 out:
1042         return rc;
1043 }
1044
1045 #ifdef CONFIG_HOTPLUG_CPU
1046
1047 int __ref smp_rescan_cpus(void)
1048 {
1049         struct sclp_cpu_info *info;
1050         int nr;
1051
1052         info = smp_get_cpu_info();
1053         if (!info)
1054                 return -ENOMEM;
1055         get_online_cpus();
1056         mutex_lock(&smp_cpu_state_mutex);
1057         nr = __smp_rescan_cpus(info, 1);
1058         mutex_unlock(&smp_cpu_state_mutex);
1059         put_online_cpus();
1060         kfree(info);
1061         if (nr)
1062                 topology_schedule_update();
1063         return 0;
1064 }
1065
1066 static ssize_t __ref rescan_store(struct device *dev,
1067                                   struct device_attribute *attr,
1068                                   const char *buf,
1069                                   size_t count)
1070 {
1071         int rc;
1072
1073         rc = smp_rescan_cpus();
1074         return rc ? rc : count;
1075 }
1076 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1077 #endif /* CONFIG_HOTPLUG_CPU */
1078
1079 static int __init s390_smp_init(void)
1080 {
1081         int cpu, rc;
1082
1083         register_cpu_notifier(&smp_cpu_nb);
1084 #ifdef CONFIG_HOTPLUG_CPU
1085         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1086         if (rc)
1087                 return rc;
1088 #endif
1089         for_each_present_cpu(cpu) {
1090                 rc = smp_add_present_cpu(cpu);
1091                 if (rc)
1092                         return rc;
1093         }
1094         return 0;
1095 }
1096 subsys_initcall(s390_smp_init);