]> Pileus Git - ~andy/linux/blob - arch/powerpc/kvm/book3s_hv.c
KVM: PPC: Book3S HV: Implement timebase offset for guests
[~andy/linux] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
62
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL  (~(u64)0)
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
70 {
71         int me;
72         int cpu = vcpu->cpu;
73         wait_queue_head_t *wqp;
74
75         wqp = kvm_arch_vcpu_wq(vcpu);
76         if (waitqueue_active(wqp)) {
77                 wake_up_interruptible(wqp);
78                 ++vcpu->stat.halt_wakeup;
79         }
80
81         me = get_cpu();
82
83         /* CPU points to the first thread of the core */
84         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85                 int real_cpu = cpu + vcpu->arch.ptid;
86                 if (paca[real_cpu].kvm_hstate.xics_phys)
87                         xics_wake_cpu(real_cpu);
88                 else if (cpu_online(cpu))
89                         smp_send_reschedule(cpu);
90         }
91         put_cpu();
92 }
93
94 /*
95  * We use the vcpu_load/put functions to measure stolen time.
96  * Stolen time is counted as time when either the vcpu is able to
97  * run as part of a virtual core, but the task running the vcore
98  * is preempted or sleeping, or when the vcpu needs something done
99  * in the kernel by the task running the vcpu, but that task is
100  * preempted or sleeping.  Those two things have to be counted
101  * separately, since one of the vcpu tasks will take on the job
102  * of running the core, and the other vcpu tasks in the vcore will
103  * sleep waiting for it to do that, but that sleep shouldn't count
104  * as stolen time.
105  *
106  * Hence we accumulate stolen time when the vcpu can run as part of
107  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
108  * needs its task to do other things in the kernel (for example,
109  * service a page fault) in busy_stolen.  We don't accumulate
110  * stolen time for a vcore when it is inactive, or for a vcpu
111  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
112  * a misnomer; it means that the vcpu task is not executing in
113  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
114  * the kernel.  We don't have any way of dividing up that time
115  * between time that the vcpu is genuinely stopped, time that
116  * the task is actively working on behalf of the vcpu, and time
117  * that the task is preempted, so we don't count any of it as
118  * stolen.
119  *
120  * Updates to busy_stolen are protected by arch.tbacct_lock;
121  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
122  * of the vcpu that has taken responsibility for running the vcore
123  * (i.e. vc->runner).  The stolen times are measured in units of
124  * timebase ticks.  (Note that the != TB_NIL checks below are
125  * purely defensive; they should never fail.)
126  */
127
128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
129 {
130         struct kvmppc_vcore *vc = vcpu->arch.vcore;
131
132         spin_lock(&vcpu->arch.tbacct_lock);
133         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
134             vc->preempt_tb != TB_NIL) {
135                 vc->stolen_tb += mftb() - vc->preempt_tb;
136                 vc->preempt_tb = TB_NIL;
137         }
138         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
139             vcpu->arch.busy_preempt != TB_NIL) {
140                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
141                 vcpu->arch.busy_preempt = TB_NIL;
142         }
143         spin_unlock(&vcpu->arch.tbacct_lock);
144 }
145
146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         struct kvmppc_vcore *vc = vcpu->arch.vcore;
149
150         spin_lock(&vcpu->arch.tbacct_lock);
151         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
152                 vc->preempt_tb = mftb();
153         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
154                 vcpu->arch.busy_preempt = mftb();
155         spin_unlock(&vcpu->arch.tbacct_lock);
156 }
157
158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
159 {
160         vcpu->arch.shregs.msr = msr;
161         kvmppc_end_cede(vcpu);
162 }
163
164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
165 {
166         vcpu->arch.pvr = pvr;
167 }
168
169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
170 {
171         int r;
172
173         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
174         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
175                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
176         for (r = 0; r < 16; ++r)
177                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
178                        r, kvmppc_get_gpr(vcpu, r),
179                        r+16, kvmppc_get_gpr(vcpu, r+16));
180         pr_err("ctr = %.16lx  lr  = %.16lx\n",
181                vcpu->arch.ctr, vcpu->arch.lr);
182         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
183                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
184         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
185                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
186         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
187                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
188         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
189                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
190         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
191         pr_err("fault dar = %.16lx dsisr = %.8x\n",
192                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
193         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
194         for (r = 0; r < vcpu->arch.slb_max; ++r)
195                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
196                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
197         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199                vcpu->arch.last_inst);
200 }
201
202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
203 {
204         int r;
205         struct kvm_vcpu *v, *ret = NULL;
206
207         mutex_lock(&kvm->lock);
208         kvm_for_each_vcpu(r, v, kvm) {
209                 if (v->vcpu_id == id) {
210                         ret = v;
211                         break;
212                 }
213         }
214         mutex_unlock(&kvm->lock);
215         return ret;
216 }
217
218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
219 {
220         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
221         vpa->yield_count = 1;
222 }
223
224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
225                    unsigned long addr, unsigned long len)
226 {
227         /* check address is cacheline aligned */
228         if (addr & (L1_CACHE_BYTES - 1))
229                 return -EINVAL;
230         spin_lock(&vcpu->arch.vpa_update_lock);
231         if (v->next_gpa != addr || v->len != len) {
232                 v->next_gpa = addr;
233                 v->len = addr ? len : 0;
234                 v->update_pending = 1;
235         }
236         spin_unlock(&vcpu->arch.vpa_update_lock);
237         return 0;
238 }
239
240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
241 struct reg_vpa {
242         u32 dummy;
243         union {
244                 u16 hword;
245                 u32 word;
246         } length;
247 };
248
249 static int vpa_is_registered(struct kvmppc_vpa *vpap)
250 {
251         if (vpap->update_pending)
252                 return vpap->next_gpa != 0;
253         return vpap->pinned_addr != NULL;
254 }
255
256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
257                                        unsigned long flags,
258                                        unsigned long vcpuid, unsigned long vpa)
259 {
260         struct kvm *kvm = vcpu->kvm;
261         unsigned long len, nb;
262         void *va;
263         struct kvm_vcpu *tvcpu;
264         int err;
265         int subfunc;
266         struct kvmppc_vpa *vpap;
267
268         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
269         if (!tvcpu)
270                 return H_PARAMETER;
271
272         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
273         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
274             subfunc == H_VPA_REG_SLB) {
275                 /* Registering new area - address must be cache-line aligned */
276                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277                         return H_PARAMETER;
278
279                 /* convert logical addr to kernel addr and read length */
280                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
281                 if (va == NULL)
282                         return H_PARAMETER;
283                 if (subfunc == H_VPA_REG_VPA)
284                         len = ((struct reg_vpa *)va)->length.hword;
285                 else
286                         len = ((struct reg_vpa *)va)->length.word;
287                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
288
289                 /* Check length */
290                 if (len > nb || len < sizeof(struct reg_vpa))
291                         return H_PARAMETER;
292         } else {
293                 vpa = 0;
294                 len = 0;
295         }
296
297         err = H_PARAMETER;
298         vpap = NULL;
299         spin_lock(&tvcpu->arch.vpa_update_lock);
300
301         switch (subfunc) {
302         case H_VPA_REG_VPA:             /* register VPA */
303                 if (len < sizeof(struct lppaca))
304                         break;
305                 vpap = &tvcpu->arch.vpa;
306                 err = 0;
307                 break;
308
309         case H_VPA_REG_DTL:             /* register DTL */
310                 if (len < sizeof(struct dtl_entry))
311                         break;
312                 len -= len % sizeof(struct dtl_entry);
313
314                 /* Check that they have previously registered a VPA */
315                 err = H_RESOURCE;
316                 if (!vpa_is_registered(&tvcpu->arch.vpa))
317                         break;
318
319                 vpap = &tvcpu->arch.dtl;
320                 err = 0;
321                 break;
322
323         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
324                 /* Check that they have previously registered a VPA */
325                 err = H_RESOURCE;
326                 if (!vpa_is_registered(&tvcpu->arch.vpa))
327                         break;
328
329                 vpap = &tvcpu->arch.slb_shadow;
330                 err = 0;
331                 break;
332
333         case H_VPA_DEREG_VPA:           /* deregister VPA */
334                 /* Check they don't still have a DTL or SLB buf registered */
335                 err = H_RESOURCE;
336                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
337                     vpa_is_registered(&tvcpu->arch.slb_shadow))
338                         break;
339
340                 vpap = &tvcpu->arch.vpa;
341                 err = 0;
342                 break;
343
344         case H_VPA_DEREG_DTL:           /* deregister DTL */
345                 vpap = &tvcpu->arch.dtl;
346                 err = 0;
347                 break;
348
349         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
350                 vpap = &tvcpu->arch.slb_shadow;
351                 err = 0;
352                 break;
353         }
354
355         if (vpap) {
356                 vpap->next_gpa = vpa;
357                 vpap->len = len;
358                 vpap->update_pending = 1;
359         }
360
361         spin_unlock(&tvcpu->arch.vpa_update_lock);
362
363         return err;
364 }
365
366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367 {
368         struct kvm *kvm = vcpu->kvm;
369         void *va;
370         unsigned long nb;
371         unsigned long gpa;
372
373         /*
374          * We need to pin the page pointed to by vpap->next_gpa,
375          * but we can't call kvmppc_pin_guest_page under the lock
376          * as it does get_user_pages() and down_read().  So we
377          * have to drop the lock, pin the page, then get the lock
378          * again and check that a new area didn't get registered
379          * in the meantime.
380          */
381         for (;;) {
382                 gpa = vpap->next_gpa;
383                 spin_unlock(&vcpu->arch.vpa_update_lock);
384                 va = NULL;
385                 nb = 0;
386                 if (gpa)
387                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388                 spin_lock(&vcpu->arch.vpa_update_lock);
389                 if (gpa == vpap->next_gpa)
390                         break;
391                 /* sigh... unpin that one and try again */
392                 if (va)
393                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
394         }
395
396         vpap->update_pending = 0;
397         if (va && nb < vpap->len) {
398                 /*
399                  * If it's now too short, it must be that userspace
400                  * has changed the mappings underlying guest memory,
401                  * so unregister the region.
402                  */
403                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
404                 va = NULL;
405         }
406         if (vpap->pinned_addr)
407                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
408                                         vpap->dirty);
409         vpap->gpa = gpa;
410         vpap->pinned_addr = va;
411         vpap->dirty = false;
412         if (va)
413                 vpap->pinned_end = va + vpap->len;
414 }
415
416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
417 {
418         if (!(vcpu->arch.vpa.update_pending ||
419               vcpu->arch.slb_shadow.update_pending ||
420               vcpu->arch.dtl.update_pending))
421                 return;
422
423         spin_lock(&vcpu->arch.vpa_update_lock);
424         if (vcpu->arch.vpa.update_pending) {
425                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426                 if (vcpu->arch.vpa.pinned_addr)
427                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428         }
429         if (vcpu->arch.dtl.update_pending) {
430                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
432                 vcpu->arch.dtl_index = 0;
433         }
434         if (vcpu->arch.slb_shadow.update_pending)
435                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436         spin_unlock(&vcpu->arch.vpa_update_lock);
437 }
438
439 /*
440  * Return the accumulated stolen time for the vcore up until `now'.
441  * The caller should hold the vcore lock.
442  */
443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
444 {
445         u64 p;
446
447         /*
448          * If we are the task running the vcore, then since we hold
449          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
450          * can't be updated, so we don't need the tbacct_lock.
451          * If the vcore is inactive, it can't become active (since we
452          * hold the vcore lock), so the vcpu load/put functions won't
453          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
454          */
455         if (vc->vcore_state != VCORE_INACTIVE &&
456             vc->runner->arch.run_task != current) {
457                 spin_lock(&vc->runner->arch.tbacct_lock);
458                 p = vc->stolen_tb;
459                 if (vc->preempt_tb != TB_NIL)
460                         p += now - vc->preempt_tb;
461                 spin_unlock(&vc->runner->arch.tbacct_lock);
462         } else {
463                 p = vc->stolen_tb;
464         }
465         return p;
466 }
467
468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
469                                     struct kvmppc_vcore *vc)
470 {
471         struct dtl_entry *dt;
472         struct lppaca *vpa;
473         unsigned long stolen;
474         unsigned long core_stolen;
475         u64 now;
476
477         dt = vcpu->arch.dtl_ptr;
478         vpa = vcpu->arch.vpa.pinned_addr;
479         now = mftb();
480         core_stolen = vcore_stolen_time(vc, now);
481         stolen = core_stolen - vcpu->arch.stolen_logged;
482         vcpu->arch.stolen_logged = core_stolen;
483         spin_lock(&vcpu->arch.tbacct_lock);
484         stolen += vcpu->arch.busy_stolen;
485         vcpu->arch.busy_stolen = 0;
486         spin_unlock(&vcpu->arch.tbacct_lock);
487         if (!dt || !vpa)
488                 return;
489         memset(dt, 0, sizeof(struct dtl_entry));
490         dt->dispatch_reason = 7;
491         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492         dt->timebase = now + vc->tb_offset;
493         dt->enqueue_to_dispatch_time = stolen;
494         dt->srr0 = kvmppc_get_pc(vcpu);
495         dt->srr1 = vcpu->arch.shregs.msr;
496         ++dt;
497         if (dt == vcpu->arch.dtl.pinned_end)
498                 dt = vcpu->arch.dtl.pinned_addr;
499         vcpu->arch.dtl_ptr = dt;
500         /* order writing *dt vs. writing vpa->dtl_idx */
501         smp_wmb();
502         vpa->dtl_idx = ++vcpu->arch.dtl_index;
503         vcpu->arch.dtl.dirty = true;
504 }
505
506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
507 {
508         unsigned long req = kvmppc_get_gpr(vcpu, 3);
509         unsigned long target, ret = H_SUCCESS;
510         struct kvm_vcpu *tvcpu;
511         int idx, rc;
512
513         switch (req) {
514         case H_ENTER:
515                 idx = srcu_read_lock(&vcpu->kvm->srcu);
516                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
517                                               kvmppc_get_gpr(vcpu, 5),
518                                               kvmppc_get_gpr(vcpu, 6),
519                                               kvmppc_get_gpr(vcpu, 7));
520                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
521                 break;
522         case H_CEDE:
523                 break;
524         case H_PROD:
525                 target = kvmppc_get_gpr(vcpu, 4);
526                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
527                 if (!tvcpu) {
528                         ret = H_PARAMETER;
529                         break;
530                 }
531                 tvcpu->arch.prodded = 1;
532                 smp_mb();
533                 if (vcpu->arch.ceded) {
534                         if (waitqueue_active(&vcpu->wq)) {
535                                 wake_up_interruptible(&vcpu->wq);
536                                 vcpu->stat.halt_wakeup++;
537                         }
538                 }
539                 break;
540         case H_CONFER:
541                 break;
542         case H_REGISTER_VPA:
543                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
544                                         kvmppc_get_gpr(vcpu, 5),
545                                         kvmppc_get_gpr(vcpu, 6));
546                 break;
547         case H_RTAS:
548                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
549                         return RESUME_HOST;
550
551                 rc = kvmppc_rtas_hcall(vcpu);
552
553                 if (rc == -ENOENT)
554                         return RESUME_HOST;
555                 else if (rc == 0)
556                         break;
557
558                 /* Send the error out to userspace via KVM_RUN */
559                 return rc;
560
561         case H_XIRR:
562         case H_CPPR:
563         case H_EOI:
564         case H_IPI:
565         case H_IPOLL:
566         case H_XIRR_X:
567                 if (kvmppc_xics_enabled(vcpu)) {
568                         ret = kvmppc_xics_hcall(vcpu, req);
569                         break;
570                 } /* fallthrough */
571         default:
572                 return RESUME_HOST;
573         }
574         kvmppc_set_gpr(vcpu, 3, ret);
575         vcpu->arch.hcall_needed = 0;
576         return RESUME_GUEST;
577 }
578
579 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
580                               struct task_struct *tsk)
581 {
582         int r = RESUME_HOST;
583
584         vcpu->stat.sum_exits++;
585
586         run->exit_reason = KVM_EXIT_UNKNOWN;
587         run->ready_for_interrupt_injection = 1;
588         switch (vcpu->arch.trap) {
589         /* We're good on these - the host merely wanted to get our attention */
590         case BOOK3S_INTERRUPT_HV_DECREMENTER:
591                 vcpu->stat.dec_exits++;
592                 r = RESUME_GUEST;
593                 break;
594         case BOOK3S_INTERRUPT_EXTERNAL:
595                 vcpu->stat.ext_intr_exits++;
596                 r = RESUME_GUEST;
597                 break;
598         case BOOK3S_INTERRUPT_PERFMON:
599                 r = RESUME_GUEST;
600                 break;
601         case BOOK3S_INTERRUPT_MACHINE_CHECK:
602                 /*
603                  * Deliver a machine check interrupt to the guest.
604                  * We have to do this, even if the host has handled the
605                  * machine check, because machine checks use SRR0/1 and
606                  * the interrupt might have trashed guest state in them.
607                  */
608                 kvmppc_book3s_queue_irqprio(vcpu,
609                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
610                 r = RESUME_GUEST;
611                 break;
612         case BOOK3S_INTERRUPT_PROGRAM:
613         {
614                 ulong flags;
615                 /*
616                  * Normally program interrupts are delivered directly
617                  * to the guest by the hardware, but we can get here
618                  * as a result of a hypervisor emulation interrupt
619                  * (e40) getting turned into a 700 by BML RTAS.
620                  */
621                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
622                 kvmppc_core_queue_program(vcpu, flags);
623                 r = RESUME_GUEST;
624                 break;
625         }
626         case BOOK3S_INTERRUPT_SYSCALL:
627         {
628                 /* hcall - punt to userspace */
629                 int i;
630
631                 if (vcpu->arch.shregs.msr & MSR_PR) {
632                         /* sc 1 from userspace - reflect to guest syscall */
633                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
634                         r = RESUME_GUEST;
635                         break;
636                 }
637                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
638                 for (i = 0; i < 9; ++i)
639                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
640                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
641                 vcpu->arch.hcall_needed = 1;
642                 r = RESUME_HOST;
643                 break;
644         }
645         /*
646          * We get these next two if the guest accesses a page which it thinks
647          * it has mapped but which is not actually present, either because
648          * it is for an emulated I/O device or because the corresonding
649          * host page has been paged out.  Any other HDSI/HISI interrupts
650          * have been handled already.
651          */
652         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
653                 r = RESUME_PAGE_FAULT;
654                 break;
655         case BOOK3S_INTERRUPT_H_INST_STORAGE:
656                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
657                 vcpu->arch.fault_dsisr = 0;
658                 r = RESUME_PAGE_FAULT;
659                 break;
660         /*
661          * This occurs if the guest executes an illegal instruction.
662          * We just generate a program interrupt to the guest, since
663          * we don't emulate any guest instructions at this stage.
664          */
665         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
666                 kvmppc_core_queue_program(vcpu, 0x80000);
667                 r = RESUME_GUEST;
668                 break;
669         default:
670                 kvmppc_dump_regs(vcpu);
671                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
672                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
673                         vcpu->arch.shregs.msr);
674                 r = RESUME_HOST;
675                 BUG();
676                 break;
677         }
678
679         return r;
680 }
681
682 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
683                                   struct kvm_sregs *sregs)
684 {
685         int i;
686
687         memset(sregs, 0, sizeof(struct kvm_sregs));
688         sregs->pvr = vcpu->arch.pvr;
689         for (i = 0; i < vcpu->arch.slb_max; i++) {
690                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
691                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
692         }
693
694         return 0;
695 }
696
697 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
698                                   struct kvm_sregs *sregs)
699 {
700         int i, j;
701
702         kvmppc_set_pvr(vcpu, sregs->pvr);
703
704         j = 0;
705         for (i = 0; i < vcpu->arch.slb_nr; i++) {
706                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
707                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
708                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
709                         ++j;
710                 }
711         }
712         vcpu->arch.slb_max = j;
713
714         return 0;
715 }
716
717 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
718 {
719         int r = 0;
720         long int i;
721
722         switch (id) {
723         case KVM_REG_PPC_HIOR:
724                 *val = get_reg_val(id, 0);
725                 break;
726         case KVM_REG_PPC_DABR:
727                 *val = get_reg_val(id, vcpu->arch.dabr);
728                 break;
729         case KVM_REG_PPC_DSCR:
730                 *val = get_reg_val(id, vcpu->arch.dscr);
731                 break;
732         case KVM_REG_PPC_PURR:
733                 *val = get_reg_val(id, vcpu->arch.purr);
734                 break;
735         case KVM_REG_PPC_SPURR:
736                 *val = get_reg_val(id, vcpu->arch.spurr);
737                 break;
738         case KVM_REG_PPC_AMR:
739                 *val = get_reg_val(id, vcpu->arch.amr);
740                 break;
741         case KVM_REG_PPC_UAMOR:
742                 *val = get_reg_val(id, vcpu->arch.uamor);
743                 break;
744         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
745                 i = id - KVM_REG_PPC_MMCR0;
746                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
747                 break;
748         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
749                 i = id - KVM_REG_PPC_PMC1;
750                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
751                 break;
752         case KVM_REG_PPC_SIAR:
753                 *val = get_reg_val(id, vcpu->arch.siar);
754                 break;
755         case KVM_REG_PPC_SDAR:
756                 *val = get_reg_val(id, vcpu->arch.sdar);
757                 break;
758 #ifdef CONFIG_VSX
759         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
760                 if (cpu_has_feature(CPU_FTR_VSX)) {
761                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
762                         long int i = id - KVM_REG_PPC_FPR0;
763                         *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
764                 } else {
765                         /* let generic code handle it */
766                         r = -EINVAL;
767                 }
768                 break;
769         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
770                 if (cpu_has_feature(CPU_FTR_VSX)) {
771                         long int i = id - KVM_REG_PPC_VSR0;
772                         val->vsxval[0] = vcpu->arch.vsr[2 * i];
773                         val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
774                 } else {
775                         r = -ENXIO;
776                 }
777                 break;
778 #endif /* CONFIG_VSX */
779         case KVM_REG_PPC_VPA_ADDR:
780                 spin_lock(&vcpu->arch.vpa_update_lock);
781                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
782                 spin_unlock(&vcpu->arch.vpa_update_lock);
783                 break;
784         case KVM_REG_PPC_VPA_SLB:
785                 spin_lock(&vcpu->arch.vpa_update_lock);
786                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
787                 val->vpaval.length = vcpu->arch.slb_shadow.len;
788                 spin_unlock(&vcpu->arch.vpa_update_lock);
789                 break;
790         case KVM_REG_PPC_VPA_DTL:
791                 spin_lock(&vcpu->arch.vpa_update_lock);
792                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
793                 val->vpaval.length = vcpu->arch.dtl.len;
794                 spin_unlock(&vcpu->arch.vpa_update_lock);
795                 break;
796         case KVM_REG_PPC_TB_OFFSET:
797                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
798                 break;
799         default:
800                 r = -EINVAL;
801                 break;
802         }
803
804         return r;
805 }
806
807 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
808 {
809         int r = 0;
810         long int i;
811         unsigned long addr, len;
812
813         switch (id) {
814         case KVM_REG_PPC_HIOR:
815                 /* Only allow this to be set to zero */
816                 if (set_reg_val(id, *val))
817                         r = -EINVAL;
818                 break;
819         case KVM_REG_PPC_DABR:
820                 vcpu->arch.dabr = set_reg_val(id, *val);
821                 break;
822         case KVM_REG_PPC_DSCR:
823                 vcpu->arch.dscr = set_reg_val(id, *val);
824                 break;
825         case KVM_REG_PPC_PURR:
826                 vcpu->arch.purr = set_reg_val(id, *val);
827                 break;
828         case KVM_REG_PPC_SPURR:
829                 vcpu->arch.spurr = set_reg_val(id, *val);
830                 break;
831         case KVM_REG_PPC_AMR:
832                 vcpu->arch.amr = set_reg_val(id, *val);
833                 break;
834         case KVM_REG_PPC_UAMOR:
835                 vcpu->arch.uamor = set_reg_val(id, *val);
836                 break;
837         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
838                 i = id - KVM_REG_PPC_MMCR0;
839                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
840                 break;
841         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
842                 i = id - KVM_REG_PPC_PMC1;
843                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
844                 break;
845         case KVM_REG_PPC_SIAR:
846                 vcpu->arch.siar = set_reg_val(id, *val);
847                 break;
848         case KVM_REG_PPC_SDAR:
849                 vcpu->arch.sdar = set_reg_val(id, *val);
850                 break;
851 #ifdef CONFIG_VSX
852         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
853                 if (cpu_has_feature(CPU_FTR_VSX)) {
854                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
855                         long int i = id - KVM_REG_PPC_FPR0;
856                         vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
857                 } else {
858                         /* let generic code handle it */
859                         r = -EINVAL;
860                 }
861                 break;
862         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
863                 if (cpu_has_feature(CPU_FTR_VSX)) {
864                         long int i = id - KVM_REG_PPC_VSR0;
865                         vcpu->arch.vsr[2 * i] = val->vsxval[0];
866                         vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
867                 } else {
868                         r = -ENXIO;
869                 }
870                 break;
871 #endif /* CONFIG_VSX */
872         case KVM_REG_PPC_VPA_ADDR:
873                 addr = set_reg_val(id, *val);
874                 r = -EINVAL;
875                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
876                               vcpu->arch.dtl.next_gpa))
877                         break;
878                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
879                 break;
880         case KVM_REG_PPC_VPA_SLB:
881                 addr = val->vpaval.addr;
882                 len = val->vpaval.length;
883                 r = -EINVAL;
884                 if (addr && !vcpu->arch.vpa.next_gpa)
885                         break;
886                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
887                 break;
888         case KVM_REG_PPC_VPA_DTL:
889                 addr = val->vpaval.addr;
890                 len = val->vpaval.length;
891                 r = -EINVAL;
892                 if (addr && (len < sizeof(struct dtl_entry) ||
893                              !vcpu->arch.vpa.next_gpa))
894                         break;
895                 len -= len % sizeof(struct dtl_entry);
896                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
897                 break;
898         case KVM_REG_PPC_TB_OFFSET:
899                 /* round up to multiple of 2^24 */
900                 vcpu->arch.vcore->tb_offset =
901                         ALIGN(set_reg_val(id, *val), 1UL << 24);
902                 break;
903         default:
904                 r = -EINVAL;
905                 break;
906         }
907
908         return r;
909 }
910
911 int kvmppc_core_check_processor_compat(void)
912 {
913         if (cpu_has_feature(CPU_FTR_HVMODE))
914                 return 0;
915         return -EIO;
916 }
917
918 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
919 {
920         struct kvm_vcpu *vcpu;
921         int err = -EINVAL;
922         int core;
923         struct kvmppc_vcore *vcore;
924
925         core = id / threads_per_core;
926         if (core >= KVM_MAX_VCORES)
927                 goto out;
928
929         err = -ENOMEM;
930         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
931         if (!vcpu)
932                 goto out;
933
934         err = kvm_vcpu_init(vcpu, kvm, id);
935         if (err)
936                 goto free_vcpu;
937
938         vcpu->arch.shared = &vcpu->arch.shregs;
939         vcpu->arch.mmcr[0] = MMCR0_FC;
940         vcpu->arch.ctrl = CTRL_RUNLATCH;
941         /* default to host PVR, since we can't spoof it */
942         vcpu->arch.pvr = mfspr(SPRN_PVR);
943         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
944         spin_lock_init(&vcpu->arch.vpa_update_lock);
945         spin_lock_init(&vcpu->arch.tbacct_lock);
946         vcpu->arch.busy_preempt = TB_NIL;
947
948         kvmppc_mmu_book3s_hv_init(vcpu);
949
950         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
951
952         init_waitqueue_head(&vcpu->arch.cpu_run);
953
954         mutex_lock(&kvm->lock);
955         vcore = kvm->arch.vcores[core];
956         if (!vcore) {
957                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
958                 if (vcore) {
959                         INIT_LIST_HEAD(&vcore->runnable_threads);
960                         spin_lock_init(&vcore->lock);
961                         init_waitqueue_head(&vcore->wq);
962                         vcore->preempt_tb = TB_NIL;
963                 }
964                 kvm->arch.vcores[core] = vcore;
965                 kvm->arch.online_vcores++;
966         }
967         mutex_unlock(&kvm->lock);
968
969         if (!vcore)
970                 goto free_vcpu;
971
972         spin_lock(&vcore->lock);
973         ++vcore->num_threads;
974         spin_unlock(&vcore->lock);
975         vcpu->arch.vcore = vcore;
976
977         vcpu->arch.cpu_type = KVM_CPU_3S_64;
978         kvmppc_sanity_check(vcpu);
979
980         return vcpu;
981
982 free_vcpu:
983         kmem_cache_free(kvm_vcpu_cache, vcpu);
984 out:
985         return ERR_PTR(err);
986 }
987
988 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
989 {
990         if (vpa->pinned_addr)
991                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
992                                         vpa->dirty);
993 }
994
995 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
996 {
997         spin_lock(&vcpu->arch.vpa_update_lock);
998         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
999         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1000         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1001         spin_unlock(&vcpu->arch.vpa_update_lock);
1002         kvm_vcpu_uninit(vcpu);
1003         kmem_cache_free(kvm_vcpu_cache, vcpu);
1004 }
1005
1006 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1007 {
1008         unsigned long dec_nsec, now;
1009
1010         now = get_tb();
1011         if (now > vcpu->arch.dec_expires) {
1012                 /* decrementer has already gone negative */
1013                 kvmppc_core_queue_dec(vcpu);
1014                 kvmppc_core_prepare_to_enter(vcpu);
1015                 return;
1016         }
1017         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1018                    / tb_ticks_per_sec;
1019         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1020                       HRTIMER_MODE_REL);
1021         vcpu->arch.timer_running = 1;
1022 }
1023
1024 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1025 {
1026         vcpu->arch.ceded = 0;
1027         if (vcpu->arch.timer_running) {
1028                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1029                 vcpu->arch.timer_running = 0;
1030         }
1031 }
1032
1033 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1034
1035 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1036                                    struct kvm_vcpu *vcpu)
1037 {
1038         u64 now;
1039
1040         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1041                 return;
1042         spin_lock(&vcpu->arch.tbacct_lock);
1043         now = mftb();
1044         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1045                 vcpu->arch.stolen_logged;
1046         vcpu->arch.busy_preempt = now;
1047         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1048         spin_unlock(&vcpu->arch.tbacct_lock);
1049         --vc->n_runnable;
1050         list_del(&vcpu->arch.run_list);
1051 }
1052
1053 static int kvmppc_grab_hwthread(int cpu)
1054 {
1055         struct paca_struct *tpaca;
1056         long timeout = 1000;
1057
1058         tpaca = &paca[cpu];
1059
1060         /* Ensure the thread won't go into the kernel if it wakes */
1061         tpaca->kvm_hstate.hwthread_req = 1;
1062         tpaca->kvm_hstate.kvm_vcpu = NULL;
1063
1064         /*
1065          * If the thread is already executing in the kernel (e.g. handling
1066          * a stray interrupt), wait for it to get back to nap mode.
1067          * The smp_mb() is to ensure that our setting of hwthread_req
1068          * is visible before we look at hwthread_state, so if this
1069          * races with the code at system_reset_pSeries and the thread
1070          * misses our setting of hwthread_req, we are sure to see its
1071          * setting of hwthread_state, and vice versa.
1072          */
1073         smp_mb();
1074         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1075                 if (--timeout <= 0) {
1076                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1077                         return -EBUSY;
1078                 }
1079                 udelay(1);
1080         }
1081         return 0;
1082 }
1083
1084 static void kvmppc_release_hwthread(int cpu)
1085 {
1086         struct paca_struct *tpaca;
1087
1088         tpaca = &paca[cpu];
1089         tpaca->kvm_hstate.hwthread_req = 0;
1090         tpaca->kvm_hstate.kvm_vcpu = NULL;
1091 }
1092
1093 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1094 {
1095         int cpu;
1096         struct paca_struct *tpaca;
1097         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1098
1099         if (vcpu->arch.timer_running) {
1100                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1101                 vcpu->arch.timer_running = 0;
1102         }
1103         cpu = vc->pcpu + vcpu->arch.ptid;
1104         tpaca = &paca[cpu];
1105         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1106         tpaca->kvm_hstate.kvm_vcore = vc;
1107         tpaca->kvm_hstate.napping = 0;
1108         vcpu->cpu = vc->pcpu;
1109         smp_wmb();
1110 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1111         if (vcpu->arch.ptid) {
1112                 xics_wake_cpu(cpu);
1113                 ++vc->n_woken;
1114         }
1115 #endif
1116 }
1117
1118 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1119 {
1120         int i;
1121
1122         HMT_low();
1123         i = 0;
1124         while (vc->nap_count < vc->n_woken) {
1125                 if (++i >= 1000000) {
1126                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1127                                vc->nap_count, vc->n_woken);
1128                         break;
1129                 }
1130                 cpu_relax();
1131         }
1132         HMT_medium();
1133 }
1134
1135 /*
1136  * Check that we are on thread 0 and that any other threads in
1137  * this core are off-line.  Then grab the threads so they can't
1138  * enter the kernel.
1139  */
1140 static int on_primary_thread(void)
1141 {
1142         int cpu = smp_processor_id();
1143         int thr = cpu_thread_in_core(cpu);
1144
1145         if (thr)
1146                 return 0;
1147         while (++thr < threads_per_core)
1148                 if (cpu_online(cpu + thr))
1149                         return 0;
1150
1151         /* Grab all hw threads so they can't go into the kernel */
1152         for (thr = 1; thr < threads_per_core; ++thr) {
1153                 if (kvmppc_grab_hwthread(cpu + thr)) {
1154                         /* Couldn't grab one; let the others go */
1155                         do {
1156                                 kvmppc_release_hwthread(cpu + thr);
1157                         } while (--thr > 0);
1158                         return 0;
1159                 }
1160         }
1161         return 1;
1162 }
1163
1164 /*
1165  * Run a set of guest threads on a physical core.
1166  * Called with vc->lock held.
1167  */
1168 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1169 {
1170         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1171         long ret;
1172         u64 now;
1173         int ptid, i, need_vpa_update;
1174         int srcu_idx;
1175         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1176
1177         /* don't start if any threads have a signal pending */
1178         need_vpa_update = 0;
1179         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1180                 if (signal_pending(vcpu->arch.run_task))
1181                         return;
1182                 if (vcpu->arch.vpa.update_pending ||
1183                     vcpu->arch.slb_shadow.update_pending ||
1184                     vcpu->arch.dtl.update_pending)
1185                         vcpus_to_update[need_vpa_update++] = vcpu;
1186         }
1187
1188         /*
1189          * Initialize *vc, in particular vc->vcore_state, so we can
1190          * drop the vcore lock if necessary.
1191          */
1192         vc->n_woken = 0;
1193         vc->nap_count = 0;
1194         vc->entry_exit_count = 0;
1195         vc->vcore_state = VCORE_STARTING;
1196         vc->in_guest = 0;
1197         vc->napping_threads = 0;
1198
1199         /*
1200          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1201          * which can't be called with any spinlocks held.
1202          */
1203         if (need_vpa_update) {
1204                 spin_unlock(&vc->lock);
1205                 for (i = 0; i < need_vpa_update; ++i)
1206                         kvmppc_update_vpas(vcpus_to_update[i]);
1207                 spin_lock(&vc->lock);
1208         }
1209
1210         /*
1211          * Assign physical thread IDs, first to non-ceded vcpus
1212          * and then to ceded ones.
1213          */
1214         ptid = 0;
1215         vcpu0 = NULL;
1216         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1217                 if (!vcpu->arch.ceded) {
1218                         if (!ptid)
1219                                 vcpu0 = vcpu;
1220                         vcpu->arch.ptid = ptid++;
1221                 }
1222         }
1223         if (!vcpu0)
1224                 goto out;       /* nothing to run; should never happen */
1225         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1226                 if (vcpu->arch.ceded)
1227                         vcpu->arch.ptid = ptid++;
1228
1229         /*
1230          * Make sure we are running on thread 0, and that
1231          * secondary threads are offline.
1232          */
1233         if (threads_per_core > 1 && !on_primary_thread()) {
1234                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1235                         vcpu->arch.ret = -EBUSY;
1236                 goto out;
1237         }
1238
1239         vc->pcpu = smp_processor_id();
1240         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1241                 kvmppc_start_thread(vcpu);
1242                 kvmppc_create_dtl_entry(vcpu, vc);
1243         }
1244
1245         vc->vcore_state = VCORE_RUNNING;
1246         preempt_disable();
1247         spin_unlock(&vc->lock);
1248
1249         kvm_guest_enter();
1250
1251         srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1252
1253         __kvmppc_vcore_entry(NULL, vcpu0);
1254
1255         spin_lock(&vc->lock);
1256         /* disable sending of IPIs on virtual external irqs */
1257         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1258                 vcpu->cpu = -1;
1259         /* wait for secondary threads to finish writing their state to memory */
1260         if (vc->nap_count < vc->n_woken)
1261                 kvmppc_wait_for_nap(vc);
1262         for (i = 0; i < threads_per_core; ++i)
1263                 kvmppc_release_hwthread(vc->pcpu + i);
1264         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1265         vc->vcore_state = VCORE_EXITING;
1266         spin_unlock(&vc->lock);
1267
1268         srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1269
1270         /* make sure updates to secondary vcpu structs are visible now */
1271         smp_mb();
1272         kvm_guest_exit();
1273
1274         preempt_enable();
1275         kvm_resched(vcpu);
1276
1277         spin_lock(&vc->lock);
1278         now = get_tb();
1279         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1280                 /* cancel pending dec exception if dec is positive */
1281                 if (now < vcpu->arch.dec_expires &&
1282                     kvmppc_core_pending_dec(vcpu))
1283                         kvmppc_core_dequeue_dec(vcpu);
1284
1285                 ret = RESUME_GUEST;
1286                 if (vcpu->arch.trap)
1287                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1288                                                  vcpu->arch.run_task);
1289
1290                 vcpu->arch.ret = ret;
1291                 vcpu->arch.trap = 0;
1292
1293                 if (vcpu->arch.ceded) {
1294                         if (ret != RESUME_GUEST)
1295                                 kvmppc_end_cede(vcpu);
1296                         else
1297                                 kvmppc_set_timer(vcpu);
1298                 }
1299         }
1300
1301  out:
1302         vc->vcore_state = VCORE_INACTIVE;
1303         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1304                                  arch.run_list) {
1305                 if (vcpu->arch.ret != RESUME_GUEST) {
1306                         kvmppc_remove_runnable(vc, vcpu);
1307                         wake_up(&vcpu->arch.cpu_run);
1308                 }
1309         }
1310 }
1311
1312 /*
1313  * Wait for some other vcpu thread to execute us, and
1314  * wake us up when we need to handle something in the host.
1315  */
1316 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1317 {
1318         DEFINE_WAIT(wait);
1319
1320         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1321         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1322                 schedule();
1323         finish_wait(&vcpu->arch.cpu_run, &wait);
1324 }
1325
1326 /*
1327  * All the vcpus in this vcore are idle, so wait for a decrementer
1328  * or external interrupt to one of the vcpus.  vc->lock is held.
1329  */
1330 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1331 {
1332         DEFINE_WAIT(wait);
1333
1334         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1335         vc->vcore_state = VCORE_SLEEPING;
1336         spin_unlock(&vc->lock);
1337         schedule();
1338         finish_wait(&vc->wq, &wait);
1339         spin_lock(&vc->lock);
1340         vc->vcore_state = VCORE_INACTIVE;
1341 }
1342
1343 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1344 {
1345         int n_ceded;
1346         struct kvmppc_vcore *vc;
1347         struct kvm_vcpu *v, *vn;
1348
1349         kvm_run->exit_reason = 0;
1350         vcpu->arch.ret = RESUME_GUEST;
1351         vcpu->arch.trap = 0;
1352         kvmppc_update_vpas(vcpu);
1353
1354         /*
1355          * Synchronize with other threads in this virtual core
1356          */
1357         vc = vcpu->arch.vcore;
1358         spin_lock(&vc->lock);
1359         vcpu->arch.ceded = 0;
1360         vcpu->arch.run_task = current;
1361         vcpu->arch.kvm_run = kvm_run;
1362         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1363         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1364         vcpu->arch.busy_preempt = TB_NIL;
1365         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1366         ++vc->n_runnable;
1367
1368         /*
1369          * This happens the first time this is called for a vcpu.
1370          * If the vcore is already running, we may be able to start
1371          * this thread straight away and have it join in.
1372          */
1373         if (!signal_pending(current)) {
1374                 if (vc->vcore_state == VCORE_RUNNING &&
1375                     VCORE_EXIT_COUNT(vc) == 0) {
1376                         vcpu->arch.ptid = vc->n_runnable - 1;
1377                         kvmppc_create_dtl_entry(vcpu, vc);
1378                         kvmppc_start_thread(vcpu);
1379                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1380                         wake_up(&vc->wq);
1381                 }
1382
1383         }
1384
1385         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1386                !signal_pending(current)) {
1387                 if (vc->vcore_state != VCORE_INACTIVE) {
1388                         spin_unlock(&vc->lock);
1389                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1390                         spin_lock(&vc->lock);
1391                         continue;
1392                 }
1393                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1394                                          arch.run_list) {
1395                         kvmppc_core_prepare_to_enter(v);
1396                         if (signal_pending(v->arch.run_task)) {
1397                                 kvmppc_remove_runnable(vc, v);
1398                                 v->stat.signal_exits++;
1399                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1400                                 v->arch.ret = -EINTR;
1401                                 wake_up(&v->arch.cpu_run);
1402                         }
1403                 }
1404                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1405                         break;
1406                 vc->runner = vcpu;
1407                 n_ceded = 0;
1408                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1409                         if (!v->arch.pending_exceptions)
1410                                 n_ceded += v->arch.ceded;
1411                         else
1412                                 v->arch.ceded = 0;
1413                 }
1414                 if (n_ceded == vc->n_runnable)
1415                         kvmppc_vcore_blocked(vc);
1416                 else
1417                         kvmppc_run_core(vc);
1418                 vc->runner = NULL;
1419         }
1420
1421         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1422                (vc->vcore_state == VCORE_RUNNING ||
1423                 vc->vcore_state == VCORE_EXITING)) {
1424                 spin_unlock(&vc->lock);
1425                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1426                 spin_lock(&vc->lock);
1427         }
1428
1429         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1430                 kvmppc_remove_runnable(vc, vcpu);
1431                 vcpu->stat.signal_exits++;
1432                 kvm_run->exit_reason = KVM_EXIT_INTR;
1433                 vcpu->arch.ret = -EINTR;
1434         }
1435
1436         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1437                 /* Wake up some vcpu to run the core */
1438                 v = list_first_entry(&vc->runnable_threads,
1439                                      struct kvm_vcpu, arch.run_list);
1440                 wake_up(&v->arch.cpu_run);
1441         }
1442
1443         spin_unlock(&vc->lock);
1444         return vcpu->arch.ret;
1445 }
1446
1447 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1448 {
1449         int r;
1450         int srcu_idx;
1451
1452         if (!vcpu->arch.sane) {
1453                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1454                 return -EINVAL;
1455         }
1456
1457         kvmppc_core_prepare_to_enter(vcpu);
1458
1459         /* No need to go into the guest when all we'll do is come back out */
1460         if (signal_pending(current)) {
1461                 run->exit_reason = KVM_EXIT_INTR;
1462                 return -EINTR;
1463         }
1464
1465         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1466         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1467         smp_mb();
1468
1469         /* On the first time here, set up HTAB and VRMA or RMA */
1470         if (!vcpu->kvm->arch.rma_setup_done) {
1471                 r = kvmppc_hv_setup_htab_rma(vcpu);
1472                 if (r)
1473                         goto out;
1474         }
1475
1476         flush_fp_to_thread(current);
1477         flush_altivec_to_thread(current);
1478         flush_vsx_to_thread(current);
1479         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1480         vcpu->arch.pgdir = current->mm->pgd;
1481         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1482
1483         do {
1484                 r = kvmppc_run_vcpu(run, vcpu);
1485
1486                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1487                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1488                         r = kvmppc_pseries_do_hcall(vcpu);
1489                         kvmppc_core_prepare_to_enter(vcpu);
1490                 } else if (r == RESUME_PAGE_FAULT) {
1491                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1492                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1493                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1494                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1495                 }
1496         } while (r == RESUME_GUEST);
1497
1498  out:
1499         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1500         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1501         return r;
1502 }
1503
1504
1505 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1506    Assumes POWER7 or PPC970. */
1507 static inline int lpcr_rmls(unsigned long rma_size)
1508 {
1509         switch (rma_size) {
1510         case 32ul << 20:        /* 32 MB */
1511                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1512                         return 8;       /* only supported on POWER7 */
1513                 return -1;
1514         case 64ul << 20:        /* 64 MB */
1515                 return 3;
1516         case 128ul << 20:       /* 128 MB */
1517                 return 7;
1518         case 256ul << 20:       /* 256 MB */
1519                 return 4;
1520         case 1ul << 30:         /* 1 GB */
1521                 return 2;
1522         case 16ul << 30:        /* 16 GB */
1523                 return 1;
1524         case 256ul << 30:       /* 256 GB */
1525                 return 0;
1526         default:
1527                 return -1;
1528         }
1529 }
1530
1531 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1532 {
1533         struct page *page;
1534         struct kvm_rma_info *ri = vma->vm_file->private_data;
1535
1536         if (vmf->pgoff >= kvm_rma_pages)
1537                 return VM_FAULT_SIGBUS;
1538
1539         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1540         get_page(page);
1541         vmf->page = page;
1542         return 0;
1543 }
1544
1545 static const struct vm_operations_struct kvm_rma_vm_ops = {
1546         .fault = kvm_rma_fault,
1547 };
1548
1549 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1550 {
1551         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1552         vma->vm_ops = &kvm_rma_vm_ops;
1553         return 0;
1554 }
1555
1556 static int kvm_rma_release(struct inode *inode, struct file *filp)
1557 {
1558         struct kvm_rma_info *ri = filp->private_data;
1559
1560         kvm_release_rma(ri);
1561         return 0;
1562 }
1563
1564 static const struct file_operations kvm_rma_fops = {
1565         .mmap           = kvm_rma_mmap,
1566         .release        = kvm_rma_release,
1567 };
1568
1569 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1570 {
1571         long fd;
1572         struct kvm_rma_info *ri;
1573         /*
1574          * Only do this on PPC970 in HV mode
1575          */
1576         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1577             !cpu_has_feature(CPU_FTR_ARCH_201))
1578                 return -EINVAL;
1579
1580         if (!kvm_rma_pages)
1581                 return -EINVAL;
1582
1583         ri = kvm_alloc_rma();
1584         if (!ri)
1585                 return -ENOMEM;
1586
1587         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1588         if (fd < 0)
1589                 kvm_release_rma(ri);
1590
1591         ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1592         return fd;
1593 }
1594
1595 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1596                                      int linux_psize)
1597 {
1598         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1599
1600         if (!def->shift)
1601                 return;
1602         (*sps)->page_shift = def->shift;
1603         (*sps)->slb_enc = def->sllp;
1604         (*sps)->enc[0].page_shift = def->shift;
1605         /*
1606          * Only return base page encoding. We don't want to return
1607          * all the supporting pte_enc, because our H_ENTER doesn't
1608          * support MPSS yet. Once they do, we can start passing all
1609          * support pte_enc here
1610          */
1611         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1612         (*sps)++;
1613 }
1614
1615 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1616 {
1617         struct kvm_ppc_one_seg_page_size *sps;
1618
1619         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1620         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1621                 info->flags |= KVM_PPC_1T_SEGMENTS;
1622         info->slb_size = mmu_slb_size;
1623
1624         /* We only support these sizes for now, and no muti-size segments */
1625         sps = &info->sps[0];
1626         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1627         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1628         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1629
1630         return 0;
1631 }
1632
1633 /*
1634  * Get (and clear) the dirty memory log for a memory slot.
1635  */
1636 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1637 {
1638         struct kvm_memory_slot *memslot;
1639         int r;
1640         unsigned long n;
1641
1642         mutex_lock(&kvm->slots_lock);
1643
1644         r = -EINVAL;
1645         if (log->slot >= KVM_USER_MEM_SLOTS)
1646                 goto out;
1647
1648         memslot = id_to_memslot(kvm->memslots, log->slot);
1649         r = -ENOENT;
1650         if (!memslot->dirty_bitmap)
1651                 goto out;
1652
1653         n = kvm_dirty_bitmap_bytes(memslot);
1654         memset(memslot->dirty_bitmap, 0, n);
1655
1656         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1657         if (r)
1658                 goto out;
1659
1660         r = -EFAULT;
1661         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1662                 goto out;
1663
1664         r = 0;
1665 out:
1666         mutex_unlock(&kvm->slots_lock);
1667         return r;
1668 }
1669
1670 static void unpin_slot(struct kvm_memory_slot *memslot)
1671 {
1672         unsigned long *physp;
1673         unsigned long j, npages, pfn;
1674         struct page *page;
1675
1676         physp = memslot->arch.slot_phys;
1677         npages = memslot->npages;
1678         if (!physp)
1679                 return;
1680         for (j = 0; j < npages; j++) {
1681                 if (!(physp[j] & KVMPPC_GOT_PAGE))
1682                         continue;
1683                 pfn = physp[j] >> PAGE_SHIFT;
1684                 page = pfn_to_page(pfn);
1685                 SetPageDirty(page);
1686                 put_page(page);
1687         }
1688 }
1689
1690 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1691                               struct kvm_memory_slot *dont)
1692 {
1693         if (!dont || free->arch.rmap != dont->arch.rmap) {
1694                 vfree(free->arch.rmap);
1695                 free->arch.rmap = NULL;
1696         }
1697         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1698                 unpin_slot(free);
1699                 vfree(free->arch.slot_phys);
1700                 free->arch.slot_phys = NULL;
1701         }
1702 }
1703
1704 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1705                                unsigned long npages)
1706 {
1707         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1708         if (!slot->arch.rmap)
1709                 return -ENOMEM;
1710         slot->arch.slot_phys = NULL;
1711
1712         return 0;
1713 }
1714
1715 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1716                                       struct kvm_memory_slot *memslot,
1717                                       struct kvm_userspace_memory_region *mem)
1718 {
1719         unsigned long *phys;
1720
1721         /* Allocate a slot_phys array if needed */
1722         phys = memslot->arch.slot_phys;
1723         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1724                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1725                 if (!phys)
1726                         return -ENOMEM;
1727                 memslot->arch.slot_phys = phys;
1728         }
1729
1730         return 0;
1731 }
1732
1733 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1734                                       struct kvm_userspace_memory_region *mem,
1735                                       const struct kvm_memory_slot *old)
1736 {
1737         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1738         struct kvm_memory_slot *memslot;
1739
1740         if (npages && old->npages) {
1741                 /*
1742                  * If modifying a memslot, reset all the rmap dirty bits.
1743                  * If this is a new memslot, we don't need to do anything
1744                  * since the rmap array starts out as all zeroes,
1745                  * i.e. no pages are dirty.
1746                  */
1747                 memslot = id_to_memslot(kvm->memslots, mem->slot);
1748                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1749         }
1750 }
1751
1752 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1753 {
1754         int err = 0;
1755         struct kvm *kvm = vcpu->kvm;
1756         struct kvm_rma_info *ri = NULL;
1757         unsigned long hva;
1758         struct kvm_memory_slot *memslot;
1759         struct vm_area_struct *vma;
1760         unsigned long lpcr, senc;
1761         unsigned long psize, porder;
1762         unsigned long rma_size;
1763         unsigned long rmls;
1764         unsigned long *physp;
1765         unsigned long i, npages;
1766         int srcu_idx;
1767
1768         mutex_lock(&kvm->lock);
1769         if (kvm->arch.rma_setup_done)
1770                 goto out;       /* another vcpu beat us to it */
1771
1772         /* Allocate hashed page table (if not done already) and reset it */
1773         if (!kvm->arch.hpt_virt) {
1774                 err = kvmppc_alloc_hpt(kvm, NULL);
1775                 if (err) {
1776                         pr_err("KVM: Couldn't alloc HPT\n");
1777                         goto out;
1778                 }
1779         }
1780
1781         /* Look up the memslot for guest physical address 0 */
1782         srcu_idx = srcu_read_lock(&kvm->srcu);
1783         memslot = gfn_to_memslot(kvm, 0);
1784
1785         /* We must have some memory at 0 by now */
1786         err = -EINVAL;
1787         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1788                 goto out_srcu;
1789
1790         /* Look up the VMA for the start of this memory slot */
1791         hva = memslot->userspace_addr;
1792         down_read(&current->mm->mmap_sem);
1793         vma = find_vma(current->mm, hva);
1794         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1795                 goto up_out;
1796
1797         psize = vma_kernel_pagesize(vma);
1798         porder = __ilog2(psize);
1799
1800         /* Is this one of our preallocated RMAs? */
1801         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1802             hva == vma->vm_start)
1803                 ri = vma->vm_file->private_data;
1804
1805         up_read(&current->mm->mmap_sem);
1806
1807         if (!ri) {
1808                 /* On POWER7, use VRMA; on PPC970, give up */
1809                 err = -EPERM;
1810                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1811                         pr_err("KVM: CPU requires an RMO\n");
1812                         goto out_srcu;
1813                 }
1814
1815                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1816                 err = -EINVAL;
1817                 if (!(psize == 0x1000 || psize == 0x10000 ||
1818                       psize == 0x1000000))
1819                         goto out_srcu;
1820
1821                 /* Update VRMASD field in the LPCR */
1822                 senc = slb_pgsize_encoding(psize);
1823                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1824                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1825                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1826                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1827                 kvm->arch.lpcr = lpcr;
1828
1829                 /* Create HPTEs in the hash page table for the VRMA */
1830                 kvmppc_map_vrma(vcpu, memslot, porder);
1831
1832         } else {
1833                 /* Set up to use an RMO region */
1834                 rma_size = kvm_rma_pages;
1835                 if (rma_size > memslot->npages)
1836                         rma_size = memslot->npages;
1837                 rma_size <<= PAGE_SHIFT;
1838                 rmls = lpcr_rmls(rma_size);
1839                 err = -EINVAL;
1840                 if ((long)rmls < 0) {
1841                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1842                         goto out_srcu;
1843                 }
1844                 atomic_inc(&ri->use_count);
1845                 kvm->arch.rma = ri;
1846
1847                 /* Update LPCR and RMOR */
1848                 lpcr = kvm->arch.lpcr;
1849                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1850                         /* PPC970; insert RMLS value (split field) in HID4 */
1851                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1852                                   (3ul << HID4_RMLS2_SH));
1853                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1854                                 ((rmls & 3) << HID4_RMLS2_SH);
1855                         /* RMOR is also in HID4 */
1856                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1857                                 << HID4_RMOR_SH;
1858                 } else {
1859                         /* POWER7 */
1860                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1861                         lpcr |= rmls << LPCR_RMLS_SH;
1862                         kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1863                 }
1864                 kvm->arch.lpcr = lpcr;
1865                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1866                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1867
1868                 /* Initialize phys addrs of pages in RMO */
1869                 npages = kvm_rma_pages;
1870                 porder = __ilog2(npages);
1871                 physp = memslot->arch.slot_phys;
1872                 if (physp) {
1873                         if (npages > memslot->npages)
1874                                 npages = memslot->npages;
1875                         spin_lock(&kvm->arch.slot_phys_lock);
1876                         for (i = 0; i < npages; ++i)
1877                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1878                                         porder;
1879                         spin_unlock(&kvm->arch.slot_phys_lock);
1880                 }
1881         }
1882
1883         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1884         smp_wmb();
1885         kvm->arch.rma_setup_done = 1;
1886         err = 0;
1887  out_srcu:
1888         srcu_read_unlock(&kvm->srcu, srcu_idx);
1889  out:
1890         mutex_unlock(&kvm->lock);
1891         return err;
1892
1893  up_out:
1894         up_read(&current->mm->mmap_sem);
1895         goto out_srcu;
1896 }
1897
1898 int kvmppc_core_init_vm(struct kvm *kvm)
1899 {
1900         unsigned long lpcr, lpid;
1901
1902         /* Allocate the guest's logical partition ID */
1903
1904         lpid = kvmppc_alloc_lpid();
1905         if ((long)lpid < 0)
1906                 return -ENOMEM;
1907         kvm->arch.lpid = lpid;
1908
1909         /*
1910          * Since we don't flush the TLB when tearing down a VM,
1911          * and this lpid might have previously been used,
1912          * make sure we flush on each core before running the new VM.
1913          */
1914         cpumask_setall(&kvm->arch.need_tlb_flush);
1915
1916         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1917         INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1918
1919         kvm->arch.rma = NULL;
1920
1921         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1922
1923         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1924                 /* PPC970; HID4 is effectively the LPCR */
1925                 kvm->arch.host_lpid = 0;
1926                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1927                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1928                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1929                         ((lpid & 0xf) << HID4_LPID5_SH);
1930         } else {
1931                 /* POWER7; init LPCR for virtual RMA mode */
1932                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1933                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1934                 lpcr &= LPCR_PECE | LPCR_LPES;
1935                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1936                         LPCR_VPM0 | LPCR_VPM1;
1937                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1938                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1939         }
1940         kvm->arch.lpcr = lpcr;
1941
1942         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1943         spin_lock_init(&kvm->arch.slot_phys_lock);
1944
1945         /*
1946          * Don't allow secondary CPU threads to come online
1947          * while any KVM VMs exist.
1948          */
1949         inhibit_secondary_onlining();
1950
1951         return 0;
1952 }
1953
1954 void kvmppc_core_destroy_vm(struct kvm *kvm)
1955 {
1956         uninhibit_secondary_onlining();
1957
1958         if (kvm->arch.rma) {
1959                 kvm_release_rma(kvm->arch.rma);
1960                 kvm->arch.rma = NULL;
1961         }
1962
1963         kvmppc_rtas_tokens_free(kvm);
1964
1965         kvmppc_free_hpt(kvm);
1966         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1967 }
1968
1969 /* These are stubs for now */
1970 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1971 {
1972 }
1973
1974 /* We don't need to emulate any privileged instructions or dcbz */
1975 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1976                            unsigned int inst, int *advance)
1977 {
1978         return EMULATE_FAIL;
1979 }
1980
1981 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1982 {
1983         return EMULATE_FAIL;
1984 }
1985
1986 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1987 {
1988         return EMULATE_FAIL;
1989 }
1990
1991 static int kvmppc_book3s_hv_init(void)
1992 {
1993         int r;
1994
1995         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1996
1997         if (r)
1998                 return r;
1999
2000         r = kvmppc_mmu_hv_init();
2001
2002         return r;
2003 }
2004
2005 static void kvmppc_book3s_hv_exit(void)
2006 {
2007         kvm_exit();
2008 }
2009
2010 module_init(kvmppc_book3s_hv_init);
2011 module_exit(kvmppc_book3s_hv_exit);