]> Pileus Git - ~andy/linux/blob - arch/powerpc/kvm/book3s_hv.c
KVM: PPC: Book3S HV: Save/restore SIAR and SDAR along with other PMU registers
[~andy/linux] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
62
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL  (~(u64)0)
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
70 {
71         int me;
72         int cpu = vcpu->cpu;
73         wait_queue_head_t *wqp;
74
75         wqp = kvm_arch_vcpu_wq(vcpu);
76         if (waitqueue_active(wqp)) {
77                 wake_up_interruptible(wqp);
78                 ++vcpu->stat.halt_wakeup;
79         }
80
81         me = get_cpu();
82
83         /* CPU points to the first thread of the core */
84         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85                 int real_cpu = cpu + vcpu->arch.ptid;
86                 if (paca[real_cpu].kvm_hstate.xics_phys)
87                         xics_wake_cpu(real_cpu);
88                 else if (cpu_online(cpu))
89                         smp_send_reschedule(cpu);
90         }
91         put_cpu();
92 }
93
94 /*
95  * We use the vcpu_load/put functions to measure stolen time.
96  * Stolen time is counted as time when either the vcpu is able to
97  * run as part of a virtual core, but the task running the vcore
98  * is preempted or sleeping, or when the vcpu needs something done
99  * in the kernel by the task running the vcpu, but that task is
100  * preempted or sleeping.  Those two things have to be counted
101  * separately, since one of the vcpu tasks will take on the job
102  * of running the core, and the other vcpu tasks in the vcore will
103  * sleep waiting for it to do that, but that sleep shouldn't count
104  * as stolen time.
105  *
106  * Hence we accumulate stolen time when the vcpu can run as part of
107  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
108  * needs its task to do other things in the kernel (for example,
109  * service a page fault) in busy_stolen.  We don't accumulate
110  * stolen time for a vcore when it is inactive, or for a vcpu
111  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
112  * a misnomer; it means that the vcpu task is not executing in
113  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
114  * the kernel.  We don't have any way of dividing up that time
115  * between time that the vcpu is genuinely stopped, time that
116  * the task is actively working on behalf of the vcpu, and time
117  * that the task is preempted, so we don't count any of it as
118  * stolen.
119  *
120  * Updates to busy_stolen are protected by arch.tbacct_lock;
121  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
122  * of the vcpu that has taken responsibility for running the vcore
123  * (i.e. vc->runner).  The stolen times are measured in units of
124  * timebase ticks.  (Note that the != TB_NIL checks below are
125  * purely defensive; they should never fail.)
126  */
127
128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
129 {
130         struct kvmppc_vcore *vc = vcpu->arch.vcore;
131
132         spin_lock(&vcpu->arch.tbacct_lock);
133         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
134             vc->preempt_tb != TB_NIL) {
135                 vc->stolen_tb += mftb() - vc->preempt_tb;
136                 vc->preempt_tb = TB_NIL;
137         }
138         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
139             vcpu->arch.busy_preempt != TB_NIL) {
140                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
141                 vcpu->arch.busy_preempt = TB_NIL;
142         }
143         spin_unlock(&vcpu->arch.tbacct_lock);
144 }
145
146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         struct kvmppc_vcore *vc = vcpu->arch.vcore;
149
150         spin_lock(&vcpu->arch.tbacct_lock);
151         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
152                 vc->preempt_tb = mftb();
153         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
154                 vcpu->arch.busy_preempt = mftb();
155         spin_unlock(&vcpu->arch.tbacct_lock);
156 }
157
158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
159 {
160         vcpu->arch.shregs.msr = msr;
161         kvmppc_end_cede(vcpu);
162 }
163
164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
165 {
166         vcpu->arch.pvr = pvr;
167 }
168
169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
170 {
171         int r;
172
173         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
174         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
175                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
176         for (r = 0; r < 16; ++r)
177                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
178                        r, kvmppc_get_gpr(vcpu, r),
179                        r+16, kvmppc_get_gpr(vcpu, r+16));
180         pr_err("ctr = %.16lx  lr  = %.16lx\n",
181                vcpu->arch.ctr, vcpu->arch.lr);
182         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
183                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
184         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
185                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
186         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
187                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
188         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
189                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
190         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
191         pr_err("fault dar = %.16lx dsisr = %.8x\n",
192                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
193         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
194         for (r = 0; r < vcpu->arch.slb_max; ++r)
195                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
196                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
197         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199                vcpu->arch.last_inst);
200 }
201
202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
203 {
204         int r;
205         struct kvm_vcpu *v, *ret = NULL;
206
207         mutex_lock(&kvm->lock);
208         kvm_for_each_vcpu(r, v, kvm) {
209                 if (v->vcpu_id == id) {
210                         ret = v;
211                         break;
212                 }
213         }
214         mutex_unlock(&kvm->lock);
215         return ret;
216 }
217
218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
219 {
220         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
221         vpa->yield_count = 1;
222 }
223
224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
225                    unsigned long addr, unsigned long len)
226 {
227         /* check address is cacheline aligned */
228         if (addr & (L1_CACHE_BYTES - 1))
229                 return -EINVAL;
230         spin_lock(&vcpu->arch.vpa_update_lock);
231         if (v->next_gpa != addr || v->len != len) {
232                 v->next_gpa = addr;
233                 v->len = addr ? len : 0;
234                 v->update_pending = 1;
235         }
236         spin_unlock(&vcpu->arch.vpa_update_lock);
237         return 0;
238 }
239
240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
241 struct reg_vpa {
242         u32 dummy;
243         union {
244                 u16 hword;
245                 u32 word;
246         } length;
247 };
248
249 static int vpa_is_registered(struct kvmppc_vpa *vpap)
250 {
251         if (vpap->update_pending)
252                 return vpap->next_gpa != 0;
253         return vpap->pinned_addr != NULL;
254 }
255
256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
257                                        unsigned long flags,
258                                        unsigned long vcpuid, unsigned long vpa)
259 {
260         struct kvm *kvm = vcpu->kvm;
261         unsigned long len, nb;
262         void *va;
263         struct kvm_vcpu *tvcpu;
264         int err;
265         int subfunc;
266         struct kvmppc_vpa *vpap;
267
268         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
269         if (!tvcpu)
270                 return H_PARAMETER;
271
272         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
273         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
274             subfunc == H_VPA_REG_SLB) {
275                 /* Registering new area - address must be cache-line aligned */
276                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277                         return H_PARAMETER;
278
279                 /* convert logical addr to kernel addr and read length */
280                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
281                 if (va == NULL)
282                         return H_PARAMETER;
283                 if (subfunc == H_VPA_REG_VPA)
284                         len = ((struct reg_vpa *)va)->length.hword;
285                 else
286                         len = ((struct reg_vpa *)va)->length.word;
287                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
288
289                 /* Check length */
290                 if (len > nb || len < sizeof(struct reg_vpa))
291                         return H_PARAMETER;
292         } else {
293                 vpa = 0;
294                 len = 0;
295         }
296
297         err = H_PARAMETER;
298         vpap = NULL;
299         spin_lock(&tvcpu->arch.vpa_update_lock);
300
301         switch (subfunc) {
302         case H_VPA_REG_VPA:             /* register VPA */
303                 if (len < sizeof(struct lppaca))
304                         break;
305                 vpap = &tvcpu->arch.vpa;
306                 err = 0;
307                 break;
308
309         case H_VPA_REG_DTL:             /* register DTL */
310                 if (len < sizeof(struct dtl_entry))
311                         break;
312                 len -= len % sizeof(struct dtl_entry);
313
314                 /* Check that they have previously registered a VPA */
315                 err = H_RESOURCE;
316                 if (!vpa_is_registered(&tvcpu->arch.vpa))
317                         break;
318
319                 vpap = &tvcpu->arch.dtl;
320                 err = 0;
321                 break;
322
323         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
324                 /* Check that they have previously registered a VPA */
325                 err = H_RESOURCE;
326                 if (!vpa_is_registered(&tvcpu->arch.vpa))
327                         break;
328
329                 vpap = &tvcpu->arch.slb_shadow;
330                 err = 0;
331                 break;
332
333         case H_VPA_DEREG_VPA:           /* deregister VPA */
334                 /* Check they don't still have a DTL or SLB buf registered */
335                 err = H_RESOURCE;
336                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
337                     vpa_is_registered(&tvcpu->arch.slb_shadow))
338                         break;
339
340                 vpap = &tvcpu->arch.vpa;
341                 err = 0;
342                 break;
343
344         case H_VPA_DEREG_DTL:           /* deregister DTL */
345                 vpap = &tvcpu->arch.dtl;
346                 err = 0;
347                 break;
348
349         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
350                 vpap = &tvcpu->arch.slb_shadow;
351                 err = 0;
352                 break;
353         }
354
355         if (vpap) {
356                 vpap->next_gpa = vpa;
357                 vpap->len = len;
358                 vpap->update_pending = 1;
359         }
360
361         spin_unlock(&tvcpu->arch.vpa_update_lock);
362
363         return err;
364 }
365
366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367 {
368         struct kvm *kvm = vcpu->kvm;
369         void *va;
370         unsigned long nb;
371         unsigned long gpa;
372
373         /*
374          * We need to pin the page pointed to by vpap->next_gpa,
375          * but we can't call kvmppc_pin_guest_page under the lock
376          * as it does get_user_pages() and down_read().  So we
377          * have to drop the lock, pin the page, then get the lock
378          * again and check that a new area didn't get registered
379          * in the meantime.
380          */
381         for (;;) {
382                 gpa = vpap->next_gpa;
383                 spin_unlock(&vcpu->arch.vpa_update_lock);
384                 va = NULL;
385                 nb = 0;
386                 if (gpa)
387                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388                 spin_lock(&vcpu->arch.vpa_update_lock);
389                 if (gpa == vpap->next_gpa)
390                         break;
391                 /* sigh... unpin that one and try again */
392                 if (va)
393                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
394         }
395
396         vpap->update_pending = 0;
397         if (va && nb < vpap->len) {
398                 /*
399                  * If it's now too short, it must be that userspace
400                  * has changed the mappings underlying guest memory,
401                  * so unregister the region.
402                  */
403                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
404                 va = NULL;
405         }
406         if (vpap->pinned_addr)
407                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
408                                         vpap->dirty);
409         vpap->gpa = gpa;
410         vpap->pinned_addr = va;
411         vpap->dirty = false;
412         if (va)
413                 vpap->pinned_end = va + vpap->len;
414 }
415
416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
417 {
418         if (!(vcpu->arch.vpa.update_pending ||
419               vcpu->arch.slb_shadow.update_pending ||
420               vcpu->arch.dtl.update_pending))
421                 return;
422
423         spin_lock(&vcpu->arch.vpa_update_lock);
424         if (vcpu->arch.vpa.update_pending) {
425                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426                 if (vcpu->arch.vpa.pinned_addr)
427                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428         }
429         if (vcpu->arch.dtl.update_pending) {
430                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
432                 vcpu->arch.dtl_index = 0;
433         }
434         if (vcpu->arch.slb_shadow.update_pending)
435                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436         spin_unlock(&vcpu->arch.vpa_update_lock);
437 }
438
439 /*
440  * Return the accumulated stolen time for the vcore up until `now'.
441  * The caller should hold the vcore lock.
442  */
443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
444 {
445         u64 p;
446
447         /*
448          * If we are the task running the vcore, then since we hold
449          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
450          * can't be updated, so we don't need the tbacct_lock.
451          * If the vcore is inactive, it can't become active (since we
452          * hold the vcore lock), so the vcpu load/put functions won't
453          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
454          */
455         if (vc->vcore_state != VCORE_INACTIVE &&
456             vc->runner->arch.run_task != current) {
457                 spin_lock(&vc->runner->arch.tbacct_lock);
458                 p = vc->stolen_tb;
459                 if (vc->preempt_tb != TB_NIL)
460                         p += now - vc->preempt_tb;
461                 spin_unlock(&vc->runner->arch.tbacct_lock);
462         } else {
463                 p = vc->stolen_tb;
464         }
465         return p;
466 }
467
468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
469                                     struct kvmppc_vcore *vc)
470 {
471         struct dtl_entry *dt;
472         struct lppaca *vpa;
473         unsigned long stolen;
474         unsigned long core_stolen;
475         u64 now;
476
477         dt = vcpu->arch.dtl_ptr;
478         vpa = vcpu->arch.vpa.pinned_addr;
479         now = mftb();
480         core_stolen = vcore_stolen_time(vc, now);
481         stolen = core_stolen - vcpu->arch.stolen_logged;
482         vcpu->arch.stolen_logged = core_stolen;
483         spin_lock(&vcpu->arch.tbacct_lock);
484         stolen += vcpu->arch.busy_stolen;
485         vcpu->arch.busy_stolen = 0;
486         spin_unlock(&vcpu->arch.tbacct_lock);
487         if (!dt || !vpa)
488                 return;
489         memset(dt, 0, sizeof(struct dtl_entry));
490         dt->dispatch_reason = 7;
491         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492         dt->timebase = now;
493         dt->enqueue_to_dispatch_time = stolen;
494         dt->srr0 = kvmppc_get_pc(vcpu);
495         dt->srr1 = vcpu->arch.shregs.msr;
496         ++dt;
497         if (dt == vcpu->arch.dtl.pinned_end)
498                 dt = vcpu->arch.dtl.pinned_addr;
499         vcpu->arch.dtl_ptr = dt;
500         /* order writing *dt vs. writing vpa->dtl_idx */
501         smp_wmb();
502         vpa->dtl_idx = ++vcpu->arch.dtl_index;
503         vcpu->arch.dtl.dirty = true;
504 }
505
506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
507 {
508         unsigned long req = kvmppc_get_gpr(vcpu, 3);
509         unsigned long target, ret = H_SUCCESS;
510         struct kvm_vcpu *tvcpu;
511         int idx, rc;
512
513         switch (req) {
514         case H_ENTER:
515                 idx = srcu_read_lock(&vcpu->kvm->srcu);
516                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
517                                               kvmppc_get_gpr(vcpu, 5),
518                                               kvmppc_get_gpr(vcpu, 6),
519                                               kvmppc_get_gpr(vcpu, 7));
520                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
521                 break;
522         case H_CEDE:
523                 break;
524         case H_PROD:
525                 target = kvmppc_get_gpr(vcpu, 4);
526                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
527                 if (!tvcpu) {
528                         ret = H_PARAMETER;
529                         break;
530                 }
531                 tvcpu->arch.prodded = 1;
532                 smp_mb();
533                 if (vcpu->arch.ceded) {
534                         if (waitqueue_active(&vcpu->wq)) {
535                                 wake_up_interruptible(&vcpu->wq);
536                                 vcpu->stat.halt_wakeup++;
537                         }
538                 }
539                 break;
540         case H_CONFER:
541                 break;
542         case H_REGISTER_VPA:
543                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
544                                         kvmppc_get_gpr(vcpu, 5),
545                                         kvmppc_get_gpr(vcpu, 6));
546                 break;
547         case H_RTAS:
548                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
549                         return RESUME_HOST;
550
551                 rc = kvmppc_rtas_hcall(vcpu);
552
553                 if (rc == -ENOENT)
554                         return RESUME_HOST;
555                 else if (rc == 0)
556                         break;
557
558                 /* Send the error out to userspace via KVM_RUN */
559                 return rc;
560
561         case H_XIRR:
562         case H_CPPR:
563         case H_EOI:
564         case H_IPI:
565         case H_IPOLL:
566         case H_XIRR_X:
567                 if (kvmppc_xics_enabled(vcpu)) {
568                         ret = kvmppc_xics_hcall(vcpu, req);
569                         break;
570                 } /* fallthrough */
571         default:
572                 return RESUME_HOST;
573         }
574         kvmppc_set_gpr(vcpu, 3, ret);
575         vcpu->arch.hcall_needed = 0;
576         return RESUME_GUEST;
577 }
578
579 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
580                               struct task_struct *tsk)
581 {
582         int r = RESUME_HOST;
583
584         vcpu->stat.sum_exits++;
585
586         run->exit_reason = KVM_EXIT_UNKNOWN;
587         run->ready_for_interrupt_injection = 1;
588         switch (vcpu->arch.trap) {
589         /* We're good on these - the host merely wanted to get our attention */
590         case BOOK3S_INTERRUPT_HV_DECREMENTER:
591                 vcpu->stat.dec_exits++;
592                 r = RESUME_GUEST;
593                 break;
594         case BOOK3S_INTERRUPT_EXTERNAL:
595                 vcpu->stat.ext_intr_exits++;
596                 r = RESUME_GUEST;
597                 break;
598         case BOOK3S_INTERRUPT_PERFMON:
599                 r = RESUME_GUEST;
600                 break;
601         case BOOK3S_INTERRUPT_MACHINE_CHECK:
602                 /*
603                  * Deliver a machine check interrupt to the guest.
604                  * We have to do this, even if the host has handled the
605                  * machine check, because machine checks use SRR0/1 and
606                  * the interrupt might have trashed guest state in them.
607                  */
608                 kvmppc_book3s_queue_irqprio(vcpu,
609                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
610                 r = RESUME_GUEST;
611                 break;
612         case BOOK3S_INTERRUPT_PROGRAM:
613         {
614                 ulong flags;
615                 /*
616                  * Normally program interrupts are delivered directly
617                  * to the guest by the hardware, but we can get here
618                  * as a result of a hypervisor emulation interrupt
619                  * (e40) getting turned into a 700 by BML RTAS.
620                  */
621                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
622                 kvmppc_core_queue_program(vcpu, flags);
623                 r = RESUME_GUEST;
624                 break;
625         }
626         case BOOK3S_INTERRUPT_SYSCALL:
627         {
628                 /* hcall - punt to userspace */
629                 int i;
630
631                 if (vcpu->arch.shregs.msr & MSR_PR) {
632                         /* sc 1 from userspace - reflect to guest syscall */
633                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
634                         r = RESUME_GUEST;
635                         break;
636                 }
637                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
638                 for (i = 0; i < 9; ++i)
639                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
640                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
641                 vcpu->arch.hcall_needed = 1;
642                 r = RESUME_HOST;
643                 break;
644         }
645         /*
646          * We get these next two if the guest accesses a page which it thinks
647          * it has mapped but which is not actually present, either because
648          * it is for an emulated I/O device or because the corresonding
649          * host page has been paged out.  Any other HDSI/HISI interrupts
650          * have been handled already.
651          */
652         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
653                 r = RESUME_PAGE_FAULT;
654                 break;
655         case BOOK3S_INTERRUPT_H_INST_STORAGE:
656                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
657                 vcpu->arch.fault_dsisr = 0;
658                 r = RESUME_PAGE_FAULT;
659                 break;
660         /*
661          * This occurs if the guest executes an illegal instruction.
662          * We just generate a program interrupt to the guest, since
663          * we don't emulate any guest instructions at this stage.
664          */
665         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
666                 kvmppc_core_queue_program(vcpu, 0x80000);
667                 r = RESUME_GUEST;
668                 break;
669         default:
670                 kvmppc_dump_regs(vcpu);
671                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
672                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
673                         vcpu->arch.shregs.msr);
674                 r = RESUME_HOST;
675                 BUG();
676                 break;
677         }
678
679         return r;
680 }
681
682 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
683                                   struct kvm_sregs *sregs)
684 {
685         int i;
686
687         memset(sregs, 0, sizeof(struct kvm_sregs));
688         sregs->pvr = vcpu->arch.pvr;
689         for (i = 0; i < vcpu->arch.slb_max; i++) {
690                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
691                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
692         }
693
694         return 0;
695 }
696
697 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
698                                   struct kvm_sregs *sregs)
699 {
700         int i, j;
701
702         kvmppc_set_pvr(vcpu, sregs->pvr);
703
704         j = 0;
705         for (i = 0; i < vcpu->arch.slb_nr; i++) {
706                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
707                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
708                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
709                         ++j;
710                 }
711         }
712         vcpu->arch.slb_max = j;
713
714         return 0;
715 }
716
717 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
718 {
719         int r = 0;
720         long int i;
721
722         switch (id) {
723         case KVM_REG_PPC_HIOR:
724                 *val = get_reg_val(id, 0);
725                 break;
726         case KVM_REG_PPC_DABR:
727                 *val = get_reg_val(id, vcpu->arch.dabr);
728                 break;
729         case KVM_REG_PPC_DSCR:
730                 *val = get_reg_val(id, vcpu->arch.dscr);
731                 break;
732         case KVM_REG_PPC_PURR:
733                 *val = get_reg_val(id, vcpu->arch.purr);
734                 break;
735         case KVM_REG_PPC_SPURR:
736                 *val = get_reg_val(id, vcpu->arch.spurr);
737                 break;
738         case KVM_REG_PPC_AMR:
739                 *val = get_reg_val(id, vcpu->arch.amr);
740                 break;
741         case KVM_REG_PPC_UAMOR:
742                 *val = get_reg_val(id, vcpu->arch.uamor);
743                 break;
744         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
745                 i = id - KVM_REG_PPC_MMCR0;
746                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
747                 break;
748         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
749                 i = id - KVM_REG_PPC_PMC1;
750                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
751                 break;
752         case KVM_REG_PPC_SIAR:
753                 *val = get_reg_val(id, vcpu->arch.siar);
754                 break;
755         case KVM_REG_PPC_SDAR:
756                 *val = get_reg_val(id, vcpu->arch.sdar);
757                 break;
758 #ifdef CONFIG_VSX
759         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
760                 if (cpu_has_feature(CPU_FTR_VSX)) {
761                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
762                         long int i = id - KVM_REG_PPC_FPR0;
763                         *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
764                 } else {
765                         /* let generic code handle it */
766                         r = -EINVAL;
767                 }
768                 break;
769         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
770                 if (cpu_has_feature(CPU_FTR_VSX)) {
771                         long int i = id - KVM_REG_PPC_VSR0;
772                         val->vsxval[0] = vcpu->arch.vsr[2 * i];
773                         val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
774                 } else {
775                         r = -ENXIO;
776                 }
777                 break;
778 #endif /* CONFIG_VSX */
779         case KVM_REG_PPC_VPA_ADDR:
780                 spin_lock(&vcpu->arch.vpa_update_lock);
781                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
782                 spin_unlock(&vcpu->arch.vpa_update_lock);
783                 break;
784         case KVM_REG_PPC_VPA_SLB:
785                 spin_lock(&vcpu->arch.vpa_update_lock);
786                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
787                 val->vpaval.length = vcpu->arch.slb_shadow.len;
788                 spin_unlock(&vcpu->arch.vpa_update_lock);
789                 break;
790         case KVM_REG_PPC_VPA_DTL:
791                 spin_lock(&vcpu->arch.vpa_update_lock);
792                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
793                 val->vpaval.length = vcpu->arch.dtl.len;
794                 spin_unlock(&vcpu->arch.vpa_update_lock);
795                 break;
796         default:
797                 r = -EINVAL;
798                 break;
799         }
800
801         return r;
802 }
803
804 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
805 {
806         int r = 0;
807         long int i;
808         unsigned long addr, len;
809
810         switch (id) {
811         case KVM_REG_PPC_HIOR:
812                 /* Only allow this to be set to zero */
813                 if (set_reg_val(id, *val))
814                         r = -EINVAL;
815                 break;
816         case KVM_REG_PPC_DABR:
817                 vcpu->arch.dabr = set_reg_val(id, *val);
818                 break;
819         case KVM_REG_PPC_DSCR:
820                 vcpu->arch.dscr = set_reg_val(id, *val);
821                 break;
822         case KVM_REG_PPC_PURR:
823                 vcpu->arch.purr = set_reg_val(id, *val);
824                 break;
825         case KVM_REG_PPC_SPURR:
826                 vcpu->arch.spurr = set_reg_val(id, *val);
827                 break;
828         case KVM_REG_PPC_AMR:
829                 vcpu->arch.amr = set_reg_val(id, *val);
830                 break;
831         case KVM_REG_PPC_UAMOR:
832                 vcpu->arch.uamor = set_reg_val(id, *val);
833                 break;
834         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
835                 i = id - KVM_REG_PPC_MMCR0;
836                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
837                 break;
838         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
839                 i = id - KVM_REG_PPC_PMC1;
840                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
841                 break;
842         case KVM_REG_PPC_SIAR:
843                 vcpu->arch.siar = set_reg_val(id, *val);
844                 break;
845         case KVM_REG_PPC_SDAR:
846                 vcpu->arch.sdar = set_reg_val(id, *val);
847                 break;
848 #ifdef CONFIG_VSX
849         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
850                 if (cpu_has_feature(CPU_FTR_VSX)) {
851                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
852                         long int i = id - KVM_REG_PPC_FPR0;
853                         vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
854                 } else {
855                         /* let generic code handle it */
856                         r = -EINVAL;
857                 }
858                 break;
859         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
860                 if (cpu_has_feature(CPU_FTR_VSX)) {
861                         long int i = id - KVM_REG_PPC_VSR0;
862                         vcpu->arch.vsr[2 * i] = val->vsxval[0];
863                         vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
864                 } else {
865                         r = -ENXIO;
866                 }
867                 break;
868 #endif /* CONFIG_VSX */
869         case KVM_REG_PPC_VPA_ADDR:
870                 addr = set_reg_val(id, *val);
871                 r = -EINVAL;
872                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
873                               vcpu->arch.dtl.next_gpa))
874                         break;
875                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
876                 break;
877         case KVM_REG_PPC_VPA_SLB:
878                 addr = val->vpaval.addr;
879                 len = val->vpaval.length;
880                 r = -EINVAL;
881                 if (addr && !vcpu->arch.vpa.next_gpa)
882                         break;
883                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
884                 break;
885         case KVM_REG_PPC_VPA_DTL:
886                 addr = val->vpaval.addr;
887                 len = val->vpaval.length;
888                 r = -EINVAL;
889                 if (addr && (len < sizeof(struct dtl_entry) ||
890                              !vcpu->arch.vpa.next_gpa))
891                         break;
892                 len -= len % sizeof(struct dtl_entry);
893                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
894                 break;
895         default:
896                 r = -EINVAL;
897                 break;
898         }
899
900         return r;
901 }
902
903 int kvmppc_core_check_processor_compat(void)
904 {
905         if (cpu_has_feature(CPU_FTR_HVMODE))
906                 return 0;
907         return -EIO;
908 }
909
910 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
911 {
912         struct kvm_vcpu *vcpu;
913         int err = -EINVAL;
914         int core;
915         struct kvmppc_vcore *vcore;
916
917         core = id / threads_per_core;
918         if (core >= KVM_MAX_VCORES)
919                 goto out;
920
921         err = -ENOMEM;
922         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
923         if (!vcpu)
924                 goto out;
925
926         err = kvm_vcpu_init(vcpu, kvm, id);
927         if (err)
928                 goto free_vcpu;
929
930         vcpu->arch.shared = &vcpu->arch.shregs;
931         vcpu->arch.mmcr[0] = MMCR0_FC;
932         vcpu->arch.ctrl = CTRL_RUNLATCH;
933         /* default to host PVR, since we can't spoof it */
934         vcpu->arch.pvr = mfspr(SPRN_PVR);
935         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
936         spin_lock_init(&vcpu->arch.vpa_update_lock);
937         spin_lock_init(&vcpu->arch.tbacct_lock);
938         vcpu->arch.busy_preempt = TB_NIL;
939
940         kvmppc_mmu_book3s_hv_init(vcpu);
941
942         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
943
944         init_waitqueue_head(&vcpu->arch.cpu_run);
945
946         mutex_lock(&kvm->lock);
947         vcore = kvm->arch.vcores[core];
948         if (!vcore) {
949                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
950                 if (vcore) {
951                         INIT_LIST_HEAD(&vcore->runnable_threads);
952                         spin_lock_init(&vcore->lock);
953                         init_waitqueue_head(&vcore->wq);
954                         vcore->preempt_tb = TB_NIL;
955                 }
956                 kvm->arch.vcores[core] = vcore;
957                 kvm->arch.online_vcores++;
958         }
959         mutex_unlock(&kvm->lock);
960
961         if (!vcore)
962                 goto free_vcpu;
963
964         spin_lock(&vcore->lock);
965         ++vcore->num_threads;
966         spin_unlock(&vcore->lock);
967         vcpu->arch.vcore = vcore;
968
969         vcpu->arch.cpu_type = KVM_CPU_3S_64;
970         kvmppc_sanity_check(vcpu);
971
972         return vcpu;
973
974 free_vcpu:
975         kmem_cache_free(kvm_vcpu_cache, vcpu);
976 out:
977         return ERR_PTR(err);
978 }
979
980 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
981 {
982         if (vpa->pinned_addr)
983                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
984                                         vpa->dirty);
985 }
986
987 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
988 {
989         spin_lock(&vcpu->arch.vpa_update_lock);
990         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
991         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
992         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
993         spin_unlock(&vcpu->arch.vpa_update_lock);
994         kvm_vcpu_uninit(vcpu);
995         kmem_cache_free(kvm_vcpu_cache, vcpu);
996 }
997
998 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
999 {
1000         unsigned long dec_nsec, now;
1001
1002         now = get_tb();
1003         if (now > vcpu->arch.dec_expires) {
1004                 /* decrementer has already gone negative */
1005                 kvmppc_core_queue_dec(vcpu);
1006                 kvmppc_core_prepare_to_enter(vcpu);
1007                 return;
1008         }
1009         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1010                    / tb_ticks_per_sec;
1011         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1012                       HRTIMER_MODE_REL);
1013         vcpu->arch.timer_running = 1;
1014 }
1015
1016 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1017 {
1018         vcpu->arch.ceded = 0;
1019         if (vcpu->arch.timer_running) {
1020                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1021                 vcpu->arch.timer_running = 0;
1022         }
1023 }
1024
1025 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1026
1027 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1028                                    struct kvm_vcpu *vcpu)
1029 {
1030         u64 now;
1031
1032         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1033                 return;
1034         spin_lock(&vcpu->arch.tbacct_lock);
1035         now = mftb();
1036         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1037                 vcpu->arch.stolen_logged;
1038         vcpu->arch.busy_preempt = now;
1039         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1040         spin_unlock(&vcpu->arch.tbacct_lock);
1041         --vc->n_runnable;
1042         list_del(&vcpu->arch.run_list);
1043 }
1044
1045 static int kvmppc_grab_hwthread(int cpu)
1046 {
1047         struct paca_struct *tpaca;
1048         long timeout = 1000;
1049
1050         tpaca = &paca[cpu];
1051
1052         /* Ensure the thread won't go into the kernel if it wakes */
1053         tpaca->kvm_hstate.hwthread_req = 1;
1054         tpaca->kvm_hstate.kvm_vcpu = NULL;
1055
1056         /*
1057          * If the thread is already executing in the kernel (e.g. handling
1058          * a stray interrupt), wait for it to get back to nap mode.
1059          * The smp_mb() is to ensure that our setting of hwthread_req
1060          * is visible before we look at hwthread_state, so if this
1061          * races with the code at system_reset_pSeries and the thread
1062          * misses our setting of hwthread_req, we are sure to see its
1063          * setting of hwthread_state, and vice versa.
1064          */
1065         smp_mb();
1066         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1067                 if (--timeout <= 0) {
1068                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1069                         return -EBUSY;
1070                 }
1071                 udelay(1);
1072         }
1073         return 0;
1074 }
1075
1076 static void kvmppc_release_hwthread(int cpu)
1077 {
1078         struct paca_struct *tpaca;
1079
1080         tpaca = &paca[cpu];
1081         tpaca->kvm_hstate.hwthread_req = 0;
1082         tpaca->kvm_hstate.kvm_vcpu = NULL;
1083 }
1084
1085 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1086 {
1087         int cpu;
1088         struct paca_struct *tpaca;
1089         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1090
1091         if (vcpu->arch.timer_running) {
1092                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1093                 vcpu->arch.timer_running = 0;
1094         }
1095         cpu = vc->pcpu + vcpu->arch.ptid;
1096         tpaca = &paca[cpu];
1097         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1098         tpaca->kvm_hstate.kvm_vcore = vc;
1099         tpaca->kvm_hstate.napping = 0;
1100         vcpu->cpu = vc->pcpu;
1101         smp_wmb();
1102 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1103         if (vcpu->arch.ptid) {
1104                 xics_wake_cpu(cpu);
1105                 ++vc->n_woken;
1106         }
1107 #endif
1108 }
1109
1110 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1111 {
1112         int i;
1113
1114         HMT_low();
1115         i = 0;
1116         while (vc->nap_count < vc->n_woken) {
1117                 if (++i >= 1000000) {
1118                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1119                                vc->nap_count, vc->n_woken);
1120                         break;
1121                 }
1122                 cpu_relax();
1123         }
1124         HMT_medium();
1125 }
1126
1127 /*
1128  * Check that we are on thread 0 and that any other threads in
1129  * this core are off-line.  Then grab the threads so they can't
1130  * enter the kernel.
1131  */
1132 static int on_primary_thread(void)
1133 {
1134         int cpu = smp_processor_id();
1135         int thr = cpu_thread_in_core(cpu);
1136
1137         if (thr)
1138                 return 0;
1139         while (++thr < threads_per_core)
1140                 if (cpu_online(cpu + thr))
1141                         return 0;
1142
1143         /* Grab all hw threads so they can't go into the kernel */
1144         for (thr = 1; thr < threads_per_core; ++thr) {
1145                 if (kvmppc_grab_hwthread(cpu + thr)) {
1146                         /* Couldn't grab one; let the others go */
1147                         do {
1148                                 kvmppc_release_hwthread(cpu + thr);
1149                         } while (--thr > 0);
1150                         return 0;
1151                 }
1152         }
1153         return 1;
1154 }
1155
1156 /*
1157  * Run a set of guest threads on a physical core.
1158  * Called with vc->lock held.
1159  */
1160 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1161 {
1162         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1163         long ret;
1164         u64 now;
1165         int ptid, i, need_vpa_update;
1166         int srcu_idx;
1167         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1168
1169         /* don't start if any threads have a signal pending */
1170         need_vpa_update = 0;
1171         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1172                 if (signal_pending(vcpu->arch.run_task))
1173                         return;
1174                 if (vcpu->arch.vpa.update_pending ||
1175                     vcpu->arch.slb_shadow.update_pending ||
1176                     vcpu->arch.dtl.update_pending)
1177                         vcpus_to_update[need_vpa_update++] = vcpu;
1178         }
1179
1180         /*
1181          * Initialize *vc, in particular vc->vcore_state, so we can
1182          * drop the vcore lock if necessary.
1183          */
1184         vc->n_woken = 0;
1185         vc->nap_count = 0;
1186         vc->entry_exit_count = 0;
1187         vc->vcore_state = VCORE_STARTING;
1188         vc->in_guest = 0;
1189         vc->napping_threads = 0;
1190
1191         /*
1192          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1193          * which can't be called with any spinlocks held.
1194          */
1195         if (need_vpa_update) {
1196                 spin_unlock(&vc->lock);
1197                 for (i = 0; i < need_vpa_update; ++i)
1198                         kvmppc_update_vpas(vcpus_to_update[i]);
1199                 spin_lock(&vc->lock);
1200         }
1201
1202         /*
1203          * Assign physical thread IDs, first to non-ceded vcpus
1204          * and then to ceded ones.
1205          */
1206         ptid = 0;
1207         vcpu0 = NULL;
1208         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1209                 if (!vcpu->arch.ceded) {
1210                         if (!ptid)
1211                                 vcpu0 = vcpu;
1212                         vcpu->arch.ptid = ptid++;
1213                 }
1214         }
1215         if (!vcpu0)
1216                 goto out;       /* nothing to run; should never happen */
1217         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1218                 if (vcpu->arch.ceded)
1219                         vcpu->arch.ptid = ptid++;
1220
1221         /*
1222          * Make sure we are running on thread 0, and that
1223          * secondary threads are offline.
1224          */
1225         if (threads_per_core > 1 && !on_primary_thread()) {
1226                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1227                         vcpu->arch.ret = -EBUSY;
1228                 goto out;
1229         }
1230
1231         vc->pcpu = smp_processor_id();
1232         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1233                 kvmppc_start_thread(vcpu);
1234                 kvmppc_create_dtl_entry(vcpu, vc);
1235         }
1236
1237         vc->vcore_state = VCORE_RUNNING;
1238         preempt_disable();
1239         spin_unlock(&vc->lock);
1240
1241         kvm_guest_enter();
1242
1243         srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1244
1245         __kvmppc_vcore_entry(NULL, vcpu0);
1246
1247         spin_lock(&vc->lock);
1248         /* disable sending of IPIs on virtual external irqs */
1249         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1250                 vcpu->cpu = -1;
1251         /* wait for secondary threads to finish writing their state to memory */
1252         if (vc->nap_count < vc->n_woken)
1253                 kvmppc_wait_for_nap(vc);
1254         for (i = 0; i < threads_per_core; ++i)
1255                 kvmppc_release_hwthread(vc->pcpu + i);
1256         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1257         vc->vcore_state = VCORE_EXITING;
1258         spin_unlock(&vc->lock);
1259
1260         srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1261
1262         /* make sure updates to secondary vcpu structs are visible now */
1263         smp_mb();
1264         kvm_guest_exit();
1265
1266         preempt_enable();
1267         kvm_resched(vcpu);
1268
1269         spin_lock(&vc->lock);
1270         now = get_tb();
1271         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1272                 /* cancel pending dec exception if dec is positive */
1273                 if (now < vcpu->arch.dec_expires &&
1274                     kvmppc_core_pending_dec(vcpu))
1275                         kvmppc_core_dequeue_dec(vcpu);
1276
1277                 ret = RESUME_GUEST;
1278                 if (vcpu->arch.trap)
1279                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1280                                                  vcpu->arch.run_task);
1281
1282                 vcpu->arch.ret = ret;
1283                 vcpu->arch.trap = 0;
1284
1285                 if (vcpu->arch.ceded) {
1286                         if (ret != RESUME_GUEST)
1287                                 kvmppc_end_cede(vcpu);
1288                         else
1289                                 kvmppc_set_timer(vcpu);
1290                 }
1291         }
1292
1293  out:
1294         vc->vcore_state = VCORE_INACTIVE;
1295         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1296                                  arch.run_list) {
1297                 if (vcpu->arch.ret != RESUME_GUEST) {
1298                         kvmppc_remove_runnable(vc, vcpu);
1299                         wake_up(&vcpu->arch.cpu_run);
1300                 }
1301         }
1302 }
1303
1304 /*
1305  * Wait for some other vcpu thread to execute us, and
1306  * wake us up when we need to handle something in the host.
1307  */
1308 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1309 {
1310         DEFINE_WAIT(wait);
1311
1312         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1313         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1314                 schedule();
1315         finish_wait(&vcpu->arch.cpu_run, &wait);
1316 }
1317
1318 /*
1319  * All the vcpus in this vcore are idle, so wait for a decrementer
1320  * or external interrupt to one of the vcpus.  vc->lock is held.
1321  */
1322 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1323 {
1324         DEFINE_WAIT(wait);
1325
1326         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1327         vc->vcore_state = VCORE_SLEEPING;
1328         spin_unlock(&vc->lock);
1329         schedule();
1330         finish_wait(&vc->wq, &wait);
1331         spin_lock(&vc->lock);
1332         vc->vcore_state = VCORE_INACTIVE;
1333 }
1334
1335 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1336 {
1337         int n_ceded;
1338         struct kvmppc_vcore *vc;
1339         struct kvm_vcpu *v, *vn;
1340
1341         kvm_run->exit_reason = 0;
1342         vcpu->arch.ret = RESUME_GUEST;
1343         vcpu->arch.trap = 0;
1344         kvmppc_update_vpas(vcpu);
1345
1346         /*
1347          * Synchronize with other threads in this virtual core
1348          */
1349         vc = vcpu->arch.vcore;
1350         spin_lock(&vc->lock);
1351         vcpu->arch.ceded = 0;
1352         vcpu->arch.run_task = current;
1353         vcpu->arch.kvm_run = kvm_run;
1354         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1355         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1356         vcpu->arch.busy_preempt = TB_NIL;
1357         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1358         ++vc->n_runnable;
1359
1360         /*
1361          * This happens the first time this is called for a vcpu.
1362          * If the vcore is already running, we may be able to start
1363          * this thread straight away and have it join in.
1364          */
1365         if (!signal_pending(current)) {
1366                 if (vc->vcore_state == VCORE_RUNNING &&
1367                     VCORE_EXIT_COUNT(vc) == 0) {
1368                         vcpu->arch.ptid = vc->n_runnable - 1;
1369                         kvmppc_create_dtl_entry(vcpu, vc);
1370                         kvmppc_start_thread(vcpu);
1371                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1372                         wake_up(&vc->wq);
1373                 }
1374
1375         }
1376
1377         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1378                !signal_pending(current)) {
1379                 if (vc->vcore_state != VCORE_INACTIVE) {
1380                         spin_unlock(&vc->lock);
1381                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1382                         spin_lock(&vc->lock);
1383                         continue;
1384                 }
1385                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1386                                          arch.run_list) {
1387                         kvmppc_core_prepare_to_enter(v);
1388                         if (signal_pending(v->arch.run_task)) {
1389                                 kvmppc_remove_runnable(vc, v);
1390                                 v->stat.signal_exits++;
1391                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1392                                 v->arch.ret = -EINTR;
1393                                 wake_up(&v->arch.cpu_run);
1394                         }
1395                 }
1396                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1397                         break;
1398                 vc->runner = vcpu;
1399                 n_ceded = 0;
1400                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1401                         if (!v->arch.pending_exceptions)
1402                                 n_ceded += v->arch.ceded;
1403                         else
1404                                 v->arch.ceded = 0;
1405                 }
1406                 if (n_ceded == vc->n_runnable)
1407                         kvmppc_vcore_blocked(vc);
1408                 else
1409                         kvmppc_run_core(vc);
1410                 vc->runner = NULL;
1411         }
1412
1413         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1414                (vc->vcore_state == VCORE_RUNNING ||
1415                 vc->vcore_state == VCORE_EXITING)) {
1416                 spin_unlock(&vc->lock);
1417                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1418                 spin_lock(&vc->lock);
1419         }
1420
1421         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1422                 kvmppc_remove_runnable(vc, vcpu);
1423                 vcpu->stat.signal_exits++;
1424                 kvm_run->exit_reason = KVM_EXIT_INTR;
1425                 vcpu->arch.ret = -EINTR;
1426         }
1427
1428         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1429                 /* Wake up some vcpu to run the core */
1430                 v = list_first_entry(&vc->runnable_threads,
1431                                      struct kvm_vcpu, arch.run_list);
1432                 wake_up(&v->arch.cpu_run);
1433         }
1434
1435         spin_unlock(&vc->lock);
1436         return vcpu->arch.ret;
1437 }
1438
1439 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1440 {
1441         int r;
1442         int srcu_idx;
1443
1444         if (!vcpu->arch.sane) {
1445                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1446                 return -EINVAL;
1447         }
1448
1449         kvmppc_core_prepare_to_enter(vcpu);
1450
1451         /* No need to go into the guest when all we'll do is come back out */
1452         if (signal_pending(current)) {
1453                 run->exit_reason = KVM_EXIT_INTR;
1454                 return -EINTR;
1455         }
1456
1457         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1458         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1459         smp_mb();
1460
1461         /* On the first time here, set up HTAB and VRMA or RMA */
1462         if (!vcpu->kvm->arch.rma_setup_done) {
1463                 r = kvmppc_hv_setup_htab_rma(vcpu);
1464                 if (r)
1465                         goto out;
1466         }
1467
1468         flush_fp_to_thread(current);
1469         flush_altivec_to_thread(current);
1470         flush_vsx_to_thread(current);
1471         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1472         vcpu->arch.pgdir = current->mm->pgd;
1473         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1474
1475         do {
1476                 r = kvmppc_run_vcpu(run, vcpu);
1477
1478                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1479                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1480                         r = kvmppc_pseries_do_hcall(vcpu);
1481                         kvmppc_core_prepare_to_enter(vcpu);
1482                 } else if (r == RESUME_PAGE_FAULT) {
1483                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1484                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1485                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1486                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1487                 }
1488         } while (r == RESUME_GUEST);
1489
1490  out:
1491         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1492         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1493         return r;
1494 }
1495
1496
1497 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1498    Assumes POWER7 or PPC970. */
1499 static inline int lpcr_rmls(unsigned long rma_size)
1500 {
1501         switch (rma_size) {
1502         case 32ul << 20:        /* 32 MB */
1503                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1504                         return 8;       /* only supported on POWER7 */
1505                 return -1;
1506         case 64ul << 20:        /* 64 MB */
1507                 return 3;
1508         case 128ul << 20:       /* 128 MB */
1509                 return 7;
1510         case 256ul << 20:       /* 256 MB */
1511                 return 4;
1512         case 1ul << 30:         /* 1 GB */
1513                 return 2;
1514         case 16ul << 30:        /* 16 GB */
1515                 return 1;
1516         case 256ul << 30:       /* 256 GB */
1517                 return 0;
1518         default:
1519                 return -1;
1520         }
1521 }
1522
1523 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1524 {
1525         struct page *page;
1526         struct kvm_rma_info *ri = vma->vm_file->private_data;
1527
1528         if (vmf->pgoff >= kvm_rma_pages)
1529                 return VM_FAULT_SIGBUS;
1530
1531         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1532         get_page(page);
1533         vmf->page = page;
1534         return 0;
1535 }
1536
1537 static const struct vm_operations_struct kvm_rma_vm_ops = {
1538         .fault = kvm_rma_fault,
1539 };
1540
1541 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1542 {
1543         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1544         vma->vm_ops = &kvm_rma_vm_ops;
1545         return 0;
1546 }
1547
1548 static int kvm_rma_release(struct inode *inode, struct file *filp)
1549 {
1550         struct kvm_rma_info *ri = filp->private_data;
1551
1552         kvm_release_rma(ri);
1553         return 0;
1554 }
1555
1556 static const struct file_operations kvm_rma_fops = {
1557         .mmap           = kvm_rma_mmap,
1558         .release        = kvm_rma_release,
1559 };
1560
1561 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1562 {
1563         long fd;
1564         struct kvm_rma_info *ri;
1565         /*
1566          * Only do this on PPC970 in HV mode
1567          */
1568         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1569             !cpu_has_feature(CPU_FTR_ARCH_201))
1570                 return -EINVAL;
1571
1572         if (!kvm_rma_pages)
1573                 return -EINVAL;
1574
1575         ri = kvm_alloc_rma();
1576         if (!ri)
1577                 return -ENOMEM;
1578
1579         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1580         if (fd < 0)
1581                 kvm_release_rma(ri);
1582
1583         ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1584         return fd;
1585 }
1586
1587 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1588                                      int linux_psize)
1589 {
1590         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1591
1592         if (!def->shift)
1593                 return;
1594         (*sps)->page_shift = def->shift;
1595         (*sps)->slb_enc = def->sllp;
1596         (*sps)->enc[0].page_shift = def->shift;
1597         /*
1598          * Only return base page encoding. We don't want to return
1599          * all the supporting pte_enc, because our H_ENTER doesn't
1600          * support MPSS yet. Once they do, we can start passing all
1601          * support pte_enc here
1602          */
1603         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1604         (*sps)++;
1605 }
1606
1607 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1608 {
1609         struct kvm_ppc_one_seg_page_size *sps;
1610
1611         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1612         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1613                 info->flags |= KVM_PPC_1T_SEGMENTS;
1614         info->slb_size = mmu_slb_size;
1615
1616         /* We only support these sizes for now, and no muti-size segments */
1617         sps = &info->sps[0];
1618         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1619         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1620         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1621
1622         return 0;
1623 }
1624
1625 /*
1626  * Get (and clear) the dirty memory log for a memory slot.
1627  */
1628 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1629 {
1630         struct kvm_memory_slot *memslot;
1631         int r;
1632         unsigned long n;
1633
1634         mutex_lock(&kvm->slots_lock);
1635
1636         r = -EINVAL;
1637         if (log->slot >= KVM_USER_MEM_SLOTS)
1638                 goto out;
1639
1640         memslot = id_to_memslot(kvm->memslots, log->slot);
1641         r = -ENOENT;
1642         if (!memslot->dirty_bitmap)
1643                 goto out;
1644
1645         n = kvm_dirty_bitmap_bytes(memslot);
1646         memset(memslot->dirty_bitmap, 0, n);
1647
1648         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1649         if (r)
1650                 goto out;
1651
1652         r = -EFAULT;
1653         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1654                 goto out;
1655
1656         r = 0;
1657 out:
1658         mutex_unlock(&kvm->slots_lock);
1659         return r;
1660 }
1661
1662 static void unpin_slot(struct kvm_memory_slot *memslot)
1663 {
1664         unsigned long *physp;
1665         unsigned long j, npages, pfn;
1666         struct page *page;
1667
1668         physp = memslot->arch.slot_phys;
1669         npages = memslot->npages;
1670         if (!physp)
1671                 return;
1672         for (j = 0; j < npages; j++) {
1673                 if (!(physp[j] & KVMPPC_GOT_PAGE))
1674                         continue;
1675                 pfn = physp[j] >> PAGE_SHIFT;
1676                 page = pfn_to_page(pfn);
1677                 SetPageDirty(page);
1678                 put_page(page);
1679         }
1680 }
1681
1682 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1683                               struct kvm_memory_slot *dont)
1684 {
1685         if (!dont || free->arch.rmap != dont->arch.rmap) {
1686                 vfree(free->arch.rmap);
1687                 free->arch.rmap = NULL;
1688         }
1689         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1690                 unpin_slot(free);
1691                 vfree(free->arch.slot_phys);
1692                 free->arch.slot_phys = NULL;
1693         }
1694 }
1695
1696 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1697                                unsigned long npages)
1698 {
1699         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1700         if (!slot->arch.rmap)
1701                 return -ENOMEM;
1702         slot->arch.slot_phys = NULL;
1703
1704         return 0;
1705 }
1706
1707 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1708                                       struct kvm_memory_slot *memslot,
1709                                       struct kvm_userspace_memory_region *mem)
1710 {
1711         unsigned long *phys;
1712
1713         /* Allocate a slot_phys array if needed */
1714         phys = memslot->arch.slot_phys;
1715         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1716                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1717                 if (!phys)
1718                         return -ENOMEM;
1719                 memslot->arch.slot_phys = phys;
1720         }
1721
1722         return 0;
1723 }
1724
1725 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1726                                       struct kvm_userspace_memory_region *mem,
1727                                       const struct kvm_memory_slot *old)
1728 {
1729         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1730         struct kvm_memory_slot *memslot;
1731
1732         if (npages && old->npages) {
1733                 /*
1734                  * If modifying a memslot, reset all the rmap dirty bits.
1735                  * If this is a new memslot, we don't need to do anything
1736                  * since the rmap array starts out as all zeroes,
1737                  * i.e. no pages are dirty.
1738                  */
1739                 memslot = id_to_memslot(kvm->memslots, mem->slot);
1740                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1741         }
1742 }
1743
1744 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1745 {
1746         int err = 0;
1747         struct kvm *kvm = vcpu->kvm;
1748         struct kvm_rma_info *ri = NULL;
1749         unsigned long hva;
1750         struct kvm_memory_slot *memslot;
1751         struct vm_area_struct *vma;
1752         unsigned long lpcr, senc;
1753         unsigned long psize, porder;
1754         unsigned long rma_size;
1755         unsigned long rmls;
1756         unsigned long *physp;
1757         unsigned long i, npages;
1758         int srcu_idx;
1759
1760         mutex_lock(&kvm->lock);
1761         if (kvm->arch.rma_setup_done)
1762                 goto out;       /* another vcpu beat us to it */
1763
1764         /* Allocate hashed page table (if not done already) and reset it */
1765         if (!kvm->arch.hpt_virt) {
1766                 err = kvmppc_alloc_hpt(kvm, NULL);
1767                 if (err) {
1768                         pr_err("KVM: Couldn't alloc HPT\n");
1769                         goto out;
1770                 }
1771         }
1772
1773         /* Look up the memslot for guest physical address 0 */
1774         srcu_idx = srcu_read_lock(&kvm->srcu);
1775         memslot = gfn_to_memslot(kvm, 0);
1776
1777         /* We must have some memory at 0 by now */
1778         err = -EINVAL;
1779         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1780                 goto out_srcu;
1781
1782         /* Look up the VMA for the start of this memory slot */
1783         hva = memslot->userspace_addr;
1784         down_read(&current->mm->mmap_sem);
1785         vma = find_vma(current->mm, hva);
1786         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1787                 goto up_out;
1788
1789         psize = vma_kernel_pagesize(vma);
1790         porder = __ilog2(psize);
1791
1792         /* Is this one of our preallocated RMAs? */
1793         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1794             hva == vma->vm_start)
1795                 ri = vma->vm_file->private_data;
1796
1797         up_read(&current->mm->mmap_sem);
1798
1799         if (!ri) {
1800                 /* On POWER7, use VRMA; on PPC970, give up */
1801                 err = -EPERM;
1802                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1803                         pr_err("KVM: CPU requires an RMO\n");
1804                         goto out_srcu;
1805                 }
1806
1807                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1808                 err = -EINVAL;
1809                 if (!(psize == 0x1000 || psize == 0x10000 ||
1810                       psize == 0x1000000))
1811                         goto out_srcu;
1812
1813                 /* Update VRMASD field in the LPCR */
1814                 senc = slb_pgsize_encoding(psize);
1815                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1816                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1817                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1818                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1819                 kvm->arch.lpcr = lpcr;
1820
1821                 /* Create HPTEs in the hash page table for the VRMA */
1822                 kvmppc_map_vrma(vcpu, memslot, porder);
1823
1824         } else {
1825                 /* Set up to use an RMO region */
1826                 rma_size = kvm_rma_pages;
1827                 if (rma_size > memslot->npages)
1828                         rma_size = memslot->npages;
1829                 rma_size <<= PAGE_SHIFT;
1830                 rmls = lpcr_rmls(rma_size);
1831                 err = -EINVAL;
1832                 if ((long)rmls < 0) {
1833                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1834                         goto out_srcu;
1835                 }
1836                 atomic_inc(&ri->use_count);
1837                 kvm->arch.rma = ri;
1838
1839                 /* Update LPCR and RMOR */
1840                 lpcr = kvm->arch.lpcr;
1841                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1842                         /* PPC970; insert RMLS value (split field) in HID4 */
1843                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1844                                   (3ul << HID4_RMLS2_SH));
1845                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1846                                 ((rmls & 3) << HID4_RMLS2_SH);
1847                         /* RMOR is also in HID4 */
1848                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1849                                 << HID4_RMOR_SH;
1850                 } else {
1851                         /* POWER7 */
1852                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1853                         lpcr |= rmls << LPCR_RMLS_SH;
1854                         kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1855                 }
1856                 kvm->arch.lpcr = lpcr;
1857                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1858                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1859
1860                 /* Initialize phys addrs of pages in RMO */
1861                 npages = kvm_rma_pages;
1862                 porder = __ilog2(npages);
1863                 physp = memslot->arch.slot_phys;
1864                 if (physp) {
1865                         if (npages > memslot->npages)
1866                                 npages = memslot->npages;
1867                         spin_lock(&kvm->arch.slot_phys_lock);
1868                         for (i = 0; i < npages; ++i)
1869                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1870                                         porder;
1871                         spin_unlock(&kvm->arch.slot_phys_lock);
1872                 }
1873         }
1874
1875         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1876         smp_wmb();
1877         kvm->arch.rma_setup_done = 1;
1878         err = 0;
1879  out_srcu:
1880         srcu_read_unlock(&kvm->srcu, srcu_idx);
1881  out:
1882         mutex_unlock(&kvm->lock);
1883         return err;
1884
1885  up_out:
1886         up_read(&current->mm->mmap_sem);
1887         goto out_srcu;
1888 }
1889
1890 int kvmppc_core_init_vm(struct kvm *kvm)
1891 {
1892         unsigned long lpcr, lpid;
1893
1894         /* Allocate the guest's logical partition ID */
1895
1896         lpid = kvmppc_alloc_lpid();
1897         if ((long)lpid < 0)
1898                 return -ENOMEM;
1899         kvm->arch.lpid = lpid;
1900
1901         /*
1902          * Since we don't flush the TLB when tearing down a VM,
1903          * and this lpid might have previously been used,
1904          * make sure we flush on each core before running the new VM.
1905          */
1906         cpumask_setall(&kvm->arch.need_tlb_flush);
1907
1908         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1909         INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1910
1911         kvm->arch.rma = NULL;
1912
1913         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1914
1915         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1916                 /* PPC970; HID4 is effectively the LPCR */
1917                 kvm->arch.host_lpid = 0;
1918                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1919                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1920                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1921                         ((lpid & 0xf) << HID4_LPID5_SH);
1922         } else {
1923                 /* POWER7; init LPCR for virtual RMA mode */
1924                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1925                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1926                 lpcr &= LPCR_PECE | LPCR_LPES;
1927                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1928                         LPCR_VPM0 | LPCR_VPM1;
1929                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1930                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1931         }
1932         kvm->arch.lpcr = lpcr;
1933
1934         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1935         spin_lock_init(&kvm->arch.slot_phys_lock);
1936
1937         /*
1938          * Don't allow secondary CPU threads to come online
1939          * while any KVM VMs exist.
1940          */
1941         inhibit_secondary_onlining();
1942
1943         return 0;
1944 }
1945
1946 void kvmppc_core_destroy_vm(struct kvm *kvm)
1947 {
1948         uninhibit_secondary_onlining();
1949
1950         if (kvm->arch.rma) {
1951                 kvm_release_rma(kvm->arch.rma);
1952                 kvm->arch.rma = NULL;
1953         }
1954
1955         kvmppc_rtas_tokens_free(kvm);
1956
1957         kvmppc_free_hpt(kvm);
1958         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1959 }
1960
1961 /* These are stubs for now */
1962 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1963 {
1964 }
1965
1966 /* We don't need to emulate any privileged instructions or dcbz */
1967 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1968                            unsigned int inst, int *advance)
1969 {
1970         return EMULATE_FAIL;
1971 }
1972
1973 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1974 {
1975         return EMULATE_FAIL;
1976 }
1977
1978 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1979 {
1980         return EMULATE_FAIL;
1981 }
1982
1983 static int kvmppc_book3s_hv_init(void)
1984 {
1985         int r;
1986
1987         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1988
1989         if (r)
1990                 return r;
1991
1992         r = kvmppc_mmu_hv_init();
1993
1994         return r;
1995 }
1996
1997 static void kvmppc_book3s_hv_exit(void)
1998 {
1999         kvm_exit();
2000 }
2001
2002 module_init(kvmppc_book3s_hv_init);
2003 module_exit(kvmppc_book3s_hv_exit);