]> Pileus Git - ~andy/linux/blob - arch/s390/kernel/setup.c
ASoC: mxs: correct 'direction' of device_prep_dma_cyclic
[~andy/linux] / arch / s390 / kernel / setup.c
1 /*
2  *  arch/s390/kernel/setup.c
3  *
4  *  S390 version
5  *    Copyright (C) IBM Corp. 1999,2010
6  *    Author(s): Hartmut Penner (hp@de.ibm.com),
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "arch/i386/kernel/setup.c"
10  *    Copyright (C) 1995, Linus Torvalds
11  */
12
13 /*
14  * This file handles the architecture-dependent parts of initialization
15  */
16
17 #define KMSG_COMPONENT "setup"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/user.h>
29 #include <linux/tty.h>
30 #include <linux/ioport.h>
31 #include <linux/delay.h>
32 #include <linux/init.h>
33 #include <linux/initrd.h>
34 #include <linux/bootmem.h>
35 #include <linux/root_dev.h>
36 #include <linux/console.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/device.h>
39 #include <linux/notifier.h>
40 #include <linux/pfn.h>
41 #include <linux/ctype.h>
42 #include <linux/reboot.h>
43 #include <linux/topology.h>
44 #include <linux/ftrace.h>
45 #include <linux/kexec.h>
46 #include <linux/crash_dump.h>
47 #include <linux/memory.h>
48
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/system.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/compat.h>
62 #include <asm/kvm_virtio.h>
63 #include <asm/diag.h>
64
65 long psw_kernel_bits    = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
66                           PSW_MASK_EA | PSW_MASK_BA;
67 long psw_user_bits      = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
68                           PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
69                           PSW_MASK_PSTATE | PSW_ASC_HOME;
70
71 /*
72  * User copy operations.
73  */
74 struct uaccess_ops uaccess;
75 EXPORT_SYMBOL(uaccess);
76
77 /*
78  * Machine setup..
79  */
80 unsigned int console_mode = 0;
81 EXPORT_SYMBOL(console_mode);
82
83 unsigned int console_devno = -1;
84 EXPORT_SYMBOL(console_devno);
85
86 unsigned int console_irq = -1;
87 EXPORT_SYMBOL(console_irq);
88
89 unsigned long elf_hwcap = 0;
90 char elf_platform[ELF_PLATFORM_SIZE];
91
92 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
93
94 int __initdata memory_end_set;
95 unsigned long __initdata memory_end;
96
97 /* An array with a pointer to the lowcore of every CPU. */
98 struct _lowcore *lowcore_ptr[NR_CPUS];
99 EXPORT_SYMBOL(lowcore_ptr);
100
101 /*
102  * This is set up by the setup-routine at boot-time
103  * for S390 need to find out, what we have to setup
104  * using address 0x10400 ...
105  */
106
107 #include <asm/setup.h>
108
109 /*
110  * condev= and conmode= setup parameter.
111  */
112
113 static int __init condev_setup(char *str)
114 {
115         int vdev;
116
117         vdev = simple_strtoul(str, &str, 0);
118         if (vdev >= 0 && vdev < 65536) {
119                 console_devno = vdev;
120                 console_irq = -1;
121         }
122         return 1;
123 }
124
125 __setup("condev=", condev_setup);
126
127 static void __init set_preferred_console(void)
128 {
129         if (MACHINE_IS_KVM)
130                 add_preferred_console("hvc", 0, NULL);
131         else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
132                 add_preferred_console("ttyS", 0, NULL);
133         else if (CONSOLE_IS_3270)
134                 add_preferred_console("tty3270", 0, NULL);
135 }
136
137 static int __init conmode_setup(char *str)
138 {
139 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
140         if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
141                 SET_CONSOLE_SCLP;
142 #endif
143 #if defined(CONFIG_TN3215_CONSOLE)
144         if (strncmp(str, "3215", 5) == 0)
145                 SET_CONSOLE_3215;
146 #endif
147 #if defined(CONFIG_TN3270_CONSOLE)
148         if (strncmp(str, "3270", 5) == 0)
149                 SET_CONSOLE_3270;
150 #endif
151         set_preferred_console();
152         return 1;
153 }
154
155 __setup("conmode=", conmode_setup);
156
157 static void __init conmode_default(void)
158 {
159         char query_buffer[1024];
160         char *ptr;
161
162         if (MACHINE_IS_VM) {
163                 cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
164                 console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
165                 ptr = strstr(query_buffer, "SUBCHANNEL =");
166                 console_irq = simple_strtoul(ptr + 13, NULL, 16);
167                 cpcmd("QUERY TERM", query_buffer, 1024, NULL);
168                 ptr = strstr(query_buffer, "CONMODE");
169                 /*
170                  * Set the conmode to 3215 so that the device recognition 
171                  * will set the cu_type of the console to 3215. If the
172                  * conmode is 3270 and we don't set it back then both
173                  * 3215 and the 3270 driver will try to access the console
174                  * device (3215 as console and 3270 as normal tty).
175                  */
176                 cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
177                 if (ptr == NULL) {
178 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
179                         SET_CONSOLE_SCLP;
180 #endif
181                         return;
182                 }
183                 if (strncmp(ptr + 8, "3270", 4) == 0) {
184 #if defined(CONFIG_TN3270_CONSOLE)
185                         SET_CONSOLE_3270;
186 #elif defined(CONFIG_TN3215_CONSOLE)
187                         SET_CONSOLE_3215;
188 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
189                         SET_CONSOLE_SCLP;
190 #endif
191                 } else if (strncmp(ptr + 8, "3215", 4) == 0) {
192 #if defined(CONFIG_TN3215_CONSOLE)
193                         SET_CONSOLE_3215;
194 #elif defined(CONFIG_TN3270_CONSOLE)
195                         SET_CONSOLE_3270;
196 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
197                         SET_CONSOLE_SCLP;
198 #endif
199                 }
200         } else {
201 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
202                 SET_CONSOLE_SCLP;
203 #endif
204         }
205 }
206
207 #ifdef CONFIG_ZFCPDUMP
208 static void __init setup_zfcpdump(unsigned int console_devno)
209 {
210         static char str[41];
211
212         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
213                 return;
214         if (console_devno != -1)
215                 sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
216                         ipl_info.data.fcp.dev_id.devno, console_devno);
217         else
218                 sprintf(str, " cio_ignore=all,!0.0.%04x",
219                         ipl_info.data.fcp.dev_id.devno);
220         strcat(boot_command_line, str);
221         console_loglevel = 2;
222 }
223 #else
224 static inline void setup_zfcpdump(unsigned int console_devno) {}
225 #endif /* CONFIG_ZFCPDUMP */
226
227  /*
228  * Reboot, halt and power_off stubs. They just call _machine_restart,
229  * _machine_halt or _machine_power_off. 
230  */
231
232 void machine_restart(char *command)
233 {
234         if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
235                 /*
236                  * Only unblank the console if we are called in enabled
237                  * context or a bust_spinlocks cleared the way for us.
238                  */
239                 console_unblank();
240         _machine_restart(command);
241 }
242
243 void machine_halt(void)
244 {
245         if (!in_interrupt() || oops_in_progress)
246                 /*
247                  * Only unblank the console if we are called in enabled
248                  * context or a bust_spinlocks cleared the way for us.
249                  */
250                 console_unblank();
251         _machine_halt();
252 }
253
254 void machine_power_off(void)
255 {
256         if (!in_interrupt() || oops_in_progress)
257                 /*
258                  * Only unblank the console if we are called in enabled
259                  * context or a bust_spinlocks cleared the way for us.
260                  */
261                 console_unblank();
262         _machine_power_off();
263 }
264
265 /*
266  * Dummy power off function.
267  */
268 void (*pm_power_off)(void) = machine_power_off;
269
270 static int __init early_parse_mem(char *p)
271 {
272         memory_end = memparse(p, &p);
273         memory_end_set = 1;
274         return 0;
275 }
276 early_param("mem", early_parse_mem);
277
278 unsigned int user_mode = HOME_SPACE_MODE;
279 EXPORT_SYMBOL_GPL(user_mode);
280
281 static int set_amode_primary(void)
282 {
283         psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
284         psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
285 #ifdef CONFIG_COMPAT
286         psw32_user_bits =
287                 (psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
288 #endif
289
290         if (MACHINE_HAS_MVCOS) {
291                 memcpy(&uaccess, &uaccess_mvcos_switch, sizeof(uaccess));
292                 return 1;
293         } else {
294                 memcpy(&uaccess, &uaccess_pt, sizeof(uaccess));
295                 return 0;
296         }
297 }
298
299 /*
300  * Switch kernel/user addressing modes?
301  */
302 static int __init early_parse_switch_amode(char *p)
303 {
304         user_mode = PRIMARY_SPACE_MODE;
305         return 0;
306 }
307 early_param("switch_amode", early_parse_switch_amode);
308
309 static int __init early_parse_user_mode(char *p)
310 {
311         if (p && strcmp(p, "primary") == 0)
312                 user_mode = PRIMARY_SPACE_MODE;
313         else if (!p || strcmp(p, "home") == 0)
314                 user_mode = HOME_SPACE_MODE;
315         else
316                 return 1;
317         return 0;
318 }
319 early_param("user_mode", early_parse_user_mode);
320
321 static void setup_addressing_mode(void)
322 {
323         if (user_mode == PRIMARY_SPACE_MODE) {
324                 if (set_amode_primary())
325                         pr_info("Address spaces switched, "
326                                 "mvcos available\n");
327                 else
328                         pr_info("Address spaces switched, "
329                                 "mvcos not available\n");
330         }
331 }
332
333 static void __init
334 setup_lowcore(void)
335 {
336         struct _lowcore *lc;
337
338         /*
339          * Setup lowcore for boot cpu
340          */
341         BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
342         lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
343         lc->restart_psw.mask = psw_kernel_bits;
344         lc->restart_psw.addr =
345                 PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
346         lc->external_new_psw.mask = psw_kernel_bits |
347                 PSW_MASK_DAT | PSW_MASK_MCHECK;
348         lc->external_new_psw.addr =
349                 PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
350         lc->svc_new_psw.mask = psw_kernel_bits |
351                 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
352         lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
353         lc->program_new_psw.mask = psw_kernel_bits |
354                 PSW_MASK_DAT | PSW_MASK_MCHECK;
355         lc->program_new_psw.addr =
356                 PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
357         lc->mcck_new_psw.mask = psw_kernel_bits;
358         lc->mcck_new_psw.addr =
359                 PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
360         lc->io_new_psw.mask = psw_kernel_bits |
361                 PSW_MASK_DAT | PSW_MASK_MCHECK;
362         lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
363         lc->clock_comparator = -1ULL;
364         lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
365         lc->async_stack = (unsigned long)
366                 __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
367         lc->panic_stack = (unsigned long)
368                 __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
369         lc->current_task = (unsigned long) init_thread_union.thread_info.task;
370         lc->thread_info = (unsigned long) &init_thread_union;
371         lc->machine_flags = S390_lowcore.machine_flags;
372         lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
373         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
374                MAX_FACILITY_BIT/8);
375 #ifndef CONFIG_64BIT
376         if (MACHINE_HAS_IEEE) {
377                 lc->extended_save_area_addr = (__u32)
378                         __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
379                 /* enable extended save area */
380                 __ctl_set_bit(14, 29);
381         }
382 #else
383         lc->cmf_hpp = -1ULL;
384         lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
385 #endif
386         lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
387         lc->async_enter_timer = S390_lowcore.async_enter_timer;
388         lc->exit_timer = S390_lowcore.exit_timer;
389         lc->user_timer = S390_lowcore.user_timer;
390         lc->system_timer = S390_lowcore.system_timer;
391         lc->steal_timer = S390_lowcore.steal_timer;
392         lc->last_update_timer = S390_lowcore.last_update_timer;
393         lc->last_update_clock = S390_lowcore.last_update_clock;
394         lc->ftrace_func = S390_lowcore.ftrace_func;
395         set_prefix((u32)(unsigned long) lc);
396         lowcore_ptr[0] = lc;
397 }
398
399 static struct resource code_resource = {
400         .name  = "Kernel code",
401         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
402 };
403
404 static struct resource data_resource = {
405         .name = "Kernel data",
406         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
407 };
408
409 static struct resource bss_resource = {
410         .name = "Kernel bss",
411         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
412 };
413
414 static struct resource __initdata *standard_resources[] = {
415         &code_resource,
416         &data_resource,
417         &bss_resource,
418 };
419
420 static void __init setup_resources(void)
421 {
422         struct resource *res, *std_res, *sub_res;
423         int i, j;
424
425         code_resource.start = (unsigned long) &_text;
426         code_resource.end = (unsigned long) &_etext - 1;
427         data_resource.start = (unsigned long) &_etext;
428         data_resource.end = (unsigned long) &_edata - 1;
429         bss_resource.start = (unsigned long) &__bss_start;
430         bss_resource.end = (unsigned long) &__bss_stop - 1;
431
432         for (i = 0; i < MEMORY_CHUNKS; i++) {
433                 if (!memory_chunk[i].size)
434                         continue;
435                 if (memory_chunk[i].type == CHUNK_OLDMEM ||
436                     memory_chunk[i].type == CHUNK_CRASHK)
437                         continue;
438                 res = alloc_bootmem_low(sizeof(*res));
439                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
440                 switch (memory_chunk[i].type) {
441                 case CHUNK_READ_WRITE:
442                 case CHUNK_CRASHK:
443                         res->name = "System RAM";
444                         break;
445                 case CHUNK_READ_ONLY:
446                         res->name = "System ROM";
447                         res->flags |= IORESOURCE_READONLY;
448                         break;
449                 default:
450                         res->name = "reserved";
451                 }
452                 res->start = memory_chunk[i].addr;
453                 res->end = res->start + memory_chunk[i].size - 1;
454                 request_resource(&iomem_resource, res);
455
456                 for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
457                         std_res = standard_resources[j];
458                         if (std_res->start < res->start ||
459                             std_res->start > res->end)
460                                 continue;
461                         if (std_res->end > res->end) {
462                                 sub_res = alloc_bootmem_low(sizeof(*sub_res));
463                                 *sub_res = *std_res;
464                                 sub_res->end = res->end;
465                                 std_res->start = res->end + 1;
466                                 request_resource(res, sub_res);
467                         } else {
468                                 request_resource(res, std_res);
469                         }
470                 }
471         }
472 }
473
474 unsigned long real_memory_size;
475 EXPORT_SYMBOL_GPL(real_memory_size);
476
477 static void __init setup_memory_end(void)
478 {
479         unsigned long memory_size;
480         unsigned long max_mem;
481         int i;
482
483
484 #ifdef CONFIG_ZFCPDUMP
485         if (ipl_info.type == IPL_TYPE_FCP_DUMP) {
486                 memory_end = ZFCPDUMP_HSA_SIZE;
487                 memory_end_set = 1;
488         }
489 #endif
490         memory_size = 0;
491         memory_end &= PAGE_MASK;
492
493         max_mem = memory_end ? min(VMEM_MAX_PHYS, memory_end) : VMEM_MAX_PHYS;
494         memory_end = min(max_mem, memory_end);
495
496         /*
497          * Make sure all chunks are MAX_ORDER aligned so we don't need the
498          * extra checks that HOLES_IN_ZONE would require.
499          */
500         for (i = 0; i < MEMORY_CHUNKS; i++) {
501                 unsigned long start, end;
502                 struct mem_chunk *chunk;
503                 unsigned long align;
504
505                 chunk = &memory_chunk[i];
506                 align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
507                 start = (chunk->addr + align - 1) & ~(align - 1);
508                 end = (chunk->addr + chunk->size) & ~(align - 1);
509                 if (start >= end)
510                         memset(chunk, 0, sizeof(*chunk));
511                 else {
512                         chunk->addr = start;
513                         chunk->size = end - start;
514                 }
515         }
516
517         for (i = 0; i < MEMORY_CHUNKS; i++) {
518                 struct mem_chunk *chunk = &memory_chunk[i];
519
520                 real_memory_size = max(real_memory_size,
521                                        chunk->addr + chunk->size);
522                 if (chunk->addr >= max_mem) {
523                         memset(chunk, 0, sizeof(*chunk));
524                         continue;
525                 }
526                 if (chunk->addr + chunk->size > max_mem)
527                         chunk->size = max_mem - chunk->addr;
528                 memory_size = max(memory_size, chunk->addr + chunk->size);
529         }
530         if (!memory_end)
531                 memory_end = memory_size;
532 }
533
534 void *restart_stack __attribute__((__section__(".data")));
535
536 /*
537  * Setup new PSW and allocate stack for PSW restart interrupt
538  */
539 static void __init setup_restart_psw(void)
540 {
541         psw_t psw;
542
543         restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
544         restart_stack += ASYNC_SIZE;
545
546         /*
547          * Setup restart PSW for absolute zero lowcore. This is necesary
548          * if PSW restart is done on an offline CPU that has lowcore zero
549          */
550         psw.mask = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_EA | PSW_MASK_BA;
551         psw.addr = PSW_ADDR_AMODE | (unsigned long) psw_restart_int_handler;
552         copy_to_absolute_zero(&S390_lowcore.restart_psw, &psw, sizeof(psw));
553 }
554
555 static void __init setup_vmcoreinfo(void)
556 {
557 #ifdef CONFIG_KEXEC
558         unsigned long ptr = paddr_vmcoreinfo_note();
559
560         copy_to_absolute_zero(&S390_lowcore.vmcore_info, &ptr, sizeof(ptr));
561 #endif
562 }
563
564 #ifdef CONFIG_CRASH_DUMP
565
566 /*
567  * Find suitable location for crashkernel memory
568  */
569 static unsigned long __init find_crash_base(unsigned long crash_size,
570                                             char **msg)
571 {
572         unsigned long crash_base;
573         struct mem_chunk *chunk;
574         int i;
575
576         if (memory_chunk[0].size < crash_size) {
577                 *msg = "first memory chunk must be at least crashkernel size";
578                 return 0;
579         }
580         if (is_kdump_kernel() && (crash_size == OLDMEM_SIZE))
581                 return OLDMEM_BASE;
582
583         for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
584                 chunk = &memory_chunk[i];
585                 if (chunk->size == 0)
586                         continue;
587                 if (chunk->type != CHUNK_READ_WRITE)
588                         continue;
589                 if (chunk->size < crash_size)
590                         continue;
591                 crash_base = (chunk->addr + chunk->size) - crash_size;
592                 if (crash_base < crash_size)
593                         continue;
594                 if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
595                         continue;
596                 if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
597                         continue;
598                 return crash_base;
599         }
600         *msg = "no suitable area found";
601         return 0;
602 }
603
604 /*
605  * Check if crash_base and crash_size is valid
606  */
607 static int __init verify_crash_base(unsigned long crash_base,
608                                     unsigned long crash_size,
609                                     char **msg)
610 {
611         struct mem_chunk *chunk;
612         int i;
613
614         /*
615          * Because we do the swap to zero, we must have at least 'crash_size'
616          * bytes free space before crash_base
617          */
618         if (crash_size > crash_base) {
619                 *msg = "crashkernel offset must be greater than size";
620                 return -EINVAL;
621         }
622
623         /* First memory chunk must be at least crash_size */
624         if (memory_chunk[0].size < crash_size) {
625                 *msg = "first memory chunk must be at least crashkernel size";
626                 return -EINVAL;
627         }
628         /* Check if we fit into the respective memory chunk */
629         for (i = 0; i < MEMORY_CHUNKS; i++) {
630                 chunk = &memory_chunk[i];
631                 if (chunk->size == 0)
632                         continue;
633                 if (crash_base < chunk->addr)
634                         continue;
635                 if (crash_base >= chunk->addr + chunk->size)
636                         continue;
637                 /* we have found the memory chunk */
638                 if (crash_base + crash_size > chunk->addr + chunk->size) {
639                         *msg = "selected memory chunk is too small for "
640                                 "crashkernel memory";
641                         return -EINVAL;
642                 }
643                 return 0;
644         }
645         *msg = "invalid memory range specified";
646         return -EINVAL;
647 }
648
649 /*
650  * Reserve kdump memory by creating a memory hole in the mem_chunk array
651  */
652 static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
653                                          int type)
654 {
655
656         create_mem_hole(memory_chunk, addr, size, type);
657 }
658
659 /*
660  * When kdump is enabled, we have to ensure that no memory from
661  * the area [0 - crashkernel memory size] and
662  * [crashk_res.start - crashk_res.end] is set offline.
663  */
664 static int kdump_mem_notifier(struct notifier_block *nb,
665                               unsigned long action, void *data)
666 {
667         struct memory_notify *arg = data;
668
669         if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
670                 return NOTIFY_BAD;
671         if (arg->start_pfn > PFN_DOWN(crashk_res.end))
672                 return NOTIFY_OK;
673         if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
674                 return NOTIFY_OK;
675         return NOTIFY_BAD;
676 }
677
678 static struct notifier_block kdump_mem_nb = {
679         .notifier_call = kdump_mem_notifier,
680 };
681
682 #endif
683
684 /*
685  * Make sure that oldmem, where the dump is stored, is protected
686  */
687 static void reserve_oldmem(void)
688 {
689 #ifdef CONFIG_CRASH_DUMP
690         if (!OLDMEM_BASE)
691                 return;
692
693         reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
694         reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
695                               CHUNK_OLDMEM);
696         if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
697                 saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
698         else
699                 saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
700 #endif
701 }
702
703 /*
704  * Reserve memory for kdump kernel to be loaded with kexec
705  */
706 static void __init reserve_crashkernel(void)
707 {
708 #ifdef CONFIG_CRASH_DUMP
709         unsigned long long crash_base, crash_size;
710         char *msg;
711         int rc;
712
713         rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
714                                &crash_base);
715         if (rc || crash_size == 0)
716                 return;
717         crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
718         crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
719         if (register_memory_notifier(&kdump_mem_nb))
720                 return;
721         if (!crash_base)
722                 crash_base = find_crash_base(crash_size, &msg);
723         if (!crash_base) {
724                 pr_info("crashkernel reservation failed: %s\n", msg);
725                 unregister_memory_notifier(&kdump_mem_nb);
726                 return;
727         }
728         if (verify_crash_base(crash_base, crash_size, &msg)) {
729                 pr_info("crashkernel reservation failed: %s\n", msg);
730                 unregister_memory_notifier(&kdump_mem_nb);
731                 return;
732         }
733         if (!OLDMEM_BASE && MACHINE_IS_VM)
734                 diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
735         crashk_res.start = crash_base;
736         crashk_res.end = crash_base + crash_size - 1;
737         insert_resource(&iomem_resource, &crashk_res);
738         reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
739         pr_info("Reserving %lluMB of memory at %lluMB "
740                 "for crashkernel (System RAM: %luMB)\n",
741                 crash_size >> 20, crash_base >> 20, memory_end >> 20);
742 #endif
743 }
744
745 static void __init
746 setup_memory(void)
747 {
748         unsigned long bootmap_size;
749         unsigned long start_pfn, end_pfn;
750         int i;
751
752         /*
753          * partially used pages are not usable - thus
754          * we are rounding upwards:
755          */
756         start_pfn = PFN_UP(__pa(&_end));
757         end_pfn = max_pfn = PFN_DOWN(memory_end);
758
759 #ifdef CONFIG_BLK_DEV_INITRD
760         /*
761          * Move the initrd in case the bitmap of the bootmem allocater
762          * would overwrite it.
763          */
764
765         if (INITRD_START && INITRD_SIZE) {
766                 unsigned long bmap_size;
767                 unsigned long start;
768
769                 bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
770                 bmap_size = PFN_PHYS(bmap_size);
771
772                 if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
773                         start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
774
775 #ifdef CONFIG_CRASH_DUMP
776                         if (OLDMEM_BASE) {
777                                 /* Move initrd behind kdump oldmem */
778                                 if (start + INITRD_SIZE > OLDMEM_BASE &&
779                                     start < OLDMEM_BASE + OLDMEM_SIZE)
780                                         start = OLDMEM_BASE + OLDMEM_SIZE;
781                         }
782 #endif
783                         if (start + INITRD_SIZE > memory_end) {
784                                 pr_err("initrd extends beyond end of "
785                                        "memory (0x%08lx > 0x%08lx) "
786                                        "disabling initrd\n",
787                                        start + INITRD_SIZE, memory_end);
788                                 INITRD_START = INITRD_SIZE = 0;
789                         } else {
790                                 pr_info("Moving initrd (0x%08lx -> "
791                                         "0x%08lx, size: %ld)\n",
792                                         INITRD_START, start, INITRD_SIZE);
793                                 memmove((void *) start, (void *) INITRD_START,
794                                         INITRD_SIZE);
795                                 INITRD_START = start;
796                         }
797                 }
798         }
799 #endif
800
801         /*
802          * Initialize the boot-time allocator
803          */
804         bootmap_size = init_bootmem(start_pfn, end_pfn);
805
806         /*
807          * Register RAM areas with the bootmem allocator.
808          */
809
810         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
811                 unsigned long start_chunk, end_chunk, pfn;
812
813                 if (memory_chunk[i].type != CHUNK_READ_WRITE &&
814                     memory_chunk[i].type != CHUNK_CRASHK)
815                         continue;
816                 start_chunk = PFN_DOWN(memory_chunk[i].addr);
817                 end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
818                 end_chunk = min(end_chunk, end_pfn);
819                 if (start_chunk >= end_chunk)
820                         continue;
821                 add_active_range(0, start_chunk, end_chunk);
822                 pfn = max(start_chunk, start_pfn);
823                 for (; pfn < end_chunk; pfn++)
824                         page_set_storage_key(PFN_PHYS(pfn),
825                                              PAGE_DEFAULT_KEY, 0);
826         }
827
828         psw_set_key(PAGE_DEFAULT_KEY);
829
830         free_bootmem_with_active_regions(0, max_pfn);
831
832         /*
833          * Reserve memory used for lowcore/command line/kernel image.
834          */
835         reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
836         reserve_bootmem((unsigned long)_stext,
837                         PFN_PHYS(start_pfn) - (unsigned long)_stext,
838                         BOOTMEM_DEFAULT);
839         /*
840          * Reserve the bootmem bitmap itself as well. We do this in two
841          * steps (first step was init_bootmem()) because this catches
842          * the (very unlikely) case of us accidentally initializing the
843          * bootmem allocator with an invalid RAM area.
844          */
845         reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
846                         BOOTMEM_DEFAULT);
847
848 #ifdef CONFIG_CRASH_DUMP
849         if (crashk_res.start)
850                 reserve_bootmem(crashk_res.start,
851                                 crashk_res.end - crashk_res.start + 1,
852                                 BOOTMEM_DEFAULT);
853         if (is_kdump_kernel())
854                 reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
855                                 PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
856 #endif
857 #ifdef CONFIG_BLK_DEV_INITRD
858         if (INITRD_START && INITRD_SIZE) {
859                 if (INITRD_START + INITRD_SIZE <= memory_end) {
860                         reserve_bootmem(INITRD_START, INITRD_SIZE,
861                                         BOOTMEM_DEFAULT);
862                         initrd_start = INITRD_START;
863                         initrd_end = initrd_start + INITRD_SIZE;
864                 } else {
865                         pr_err("initrd extends beyond end of "
866                                "memory (0x%08lx > 0x%08lx) "
867                                "disabling initrd\n",
868                                initrd_start + INITRD_SIZE, memory_end);
869                         initrd_start = initrd_end = 0;
870                 }
871         }
872 #endif
873 }
874
875 /*
876  * Setup hardware capabilities.
877  */
878 static void __init setup_hwcaps(void)
879 {
880         static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
881         struct cpuid cpu_id;
882         int i;
883
884         /*
885          * The store facility list bits numbers as found in the principles
886          * of operation are numbered with bit 1UL<<31 as number 0 to
887          * bit 1UL<<0 as number 31.
888          *   Bit 0: instructions named N3, "backported" to esa-mode
889          *   Bit 2: z/Architecture mode is active
890          *   Bit 7: the store-facility-list-extended facility is installed
891          *   Bit 17: the message-security assist is installed
892          *   Bit 19: the long-displacement facility is installed
893          *   Bit 21: the extended-immediate facility is installed
894          *   Bit 22: extended-translation facility 3 is installed
895          *   Bit 30: extended-translation facility 3 enhancement facility
896          * These get translated to:
897          *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
898          *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
899          *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
900          *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
901          */
902         for (i = 0; i < 6; i++)
903                 if (test_facility(stfl_bits[i]))
904                         elf_hwcap |= 1UL << i;
905
906         if (test_facility(22) && test_facility(30))
907                 elf_hwcap |= HWCAP_S390_ETF3EH;
908
909         /*
910          * Check for additional facilities with store-facility-list-extended.
911          * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
912          * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
913          * as stored by stfl, bits 32-xxx contain additional facilities.
914          * How many facility words are stored depends on the number of
915          * doublewords passed to the instruction. The additional facilities
916          * are:
917          *   Bit 42: decimal floating point facility is installed
918          *   Bit 44: perform floating point operation facility is installed
919          * translated to:
920          *   HWCAP_S390_DFP bit 6 (42 && 44).
921          */
922         if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
923                 elf_hwcap |= HWCAP_S390_DFP;
924
925         /*
926          * Huge page support HWCAP_S390_HPAGE is bit 7.
927          */
928         if (MACHINE_HAS_HPAGE)
929                 elf_hwcap |= HWCAP_S390_HPAGE;
930
931         /*
932          * 64-bit register support for 31-bit processes
933          * HWCAP_S390_HIGH_GPRS is bit 9.
934          */
935         elf_hwcap |= HWCAP_S390_HIGH_GPRS;
936
937         get_cpu_id(&cpu_id);
938         switch (cpu_id.machine) {
939         case 0x9672:
940 #if !defined(CONFIG_64BIT)
941         default:        /* Use "g5" as default for 31 bit kernels. */
942 #endif
943                 strcpy(elf_platform, "g5");
944                 break;
945         case 0x2064:
946         case 0x2066:
947 #if defined(CONFIG_64BIT)
948         default:        /* Use "z900" as default for 64 bit kernels. */
949 #endif
950                 strcpy(elf_platform, "z900");
951                 break;
952         case 0x2084:
953         case 0x2086:
954                 strcpy(elf_platform, "z990");
955                 break;
956         case 0x2094:
957         case 0x2096:
958                 strcpy(elf_platform, "z9-109");
959                 break;
960         case 0x2097:
961         case 0x2098:
962                 strcpy(elf_platform, "z10");
963                 break;
964         case 0x2817:
965         case 0x2818:
966                 strcpy(elf_platform, "z196");
967                 break;
968         }
969 }
970
971 /*
972  * Setup function called from init/main.c just after the banner
973  * was printed.
974  */
975
976 void __init
977 setup_arch(char **cmdline_p)
978 {
979         /*
980          * print what head.S has found out about the machine
981          */
982 #ifndef CONFIG_64BIT
983         if (MACHINE_IS_VM)
984                 pr_info("Linux is running as a z/VM "
985                         "guest operating system in 31-bit mode\n");
986         else if (MACHINE_IS_LPAR)
987                 pr_info("Linux is running natively in 31-bit mode\n");
988         if (MACHINE_HAS_IEEE)
989                 pr_info("The hardware system has IEEE compatible "
990                         "floating point units\n");
991         else
992                 pr_info("The hardware system has no IEEE compatible "
993                         "floating point units\n");
994 #else /* CONFIG_64BIT */
995         if (MACHINE_IS_VM)
996                 pr_info("Linux is running as a z/VM "
997                         "guest operating system in 64-bit mode\n");
998         else if (MACHINE_IS_KVM)
999                 pr_info("Linux is running under KVM in 64-bit mode\n");
1000         else if (MACHINE_IS_LPAR)
1001                 pr_info("Linux is running natively in 64-bit mode\n");
1002 #endif /* CONFIG_64BIT */
1003
1004         /* Have one command line that is parsed and saved in /proc/cmdline */
1005         /* boot_command_line has been already set up in early.c */
1006         *cmdline_p = boot_command_line;
1007
1008         ROOT_DEV = Root_RAM0;
1009
1010         init_mm.start_code = PAGE_OFFSET;
1011         init_mm.end_code = (unsigned long) &_etext;
1012         init_mm.end_data = (unsigned long) &_edata;
1013         init_mm.brk = (unsigned long) &_end;
1014
1015         if (MACHINE_HAS_MVCOS)
1016                 memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1017         else
1018                 memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1019
1020         parse_early_param();
1021
1022         setup_ipl();
1023         setup_memory_end();
1024         setup_addressing_mode();
1025         reserve_oldmem();
1026         reserve_crashkernel();
1027         setup_memory();
1028         setup_resources();
1029         setup_vmcoreinfo();
1030         setup_restart_psw();
1031         setup_lowcore();
1032
1033         cpu_init();
1034         s390_init_cpu_topology();
1035
1036         /*
1037          * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1038          */
1039         setup_hwcaps();
1040
1041         /*
1042          * Create kernel page tables and switch to virtual addressing.
1043          */
1044         paging_init();
1045
1046         /* Setup default console */
1047         conmode_default();
1048         set_preferred_console();
1049
1050         /* Setup zfcpdump support */
1051         setup_zfcpdump(console_devno);
1052 }