]> Pileus Git - ~andy/linux/blob - arch/s390/kernel/setup.c
Merge tag 'kvm-3.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[~andy/linux] / arch / s390 / kernel / setup.c
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/errno.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66
67 long psw_kernel_bits    = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
68                           PSW_MASK_EA | PSW_MASK_BA;
69 long psw_user_bits      = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
70                           PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
71                           PSW_MASK_PSTATE | PSW_ASC_HOME;
72
73 /*
74  * User copy operations.
75  */
76 struct uaccess_ops uaccess;
77 EXPORT_SYMBOL(uaccess);
78
79 /*
80  * Machine setup..
81  */
82 unsigned int console_mode = 0;
83 EXPORT_SYMBOL(console_mode);
84
85 unsigned int console_devno = -1;
86 EXPORT_SYMBOL(console_devno);
87
88 unsigned int console_irq = -1;
89 EXPORT_SYMBOL(console_irq);
90
91 unsigned long elf_hwcap = 0;
92 char elf_platform[ELF_PLATFORM_SIZE];
93
94 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
95
96 int __initdata memory_end_set;
97 unsigned long __initdata memory_end;
98
99 unsigned long VMALLOC_START;
100 EXPORT_SYMBOL(VMALLOC_START);
101
102 unsigned long VMALLOC_END;
103 EXPORT_SYMBOL(VMALLOC_END);
104
105 struct page *vmemmap;
106 EXPORT_SYMBOL(vmemmap);
107
108 /* An array with a pointer to the lowcore of every CPU. */
109 struct _lowcore *lowcore_ptr[NR_CPUS];
110 EXPORT_SYMBOL(lowcore_ptr);
111
112 /*
113  * This is set up by the setup-routine at boot-time
114  * for S390 need to find out, what we have to setup
115  * using address 0x10400 ...
116  */
117
118 #include <asm/setup.h>
119
120 /*
121  * condev= and conmode= setup parameter.
122  */
123
124 static int __init condev_setup(char *str)
125 {
126         int vdev;
127
128         vdev = simple_strtoul(str, &str, 0);
129         if (vdev >= 0 && vdev < 65536) {
130                 console_devno = vdev;
131                 console_irq = -1;
132         }
133         return 1;
134 }
135
136 __setup("condev=", condev_setup);
137
138 static void __init set_preferred_console(void)
139 {
140         if (MACHINE_IS_KVM) {
141                 if (sclp_has_vt220())
142                         add_preferred_console("ttyS", 1, NULL);
143                 else if (sclp_has_linemode())
144                         add_preferred_console("ttyS", 0, NULL);
145                 else
146                         add_preferred_console("hvc", 0, NULL);
147         } else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
148                 add_preferred_console("ttyS", 0, NULL);
149         else if (CONSOLE_IS_3270)
150                 add_preferred_console("tty3270", 0, NULL);
151 }
152
153 static int __init conmode_setup(char *str)
154 {
155 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
156         if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
157                 SET_CONSOLE_SCLP;
158 #endif
159 #if defined(CONFIG_TN3215_CONSOLE)
160         if (strncmp(str, "3215", 5) == 0)
161                 SET_CONSOLE_3215;
162 #endif
163 #if defined(CONFIG_TN3270_CONSOLE)
164         if (strncmp(str, "3270", 5) == 0)
165                 SET_CONSOLE_3270;
166 #endif
167         set_preferred_console();
168         return 1;
169 }
170
171 __setup("conmode=", conmode_setup);
172
173 static void __init conmode_default(void)
174 {
175         char query_buffer[1024];
176         char *ptr;
177
178         if (MACHINE_IS_VM) {
179                 cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
180                 console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
181                 ptr = strstr(query_buffer, "SUBCHANNEL =");
182                 console_irq = simple_strtoul(ptr + 13, NULL, 16);
183                 cpcmd("QUERY TERM", query_buffer, 1024, NULL);
184                 ptr = strstr(query_buffer, "CONMODE");
185                 /*
186                  * Set the conmode to 3215 so that the device recognition 
187                  * will set the cu_type of the console to 3215. If the
188                  * conmode is 3270 and we don't set it back then both
189                  * 3215 and the 3270 driver will try to access the console
190                  * device (3215 as console and 3270 as normal tty).
191                  */
192                 cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
193                 if (ptr == NULL) {
194 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
195                         SET_CONSOLE_SCLP;
196 #endif
197                         return;
198                 }
199                 if (strncmp(ptr + 8, "3270", 4) == 0) {
200 #if defined(CONFIG_TN3270_CONSOLE)
201                         SET_CONSOLE_3270;
202 #elif defined(CONFIG_TN3215_CONSOLE)
203                         SET_CONSOLE_3215;
204 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
205                         SET_CONSOLE_SCLP;
206 #endif
207                 } else if (strncmp(ptr + 8, "3215", 4) == 0) {
208 #if defined(CONFIG_TN3215_CONSOLE)
209                         SET_CONSOLE_3215;
210 #elif defined(CONFIG_TN3270_CONSOLE)
211                         SET_CONSOLE_3270;
212 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
213                         SET_CONSOLE_SCLP;
214 #endif
215                 }
216         } else {
217 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
218                 SET_CONSOLE_SCLP;
219 #endif
220         }
221 }
222
223 #ifdef CONFIG_ZFCPDUMP
224 static void __init setup_zfcpdump(unsigned int console_devno)
225 {
226         static char str[41];
227
228         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
229                 return;
230         if (OLDMEM_BASE)
231                 return;
232         if (console_devno != -1)
233                 sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
234                         ipl_info.data.fcp.dev_id.devno, console_devno);
235         else
236                 sprintf(str, " cio_ignore=all,!0.0.%04x",
237                         ipl_info.data.fcp.dev_id.devno);
238         strcat(boot_command_line, str);
239         console_loglevel = 2;
240 }
241 #else
242 static inline void setup_zfcpdump(unsigned int console_devno) {}
243 #endif /* CONFIG_ZFCPDUMP */
244
245  /*
246  * Reboot, halt and power_off stubs. They just call _machine_restart,
247  * _machine_halt or _machine_power_off. 
248  */
249
250 void machine_restart(char *command)
251 {
252         if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
253                 /*
254                  * Only unblank the console if we are called in enabled
255                  * context or a bust_spinlocks cleared the way for us.
256                  */
257                 console_unblank();
258         _machine_restart(command);
259 }
260
261 void machine_halt(void)
262 {
263         if (!in_interrupt() || oops_in_progress)
264                 /*
265                  * Only unblank the console if we are called in enabled
266                  * context or a bust_spinlocks cleared the way for us.
267                  */
268                 console_unblank();
269         _machine_halt();
270 }
271
272 void machine_power_off(void)
273 {
274         if (!in_interrupt() || oops_in_progress)
275                 /*
276                  * Only unblank the console if we are called in enabled
277                  * context or a bust_spinlocks cleared the way for us.
278                  */
279                 console_unblank();
280         _machine_power_off();
281 }
282
283 /*
284  * Dummy power off function.
285  */
286 void (*pm_power_off)(void) = machine_power_off;
287
288 static int __init early_parse_mem(char *p)
289 {
290         memory_end = memparse(p, &p);
291         memory_end_set = 1;
292         return 0;
293 }
294 early_param("mem", early_parse_mem);
295
296 static int __init parse_vmalloc(char *arg)
297 {
298         if (!arg)
299                 return -EINVAL;
300         VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
301         return 0;
302 }
303 early_param("vmalloc", parse_vmalloc);
304
305 unsigned int user_mode = HOME_SPACE_MODE;
306 EXPORT_SYMBOL_GPL(user_mode);
307
308 static int set_amode_primary(void)
309 {
310         psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
311         psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
312 #ifdef CONFIG_COMPAT
313         psw32_user_bits =
314                 (psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
315 #endif
316
317         if (MACHINE_HAS_MVCOS) {
318                 memcpy(&uaccess, &uaccess_mvcos_switch, sizeof(uaccess));
319                 return 1;
320         } else {
321                 memcpy(&uaccess, &uaccess_pt, sizeof(uaccess));
322                 return 0;
323         }
324 }
325
326 /*
327  * Switch kernel/user addressing modes?
328  */
329 static int __init early_parse_switch_amode(char *p)
330 {
331         user_mode = PRIMARY_SPACE_MODE;
332         return 0;
333 }
334 early_param("switch_amode", early_parse_switch_amode);
335
336 static int __init early_parse_user_mode(char *p)
337 {
338         if (p && strcmp(p, "primary") == 0)
339                 user_mode = PRIMARY_SPACE_MODE;
340         else if (!p || strcmp(p, "home") == 0)
341                 user_mode = HOME_SPACE_MODE;
342         else
343                 return 1;
344         return 0;
345 }
346 early_param("user_mode", early_parse_user_mode);
347
348 static void setup_addressing_mode(void)
349 {
350         if (user_mode == PRIMARY_SPACE_MODE) {
351                 if (set_amode_primary())
352                         pr_info("Address spaces switched, "
353                                 "mvcos available\n");
354                 else
355                         pr_info("Address spaces switched, "
356                                 "mvcos not available\n");
357         }
358 }
359
360 void *restart_stack __attribute__((__section__(".data")));
361
362 static void __init setup_lowcore(void)
363 {
364         struct _lowcore *lc;
365
366         /*
367          * Setup lowcore for boot cpu
368          */
369         BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
370         lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
371         lc->restart_psw.mask = psw_kernel_bits;
372         lc->restart_psw.addr =
373                 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
374         lc->external_new_psw.mask = psw_kernel_bits |
375                 PSW_MASK_DAT | PSW_MASK_MCHECK;
376         lc->external_new_psw.addr =
377                 PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
378         lc->svc_new_psw.mask = psw_kernel_bits |
379                 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
380         lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
381         lc->program_new_psw.mask = psw_kernel_bits |
382                 PSW_MASK_DAT | PSW_MASK_MCHECK;
383         lc->program_new_psw.addr =
384                 PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
385         lc->mcck_new_psw.mask = psw_kernel_bits;
386         lc->mcck_new_psw.addr =
387                 PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
388         lc->io_new_psw.mask = psw_kernel_bits |
389                 PSW_MASK_DAT | PSW_MASK_MCHECK;
390         lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
391         lc->clock_comparator = -1ULL;
392         lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
393         lc->async_stack = (unsigned long)
394                 __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
395         lc->panic_stack = (unsigned long)
396                 __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
397         lc->current_task = (unsigned long) init_thread_union.thread_info.task;
398         lc->thread_info = (unsigned long) &init_thread_union;
399         lc->machine_flags = S390_lowcore.machine_flags;
400         lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
401         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
402                MAX_FACILITY_BIT/8);
403 #ifndef CONFIG_64BIT
404         if (MACHINE_HAS_IEEE) {
405                 lc->extended_save_area_addr = (__u32)
406                         __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
407                 /* enable extended save area */
408                 __ctl_set_bit(14, 29);
409         }
410 #else
411         lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
412 #endif
413         lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
414         lc->async_enter_timer = S390_lowcore.async_enter_timer;
415         lc->exit_timer = S390_lowcore.exit_timer;
416         lc->user_timer = S390_lowcore.user_timer;
417         lc->system_timer = S390_lowcore.system_timer;
418         lc->steal_timer = S390_lowcore.steal_timer;
419         lc->last_update_timer = S390_lowcore.last_update_timer;
420         lc->last_update_clock = S390_lowcore.last_update_clock;
421         lc->ftrace_func = S390_lowcore.ftrace_func;
422
423         restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
424         restart_stack += ASYNC_SIZE;
425
426         /*
427          * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
428          * restart data to the absolute zero lowcore. This is necesary if
429          * PSW restart is done on an offline CPU that has lowcore zero.
430          */
431         lc->restart_stack = (unsigned long) restart_stack;
432         lc->restart_fn = (unsigned long) do_restart;
433         lc->restart_data = 0;
434         lc->restart_source = -1UL;
435
436         /* Setup absolute zero lowcore */
437         mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
438         mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
439         mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
440         mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
441         mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
442
443         set_prefix((u32)(unsigned long) lc);
444         lowcore_ptr[0] = lc;
445 }
446
447 static struct resource code_resource = {
448         .name  = "Kernel code",
449         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
450 };
451
452 static struct resource data_resource = {
453         .name = "Kernel data",
454         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
455 };
456
457 static struct resource bss_resource = {
458         .name = "Kernel bss",
459         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
460 };
461
462 static struct resource __initdata *standard_resources[] = {
463         &code_resource,
464         &data_resource,
465         &bss_resource,
466 };
467
468 static void __init setup_resources(void)
469 {
470         struct resource *res, *std_res, *sub_res;
471         int i, j;
472
473         code_resource.start = (unsigned long) &_text;
474         code_resource.end = (unsigned long) &_etext - 1;
475         data_resource.start = (unsigned long) &_etext;
476         data_resource.end = (unsigned long) &_edata - 1;
477         bss_resource.start = (unsigned long) &__bss_start;
478         bss_resource.end = (unsigned long) &__bss_stop - 1;
479
480         for (i = 0; i < MEMORY_CHUNKS; i++) {
481                 if (!memory_chunk[i].size)
482                         continue;
483                 if (memory_chunk[i].type == CHUNK_OLDMEM ||
484                     memory_chunk[i].type == CHUNK_CRASHK)
485                         continue;
486                 res = alloc_bootmem_low(sizeof(*res));
487                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
488                 switch (memory_chunk[i].type) {
489                 case CHUNK_READ_WRITE:
490                 case CHUNK_CRASHK:
491                         res->name = "System RAM";
492                         break;
493                 case CHUNK_READ_ONLY:
494                         res->name = "System ROM";
495                         res->flags |= IORESOURCE_READONLY;
496                         break;
497                 default:
498                         res->name = "reserved";
499                 }
500                 res->start = memory_chunk[i].addr;
501                 res->end = res->start + memory_chunk[i].size - 1;
502                 request_resource(&iomem_resource, res);
503
504                 for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
505                         std_res = standard_resources[j];
506                         if (std_res->start < res->start ||
507                             std_res->start > res->end)
508                                 continue;
509                         if (std_res->end > res->end) {
510                                 sub_res = alloc_bootmem_low(sizeof(*sub_res));
511                                 *sub_res = *std_res;
512                                 sub_res->end = res->end;
513                                 std_res->start = res->end + 1;
514                                 request_resource(res, sub_res);
515                         } else {
516                                 request_resource(res, std_res);
517                         }
518                 }
519         }
520 }
521
522 unsigned long real_memory_size;
523 EXPORT_SYMBOL_GPL(real_memory_size);
524
525 static void __init setup_memory_end(void)
526 {
527         unsigned long vmax, vmalloc_size, tmp;
528         int i;
529
530
531 #ifdef CONFIG_ZFCPDUMP
532         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
533                 memory_end = ZFCPDUMP_HSA_SIZE;
534                 memory_end_set = 1;
535         }
536 #endif
537         real_memory_size = 0;
538         memory_end &= PAGE_MASK;
539
540         /*
541          * Make sure all chunks are MAX_ORDER aligned so we don't need the
542          * extra checks that HOLES_IN_ZONE would require.
543          */
544         for (i = 0; i < MEMORY_CHUNKS; i++) {
545                 unsigned long start, end;
546                 struct mem_chunk *chunk;
547                 unsigned long align;
548
549                 chunk = &memory_chunk[i];
550                 align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
551                 start = (chunk->addr + align - 1) & ~(align - 1);
552                 end = (chunk->addr + chunk->size) & ~(align - 1);
553                 if (start >= end)
554                         memset(chunk, 0, sizeof(*chunk));
555                 else {
556                         chunk->addr = start;
557                         chunk->size = end - start;
558                 }
559                 real_memory_size = max(real_memory_size,
560                                        chunk->addr + chunk->size);
561         }
562
563         /* Choose kernel address space layout: 2, 3, or 4 levels. */
564 #ifdef CONFIG_64BIT
565         vmalloc_size = VMALLOC_END ?: 128UL << 30;
566         tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
567         tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
568         if (tmp <= (1UL << 42))
569                 vmax = 1UL << 42;       /* 3-level kernel page table */
570         else
571                 vmax = 1UL << 53;       /* 4-level kernel page table */
572 #else
573         vmalloc_size = VMALLOC_END ?: 96UL << 20;
574         vmax = 1UL << 31;               /* 2-level kernel page table */
575 #endif
576         /* vmalloc area is at the end of the kernel address space. */
577         VMALLOC_END = vmax;
578         VMALLOC_START = vmax - vmalloc_size;
579
580         /* Split remaining virtual space between 1:1 mapping & vmemmap array */
581         tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
582         tmp = VMALLOC_START - tmp * sizeof(struct page);
583         tmp &= ~((vmax >> 11) - 1);     /* align to page table level */
584         tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
585         vmemmap = (struct page *) tmp;
586
587         /* Take care that memory_end is set and <= vmemmap */
588         memory_end = min(memory_end ?: real_memory_size, tmp);
589
590         /* Fixup memory chunk array to fit into 0..memory_end */
591         for (i = 0; i < MEMORY_CHUNKS; i++) {
592                 struct mem_chunk *chunk = &memory_chunk[i];
593
594                 if (chunk->addr >= memory_end) {
595                         memset(chunk, 0, sizeof(*chunk));
596                         continue;
597                 }
598                 if (chunk->addr + chunk->size > memory_end)
599                         chunk->size = memory_end - chunk->addr;
600         }
601 }
602
603 static void __init setup_vmcoreinfo(void)
604 {
605 #ifdef CONFIG_KEXEC
606         mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
607 #endif
608 }
609
610 #ifdef CONFIG_CRASH_DUMP
611
612 /*
613  * Find suitable location for crashkernel memory
614  */
615 static unsigned long __init find_crash_base(unsigned long crash_size,
616                                             char **msg)
617 {
618         unsigned long crash_base;
619         struct mem_chunk *chunk;
620         int i;
621
622         if (memory_chunk[0].size < crash_size) {
623                 *msg = "first memory chunk must be at least crashkernel size";
624                 return 0;
625         }
626         if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
627                 return OLDMEM_BASE;
628
629         for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
630                 chunk = &memory_chunk[i];
631                 if (chunk->size == 0)
632                         continue;
633                 if (chunk->type != CHUNK_READ_WRITE)
634                         continue;
635                 if (chunk->size < crash_size)
636                         continue;
637                 crash_base = (chunk->addr + chunk->size) - crash_size;
638                 if (crash_base < crash_size)
639                         continue;
640                 if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
641                         continue;
642                 if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
643                         continue;
644                 return crash_base;
645         }
646         *msg = "no suitable area found";
647         return 0;
648 }
649
650 /*
651  * Check if crash_base and crash_size is valid
652  */
653 static int __init verify_crash_base(unsigned long crash_base,
654                                     unsigned long crash_size,
655                                     char **msg)
656 {
657         struct mem_chunk *chunk;
658         int i;
659
660         /*
661          * Because we do the swap to zero, we must have at least 'crash_size'
662          * bytes free space before crash_base
663          */
664         if (crash_size > crash_base) {
665                 *msg = "crashkernel offset must be greater than size";
666                 return -EINVAL;
667         }
668
669         /* First memory chunk must be at least crash_size */
670         if (memory_chunk[0].size < crash_size) {
671                 *msg = "first memory chunk must be at least crashkernel size";
672                 return -EINVAL;
673         }
674         /* Check if we fit into the respective memory chunk */
675         for (i = 0; i < MEMORY_CHUNKS; i++) {
676                 chunk = &memory_chunk[i];
677                 if (chunk->size == 0)
678                         continue;
679                 if (crash_base < chunk->addr)
680                         continue;
681                 if (crash_base >= chunk->addr + chunk->size)
682                         continue;
683                 /* we have found the memory chunk */
684                 if (crash_base + crash_size > chunk->addr + chunk->size) {
685                         *msg = "selected memory chunk is too small for "
686                                 "crashkernel memory";
687                         return -EINVAL;
688                 }
689                 return 0;
690         }
691         *msg = "invalid memory range specified";
692         return -EINVAL;
693 }
694
695 /*
696  * Reserve kdump memory by creating a memory hole in the mem_chunk array
697  */
698 static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
699                                          int type)
700 {
701         create_mem_hole(memory_chunk, addr, size, type);
702 }
703
704 /*
705  * When kdump is enabled, we have to ensure that no memory from
706  * the area [0 - crashkernel memory size] and
707  * [crashk_res.start - crashk_res.end] is set offline.
708  */
709 static int kdump_mem_notifier(struct notifier_block *nb,
710                               unsigned long action, void *data)
711 {
712         struct memory_notify *arg = data;
713
714         if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
715                 return NOTIFY_BAD;
716         if (arg->start_pfn > PFN_DOWN(crashk_res.end))
717                 return NOTIFY_OK;
718         if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
719                 return NOTIFY_OK;
720         return NOTIFY_BAD;
721 }
722
723 static struct notifier_block kdump_mem_nb = {
724         .notifier_call = kdump_mem_notifier,
725 };
726
727 #endif
728
729 /*
730  * Make sure that oldmem, where the dump is stored, is protected
731  */
732 static void reserve_oldmem(void)
733 {
734 #ifdef CONFIG_CRASH_DUMP
735         if (!OLDMEM_BASE)
736                 return;
737
738         reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
739         reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
740                               CHUNK_OLDMEM);
741         if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
742                 saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
743         else
744                 saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
745 #endif
746 }
747
748 /*
749  * Reserve memory for kdump kernel to be loaded with kexec
750  */
751 static void __init reserve_crashkernel(void)
752 {
753 #ifdef CONFIG_CRASH_DUMP
754         unsigned long long crash_base, crash_size;
755         char *msg = NULL;
756         int rc;
757
758         rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
759                                &crash_base);
760         if (rc || crash_size == 0)
761                 return;
762         crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
763         crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
764         if (register_memory_notifier(&kdump_mem_nb))
765                 return;
766         if (!crash_base)
767                 crash_base = find_crash_base(crash_size, &msg);
768         if (!crash_base) {
769                 pr_info("crashkernel reservation failed: %s\n", msg);
770                 unregister_memory_notifier(&kdump_mem_nb);
771                 return;
772         }
773         if (verify_crash_base(crash_base, crash_size, &msg)) {
774                 pr_info("crashkernel reservation failed: %s\n", msg);
775                 unregister_memory_notifier(&kdump_mem_nb);
776                 return;
777         }
778         if (!OLDMEM_BASE && MACHINE_IS_VM)
779                 diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
780         crashk_res.start = crash_base;
781         crashk_res.end = crash_base + crash_size - 1;
782         insert_resource(&iomem_resource, &crashk_res);
783         reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
784         pr_info("Reserving %lluMB of memory at %lluMB "
785                 "for crashkernel (System RAM: %luMB)\n",
786                 crash_size >> 20, crash_base >> 20, memory_end >> 20);
787         os_info_crashkernel_add(crash_base, crash_size);
788 #endif
789 }
790
791 static void __init setup_memory(void)
792 {
793         unsigned long bootmap_size;
794         unsigned long start_pfn, end_pfn;
795         int i;
796
797         /*
798          * partially used pages are not usable - thus
799          * we are rounding upwards:
800          */
801         start_pfn = PFN_UP(__pa(&_end));
802         end_pfn = max_pfn = PFN_DOWN(memory_end);
803
804 #ifdef CONFIG_BLK_DEV_INITRD
805         /*
806          * Move the initrd in case the bitmap of the bootmem allocater
807          * would overwrite it.
808          */
809
810         if (INITRD_START && INITRD_SIZE) {
811                 unsigned long bmap_size;
812                 unsigned long start;
813
814                 bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
815                 bmap_size = PFN_PHYS(bmap_size);
816
817                 if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
818                         start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
819
820 #ifdef CONFIG_CRASH_DUMP
821                         if (OLDMEM_BASE) {
822                                 /* Move initrd behind kdump oldmem */
823                                 if (start + INITRD_SIZE > OLDMEM_BASE &&
824                                     start < OLDMEM_BASE + OLDMEM_SIZE)
825                                         start = OLDMEM_BASE + OLDMEM_SIZE;
826                         }
827 #endif
828                         if (start + INITRD_SIZE > memory_end) {
829                                 pr_err("initrd extends beyond end of "
830                                        "memory (0x%08lx > 0x%08lx) "
831                                        "disabling initrd\n",
832                                        start + INITRD_SIZE, memory_end);
833                                 INITRD_START = INITRD_SIZE = 0;
834                         } else {
835                                 pr_info("Moving initrd (0x%08lx -> "
836                                         "0x%08lx, size: %ld)\n",
837                                         INITRD_START, start, INITRD_SIZE);
838                                 memmove((void *) start, (void *) INITRD_START,
839                                         INITRD_SIZE);
840                                 INITRD_START = start;
841                         }
842                 }
843         }
844 #endif
845
846         /*
847          * Initialize the boot-time allocator
848          */
849         bootmap_size = init_bootmem(start_pfn, end_pfn);
850
851         /*
852          * Register RAM areas with the bootmem allocator.
853          */
854
855         for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
856                 unsigned long start_chunk, end_chunk, pfn;
857
858                 if (memory_chunk[i].type != CHUNK_READ_WRITE &&
859                     memory_chunk[i].type != CHUNK_CRASHK)
860                         continue;
861                 start_chunk = PFN_DOWN(memory_chunk[i].addr);
862                 end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
863                 end_chunk = min(end_chunk, end_pfn);
864                 if (start_chunk >= end_chunk)
865                         continue;
866                 memblock_add_node(PFN_PHYS(start_chunk),
867                                   PFN_PHYS(end_chunk - start_chunk), 0);
868                 pfn = max(start_chunk, start_pfn);
869                 for (; pfn < end_chunk; pfn++)
870                         page_set_storage_key(PFN_PHYS(pfn),
871                                              PAGE_DEFAULT_KEY, 0);
872         }
873
874         psw_set_key(PAGE_DEFAULT_KEY);
875
876         free_bootmem_with_active_regions(0, max_pfn);
877
878         /*
879          * Reserve memory used for lowcore/command line/kernel image.
880          */
881         reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
882         reserve_bootmem((unsigned long)_stext,
883                         PFN_PHYS(start_pfn) - (unsigned long)_stext,
884                         BOOTMEM_DEFAULT);
885         /*
886          * Reserve the bootmem bitmap itself as well. We do this in two
887          * steps (first step was init_bootmem()) because this catches
888          * the (very unlikely) case of us accidentally initializing the
889          * bootmem allocator with an invalid RAM area.
890          */
891         reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
892                         BOOTMEM_DEFAULT);
893
894 #ifdef CONFIG_CRASH_DUMP
895         if (crashk_res.start)
896                 reserve_bootmem(crashk_res.start,
897                                 crashk_res.end - crashk_res.start + 1,
898                                 BOOTMEM_DEFAULT);
899         if (is_kdump_kernel())
900                 reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
901                                 PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
902 #endif
903 #ifdef CONFIG_BLK_DEV_INITRD
904         if (INITRD_START && INITRD_SIZE) {
905                 if (INITRD_START + INITRD_SIZE <= memory_end) {
906                         reserve_bootmem(INITRD_START, INITRD_SIZE,
907                                         BOOTMEM_DEFAULT);
908                         initrd_start = INITRD_START;
909                         initrd_end = initrd_start + INITRD_SIZE;
910                 } else {
911                         pr_err("initrd extends beyond end of "
912                                "memory (0x%08lx > 0x%08lx) "
913                                "disabling initrd\n",
914                                initrd_start + INITRD_SIZE, memory_end);
915                         initrd_start = initrd_end = 0;
916                 }
917         }
918 #endif
919 }
920
921 /*
922  * Setup hardware capabilities.
923  */
924 static void __init setup_hwcaps(void)
925 {
926         static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
927         struct cpuid cpu_id;
928         int i;
929
930         /*
931          * The store facility list bits numbers as found in the principles
932          * of operation are numbered with bit 1UL<<31 as number 0 to
933          * bit 1UL<<0 as number 31.
934          *   Bit 0: instructions named N3, "backported" to esa-mode
935          *   Bit 2: z/Architecture mode is active
936          *   Bit 7: the store-facility-list-extended facility is installed
937          *   Bit 17: the message-security assist is installed
938          *   Bit 19: the long-displacement facility is installed
939          *   Bit 21: the extended-immediate facility is installed
940          *   Bit 22: extended-translation facility 3 is installed
941          *   Bit 30: extended-translation facility 3 enhancement facility
942          * These get translated to:
943          *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
944          *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
945          *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
946          *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
947          */
948         for (i = 0; i < 6; i++)
949                 if (test_facility(stfl_bits[i]))
950                         elf_hwcap |= 1UL << i;
951
952         if (test_facility(22) && test_facility(30))
953                 elf_hwcap |= HWCAP_S390_ETF3EH;
954
955         /*
956          * Check for additional facilities with store-facility-list-extended.
957          * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
958          * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
959          * as stored by stfl, bits 32-xxx contain additional facilities.
960          * How many facility words are stored depends on the number of
961          * doublewords passed to the instruction. The additional facilities
962          * are:
963          *   Bit 42: decimal floating point facility is installed
964          *   Bit 44: perform floating point operation facility is installed
965          * translated to:
966          *   HWCAP_S390_DFP bit 6 (42 && 44).
967          */
968         if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
969                 elf_hwcap |= HWCAP_S390_DFP;
970
971         /*
972          * Huge page support HWCAP_S390_HPAGE is bit 7.
973          */
974         if (MACHINE_HAS_HPAGE)
975                 elf_hwcap |= HWCAP_S390_HPAGE;
976
977         /*
978          * 64-bit register support for 31-bit processes
979          * HWCAP_S390_HIGH_GPRS is bit 9.
980          */
981         elf_hwcap |= HWCAP_S390_HIGH_GPRS;
982
983         get_cpu_id(&cpu_id);
984         switch (cpu_id.machine) {
985         case 0x9672:
986 #if !defined(CONFIG_64BIT)
987         default:        /* Use "g5" as default for 31 bit kernels. */
988 #endif
989                 strcpy(elf_platform, "g5");
990                 break;
991         case 0x2064:
992         case 0x2066:
993 #if defined(CONFIG_64BIT)
994         default:        /* Use "z900" as default for 64 bit kernels. */
995 #endif
996                 strcpy(elf_platform, "z900");
997                 break;
998         case 0x2084:
999         case 0x2086:
1000                 strcpy(elf_platform, "z990");
1001                 break;
1002         case 0x2094:
1003         case 0x2096:
1004                 strcpy(elf_platform, "z9-109");
1005                 break;
1006         case 0x2097:
1007         case 0x2098:
1008                 strcpy(elf_platform, "z10");
1009                 break;
1010         case 0x2817:
1011         case 0x2818:
1012                 strcpy(elf_platform, "z196");
1013                 break;
1014         }
1015 }
1016
1017 /*
1018  * Setup function called from init/main.c just after the banner
1019  * was printed.
1020  */
1021
1022 void __init setup_arch(char **cmdline_p)
1023 {
1024         /*
1025          * print what head.S has found out about the machine
1026          */
1027 #ifndef CONFIG_64BIT
1028         if (MACHINE_IS_VM)
1029                 pr_info("Linux is running as a z/VM "
1030                         "guest operating system in 31-bit mode\n");
1031         else if (MACHINE_IS_LPAR)
1032                 pr_info("Linux is running natively in 31-bit mode\n");
1033         if (MACHINE_HAS_IEEE)
1034                 pr_info("The hardware system has IEEE compatible "
1035                         "floating point units\n");
1036         else
1037                 pr_info("The hardware system has no IEEE compatible "
1038                         "floating point units\n");
1039 #else /* CONFIG_64BIT */
1040         if (MACHINE_IS_VM)
1041                 pr_info("Linux is running as a z/VM "
1042                         "guest operating system in 64-bit mode\n");
1043         else if (MACHINE_IS_KVM)
1044                 pr_info("Linux is running under KVM in 64-bit mode\n");
1045         else if (MACHINE_IS_LPAR)
1046                 pr_info("Linux is running natively in 64-bit mode\n");
1047 #endif /* CONFIG_64BIT */
1048
1049         /* Have one command line that is parsed and saved in /proc/cmdline */
1050         /* boot_command_line has been already set up in early.c */
1051         *cmdline_p = boot_command_line;
1052
1053         ROOT_DEV = Root_RAM0;
1054
1055         init_mm.start_code = PAGE_OFFSET;
1056         init_mm.end_code = (unsigned long) &_etext;
1057         init_mm.end_data = (unsigned long) &_edata;
1058         init_mm.brk = (unsigned long) &_end;
1059
1060         if (MACHINE_HAS_MVCOS)
1061                 memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1062         else
1063                 memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1064
1065         parse_early_param();
1066
1067         os_info_init();
1068         setup_ipl();
1069         setup_memory_end();
1070         setup_addressing_mode();
1071         reserve_oldmem();
1072         reserve_crashkernel();
1073         setup_memory();
1074         setup_resources();
1075         setup_vmcoreinfo();
1076         setup_lowcore();
1077
1078         cpu_init();
1079         s390_init_cpu_topology();
1080
1081         /*
1082          * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1083          */
1084         setup_hwcaps();
1085
1086         /*
1087          * Create kernel page tables and switch to virtual addressing.
1088          */
1089         paging_init();
1090
1091         /* Setup default console */
1092         conmode_default();
1093         set_preferred_console();
1094
1095         /* Setup zfcpdump support */
1096         setup_zfcpdump(console_devno);
1097 }