]> Pileus Git - ~andy/linux/blob - arch/powerpc/kvm/book3s_hv.c
9de24f8e03c71b44e0407b65bbe137c3506650e3
[~andy/linux] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55
56 /* #define EXIT_DEBUG */
57 /* #define EXIT_DEBUG_SIMPLE */
58 /* #define EXIT_DEBUG_INT */
59
60 /* Used to indicate that a guest page fault needs to be handled */
61 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
62
63 /* Used as a "null" value for timebase values */
64 #define TB_NIL  (~(u64)0)
65
66 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
67 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
68
69 void kvmppc_fast_vcpu_kick(struct kvm_vcpu *vcpu)
70 {
71         int me;
72         int cpu = vcpu->cpu;
73         wait_queue_head_t *wqp;
74
75         wqp = kvm_arch_vcpu_wq(vcpu);
76         if (waitqueue_active(wqp)) {
77                 wake_up_interruptible(wqp);
78                 ++vcpu->stat.halt_wakeup;
79         }
80
81         me = get_cpu();
82
83         /* CPU points to the first thread of the core */
84         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
85                 int real_cpu = cpu + vcpu->arch.ptid;
86                 if (paca[real_cpu].kvm_hstate.xics_phys)
87                         xics_wake_cpu(real_cpu);
88                 else if (cpu_online(cpu))
89                         smp_send_reschedule(cpu);
90         }
91         put_cpu();
92 }
93
94 /*
95  * We use the vcpu_load/put functions to measure stolen time.
96  * Stolen time is counted as time when either the vcpu is able to
97  * run as part of a virtual core, but the task running the vcore
98  * is preempted or sleeping, or when the vcpu needs something done
99  * in the kernel by the task running the vcpu, but that task is
100  * preempted or sleeping.  Those two things have to be counted
101  * separately, since one of the vcpu tasks will take on the job
102  * of running the core, and the other vcpu tasks in the vcore will
103  * sleep waiting for it to do that, but that sleep shouldn't count
104  * as stolen time.
105  *
106  * Hence we accumulate stolen time when the vcpu can run as part of
107  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
108  * needs its task to do other things in the kernel (for example,
109  * service a page fault) in busy_stolen.  We don't accumulate
110  * stolen time for a vcore when it is inactive, or for a vcpu
111  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
112  * a misnomer; it means that the vcpu task is not executing in
113  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
114  * the kernel.  We don't have any way of dividing up that time
115  * between time that the vcpu is genuinely stopped, time that
116  * the task is actively working on behalf of the vcpu, and time
117  * that the task is preempted, so we don't count any of it as
118  * stolen.
119  *
120  * Updates to busy_stolen are protected by arch.tbacct_lock;
121  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
122  * of the vcpu that has taken responsibility for running the vcore
123  * (i.e. vc->runner).  The stolen times are measured in units of
124  * timebase ticks.  (Note that the != TB_NIL checks below are
125  * purely defensive; they should never fail.)
126  */
127
128 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
129 {
130         struct kvmppc_vcore *vc = vcpu->arch.vcore;
131
132         spin_lock(&vcpu->arch.tbacct_lock);
133         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
134             vc->preempt_tb != TB_NIL) {
135                 vc->stolen_tb += mftb() - vc->preempt_tb;
136                 vc->preempt_tb = TB_NIL;
137         }
138         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
139             vcpu->arch.busy_preempt != TB_NIL) {
140                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
141                 vcpu->arch.busy_preempt = TB_NIL;
142         }
143         spin_unlock(&vcpu->arch.tbacct_lock);
144 }
145
146 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         struct kvmppc_vcore *vc = vcpu->arch.vcore;
149
150         spin_lock(&vcpu->arch.tbacct_lock);
151         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
152                 vc->preempt_tb = mftb();
153         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
154                 vcpu->arch.busy_preempt = mftb();
155         spin_unlock(&vcpu->arch.tbacct_lock);
156 }
157
158 void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
159 {
160         vcpu->arch.shregs.msr = msr;
161         kvmppc_end_cede(vcpu);
162 }
163
164 void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
165 {
166         vcpu->arch.pvr = pvr;
167 }
168
169 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
170 {
171         int r;
172
173         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
174         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
175                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
176         for (r = 0; r < 16; ++r)
177                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
178                        r, kvmppc_get_gpr(vcpu, r),
179                        r+16, kvmppc_get_gpr(vcpu, r+16));
180         pr_err("ctr = %.16lx  lr  = %.16lx\n",
181                vcpu->arch.ctr, vcpu->arch.lr);
182         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
183                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
184         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
185                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
186         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
187                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
188         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
189                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
190         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
191         pr_err("fault dar = %.16lx dsisr = %.8x\n",
192                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
193         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
194         for (r = 0; r < vcpu->arch.slb_max; ++r)
195                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
196                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
197         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
198                vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
199                vcpu->arch.last_inst);
200 }
201
202 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
203 {
204         int r;
205         struct kvm_vcpu *v, *ret = NULL;
206
207         mutex_lock(&kvm->lock);
208         kvm_for_each_vcpu(r, v, kvm) {
209                 if (v->vcpu_id == id) {
210                         ret = v;
211                         break;
212                 }
213         }
214         mutex_unlock(&kvm->lock);
215         return ret;
216 }
217
218 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
219 {
220         vpa->shared_proc = 1;
221         vpa->yield_count = 1;
222 }
223
224 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
225                    unsigned long addr, unsigned long len)
226 {
227         /* check address is cacheline aligned */
228         if (addr & (L1_CACHE_BYTES - 1))
229                 return -EINVAL;
230         spin_lock(&vcpu->arch.vpa_update_lock);
231         if (v->next_gpa != addr || v->len != len) {
232                 v->next_gpa = addr;
233                 v->len = addr ? len : 0;
234                 v->update_pending = 1;
235         }
236         spin_unlock(&vcpu->arch.vpa_update_lock);
237         return 0;
238 }
239
240 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
241 struct reg_vpa {
242         u32 dummy;
243         union {
244                 u16 hword;
245                 u32 word;
246         } length;
247 };
248
249 static int vpa_is_registered(struct kvmppc_vpa *vpap)
250 {
251         if (vpap->update_pending)
252                 return vpap->next_gpa != 0;
253         return vpap->pinned_addr != NULL;
254 }
255
256 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
257                                        unsigned long flags,
258                                        unsigned long vcpuid, unsigned long vpa)
259 {
260         struct kvm *kvm = vcpu->kvm;
261         unsigned long len, nb;
262         void *va;
263         struct kvm_vcpu *tvcpu;
264         int err;
265         int subfunc;
266         struct kvmppc_vpa *vpap;
267
268         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
269         if (!tvcpu)
270                 return H_PARAMETER;
271
272         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
273         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
274             subfunc == H_VPA_REG_SLB) {
275                 /* Registering new area - address must be cache-line aligned */
276                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
277                         return H_PARAMETER;
278
279                 /* convert logical addr to kernel addr and read length */
280                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
281                 if (va == NULL)
282                         return H_PARAMETER;
283                 if (subfunc == H_VPA_REG_VPA)
284                         len = ((struct reg_vpa *)va)->length.hword;
285                 else
286                         len = ((struct reg_vpa *)va)->length.word;
287                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
288
289                 /* Check length */
290                 if (len > nb || len < sizeof(struct reg_vpa))
291                         return H_PARAMETER;
292         } else {
293                 vpa = 0;
294                 len = 0;
295         }
296
297         err = H_PARAMETER;
298         vpap = NULL;
299         spin_lock(&tvcpu->arch.vpa_update_lock);
300
301         switch (subfunc) {
302         case H_VPA_REG_VPA:             /* register VPA */
303                 if (len < sizeof(struct lppaca))
304                         break;
305                 vpap = &tvcpu->arch.vpa;
306                 err = 0;
307                 break;
308
309         case H_VPA_REG_DTL:             /* register DTL */
310                 if (len < sizeof(struct dtl_entry))
311                         break;
312                 len -= len % sizeof(struct dtl_entry);
313
314                 /* Check that they have previously registered a VPA */
315                 err = H_RESOURCE;
316                 if (!vpa_is_registered(&tvcpu->arch.vpa))
317                         break;
318
319                 vpap = &tvcpu->arch.dtl;
320                 err = 0;
321                 break;
322
323         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
324                 /* Check that they have previously registered a VPA */
325                 err = H_RESOURCE;
326                 if (!vpa_is_registered(&tvcpu->arch.vpa))
327                         break;
328
329                 vpap = &tvcpu->arch.slb_shadow;
330                 err = 0;
331                 break;
332
333         case H_VPA_DEREG_VPA:           /* deregister VPA */
334                 /* Check they don't still have a DTL or SLB buf registered */
335                 err = H_RESOURCE;
336                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
337                     vpa_is_registered(&tvcpu->arch.slb_shadow))
338                         break;
339
340                 vpap = &tvcpu->arch.vpa;
341                 err = 0;
342                 break;
343
344         case H_VPA_DEREG_DTL:           /* deregister DTL */
345                 vpap = &tvcpu->arch.dtl;
346                 err = 0;
347                 break;
348
349         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
350                 vpap = &tvcpu->arch.slb_shadow;
351                 err = 0;
352                 break;
353         }
354
355         if (vpap) {
356                 vpap->next_gpa = vpa;
357                 vpap->len = len;
358                 vpap->update_pending = 1;
359         }
360
361         spin_unlock(&tvcpu->arch.vpa_update_lock);
362
363         return err;
364 }
365
366 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
367 {
368         struct kvm *kvm = vcpu->kvm;
369         void *va;
370         unsigned long nb;
371         unsigned long gpa;
372
373         /*
374          * We need to pin the page pointed to by vpap->next_gpa,
375          * but we can't call kvmppc_pin_guest_page under the lock
376          * as it does get_user_pages() and down_read().  So we
377          * have to drop the lock, pin the page, then get the lock
378          * again and check that a new area didn't get registered
379          * in the meantime.
380          */
381         for (;;) {
382                 gpa = vpap->next_gpa;
383                 spin_unlock(&vcpu->arch.vpa_update_lock);
384                 va = NULL;
385                 nb = 0;
386                 if (gpa)
387                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
388                 spin_lock(&vcpu->arch.vpa_update_lock);
389                 if (gpa == vpap->next_gpa)
390                         break;
391                 /* sigh... unpin that one and try again */
392                 if (va)
393                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
394         }
395
396         vpap->update_pending = 0;
397         if (va && nb < vpap->len) {
398                 /*
399                  * If it's now too short, it must be that userspace
400                  * has changed the mappings underlying guest memory,
401                  * so unregister the region.
402                  */
403                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
404                 va = NULL;
405         }
406         if (vpap->pinned_addr)
407                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
408                                         vpap->dirty);
409         vpap->gpa = gpa;
410         vpap->pinned_addr = va;
411         vpap->dirty = false;
412         if (va)
413                 vpap->pinned_end = va + vpap->len;
414 }
415
416 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
417 {
418         if (!(vcpu->arch.vpa.update_pending ||
419               vcpu->arch.slb_shadow.update_pending ||
420               vcpu->arch.dtl.update_pending))
421                 return;
422
423         spin_lock(&vcpu->arch.vpa_update_lock);
424         if (vcpu->arch.vpa.update_pending) {
425                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
426                 if (vcpu->arch.vpa.pinned_addr)
427                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
428         }
429         if (vcpu->arch.dtl.update_pending) {
430                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
431                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
432                 vcpu->arch.dtl_index = 0;
433         }
434         if (vcpu->arch.slb_shadow.update_pending)
435                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
436         spin_unlock(&vcpu->arch.vpa_update_lock);
437 }
438
439 /*
440  * Return the accumulated stolen time for the vcore up until `now'.
441  * The caller should hold the vcore lock.
442  */
443 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
444 {
445         u64 p;
446
447         /*
448          * If we are the task running the vcore, then since we hold
449          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
450          * can't be updated, so we don't need the tbacct_lock.
451          * If the vcore is inactive, it can't become active (since we
452          * hold the vcore lock), so the vcpu load/put functions won't
453          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
454          */
455         if (vc->vcore_state != VCORE_INACTIVE &&
456             vc->runner->arch.run_task != current) {
457                 spin_lock(&vc->runner->arch.tbacct_lock);
458                 p = vc->stolen_tb;
459                 if (vc->preempt_tb != TB_NIL)
460                         p += now - vc->preempt_tb;
461                 spin_unlock(&vc->runner->arch.tbacct_lock);
462         } else {
463                 p = vc->stolen_tb;
464         }
465         return p;
466 }
467
468 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
469                                     struct kvmppc_vcore *vc)
470 {
471         struct dtl_entry *dt;
472         struct lppaca *vpa;
473         unsigned long stolen;
474         unsigned long core_stolen;
475         u64 now;
476
477         dt = vcpu->arch.dtl_ptr;
478         vpa = vcpu->arch.vpa.pinned_addr;
479         now = mftb();
480         core_stolen = vcore_stolen_time(vc, now);
481         stolen = core_stolen - vcpu->arch.stolen_logged;
482         vcpu->arch.stolen_logged = core_stolen;
483         spin_lock(&vcpu->arch.tbacct_lock);
484         stolen += vcpu->arch.busy_stolen;
485         vcpu->arch.busy_stolen = 0;
486         spin_unlock(&vcpu->arch.tbacct_lock);
487         if (!dt || !vpa)
488                 return;
489         memset(dt, 0, sizeof(struct dtl_entry));
490         dt->dispatch_reason = 7;
491         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
492         dt->timebase = now;
493         dt->enqueue_to_dispatch_time = stolen;
494         dt->srr0 = kvmppc_get_pc(vcpu);
495         dt->srr1 = vcpu->arch.shregs.msr;
496         ++dt;
497         if (dt == vcpu->arch.dtl.pinned_end)
498                 dt = vcpu->arch.dtl.pinned_addr;
499         vcpu->arch.dtl_ptr = dt;
500         /* order writing *dt vs. writing vpa->dtl_idx */
501         smp_wmb();
502         vpa->dtl_idx = ++vcpu->arch.dtl_index;
503         vcpu->arch.dtl.dirty = true;
504 }
505
506 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
507 {
508         unsigned long req = kvmppc_get_gpr(vcpu, 3);
509         unsigned long target, ret = H_SUCCESS;
510         struct kvm_vcpu *tvcpu;
511         int idx, rc;
512
513         switch (req) {
514         case H_ENTER:
515                 idx = srcu_read_lock(&vcpu->kvm->srcu);
516                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
517                                               kvmppc_get_gpr(vcpu, 5),
518                                               kvmppc_get_gpr(vcpu, 6),
519                                               kvmppc_get_gpr(vcpu, 7));
520                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
521                 break;
522         case H_CEDE:
523                 break;
524         case H_PROD:
525                 target = kvmppc_get_gpr(vcpu, 4);
526                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
527                 if (!tvcpu) {
528                         ret = H_PARAMETER;
529                         break;
530                 }
531                 tvcpu->arch.prodded = 1;
532                 smp_mb();
533                 if (vcpu->arch.ceded) {
534                         if (waitqueue_active(&vcpu->wq)) {
535                                 wake_up_interruptible(&vcpu->wq);
536                                 vcpu->stat.halt_wakeup++;
537                         }
538                 }
539                 break;
540         case H_CONFER:
541                 break;
542         case H_REGISTER_VPA:
543                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
544                                         kvmppc_get_gpr(vcpu, 5),
545                                         kvmppc_get_gpr(vcpu, 6));
546                 break;
547         case H_RTAS:
548                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
549                         return RESUME_HOST;
550
551                 rc = kvmppc_rtas_hcall(vcpu);
552
553                 if (rc == -ENOENT)
554                         return RESUME_HOST;
555                 else if (rc == 0)
556                         break;
557
558                 /* Send the error out to userspace via KVM_RUN */
559                 return rc;
560
561         case H_XIRR:
562         case H_CPPR:
563         case H_EOI:
564         case H_IPI:
565                 if (kvmppc_xics_enabled(vcpu)) {
566                         ret = kvmppc_xics_hcall(vcpu, req);
567                         break;
568                 } /* fallthrough */
569         default:
570                 return RESUME_HOST;
571         }
572         kvmppc_set_gpr(vcpu, 3, ret);
573         vcpu->arch.hcall_needed = 0;
574         return RESUME_GUEST;
575 }
576
577 static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
578                               struct task_struct *tsk)
579 {
580         int r = RESUME_HOST;
581
582         vcpu->stat.sum_exits++;
583
584         run->exit_reason = KVM_EXIT_UNKNOWN;
585         run->ready_for_interrupt_injection = 1;
586         switch (vcpu->arch.trap) {
587         /* We're good on these - the host merely wanted to get our attention */
588         case BOOK3S_INTERRUPT_HV_DECREMENTER:
589                 vcpu->stat.dec_exits++;
590                 r = RESUME_GUEST;
591                 break;
592         case BOOK3S_INTERRUPT_EXTERNAL:
593                 vcpu->stat.ext_intr_exits++;
594                 r = RESUME_GUEST;
595                 break;
596         case BOOK3S_INTERRUPT_PERFMON:
597                 r = RESUME_GUEST;
598                 break;
599         case BOOK3S_INTERRUPT_MACHINE_CHECK:
600                 /*
601                  * Deliver a machine check interrupt to the guest.
602                  * We have to do this, even if the host has handled the
603                  * machine check, because machine checks use SRR0/1 and
604                  * the interrupt might have trashed guest state in them.
605                  */
606                 kvmppc_book3s_queue_irqprio(vcpu,
607                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
608                 r = RESUME_GUEST;
609                 break;
610         case BOOK3S_INTERRUPT_PROGRAM:
611         {
612                 ulong flags;
613                 /*
614                  * Normally program interrupts are delivered directly
615                  * to the guest by the hardware, but we can get here
616                  * as a result of a hypervisor emulation interrupt
617                  * (e40) getting turned into a 700 by BML RTAS.
618                  */
619                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
620                 kvmppc_core_queue_program(vcpu, flags);
621                 r = RESUME_GUEST;
622                 break;
623         }
624         case BOOK3S_INTERRUPT_SYSCALL:
625         {
626                 /* hcall - punt to userspace */
627                 int i;
628
629                 if (vcpu->arch.shregs.msr & MSR_PR) {
630                         /* sc 1 from userspace - reflect to guest syscall */
631                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
632                         r = RESUME_GUEST;
633                         break;
634                 }
635                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
636                 for (i = 0; i < 9; ++i)
637                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
638                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
639                 vcpu->arch.hcall_needed = 1;
640                 r = RESUME_HOST;
641                 break;
642         }
643         /*
644          * We get these next two if the guest accesses a page which it thinks
645          * it has mapped but which is not actually present, either because
646          * it is for an emulated I/O device or because the corresonding
647          * host page has been paged out.  Any other HDSI/HISI interrupts
648          * have been handled already.
649          */
650         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
651                 r = RESUME_PAGE_FAULT;
652                 break;
653         case BOOK3S_INTERRUPT_H_INST_STORAGE:
654                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
655                 vcpu->arch.fault_dsisr = 0;
656                 r = RESUME_PAGE_FAULT;
657                 break;
658         /*
659          * This occurs if the guest executes an illegal instruction.
660          * We just generate a program interrupt to the guest, since
661          * we don't emulate any guest instructions at this stage.
662          */
663         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
664                 kvmppc_core_queue_program(vcpu, 0x80000);
665                 r = RESUME_GUEST;
666                 break;
667         default:
668                 kvmppc_dump_regs(vcpu);
669                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
670                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
671                         vcpu->arch.shregs.msr);
672                 r = RESUME_HOST;
673                 BUG();
674                 break;
675         }
676
677         return r;
678 }
679
680 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
681                                   struct kvm_sregs *sregs)
682 {
683         int i;
684
685         sregs->pvr = vcpu->arch.pvr;
686
687         memset(sregs, 0, sizeof(struct kvm_sregs));
688         for (i = 0; i < vcpu->arch.slb_max; i++) {
689                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
690                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
691         }
692
693         return 0;
694 }
695
696 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
697                                   struct kvm_sregs *sregs)
698 {
699         int i, j;
700
701         kvmppc_set_pvr(vcpu, sregs->pvr);
702
703         j = 0;
704         for (i = 0; i < vcpu->arch.slb_nr; i++) {
705                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
706                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
707                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
708                         ++j;
709                 }
710         }
711         vcpu->arch.slb_max = j;
712
713         return 0;
714 }
715
716 int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
717 {
718         int r = 0;
719         long int i;
720
721         switch (id) {
722         case KVM_REG_PPC_HIOR:
723                 *val = get_reg_val(id, 0);
724                 break;
725         case KVM_REG_PPC_DABR:
726                 *val = get_reg_val(id, vcpu->arch.dabr);
727                 break;
728         case KVM_REG_PPC_DSCR:
729                 *val = get_reg_val(id, vcpu->arch.dscr);
730                 break;
731         case KVM_REG_PPC_PURR:
732                 *val = get_reg_val(id, vcpu->arch.purr);
733                 break;
734         case KVM_REG_PPC_SPURR:
735                 *val = get_reg_val(id, vcpu->arch.spurr);
736                 break;
737         case KVM_REG_PPC_AMR:
738                 *val = get_reg_val(id, vcpu->arch.amr);
739                 break;
740         case KVM_REG_PPC_UAMOR:
741                 *val = get_reg_val(id, vcpu->arch.uamor);
742                 break;
743         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
744                 i = id - KVM_REG_PPC_MMCR0;
745                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
746                 break;
747         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
748                 i = id - KVM_REG_PPC_PMC1;
749                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
750                 break;
751 #ifdef CONFIG_VSX
752         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
753                 if (cpu_has_feature(CPU_FTR_VSX)) {
754                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
755                         long int i = id - KVM_REG_PPC_FPR0;
756                         *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
757                 } else {
758                         /* let generic code handle it */
759                         r = -EINVAL;
760                 }
761                 break;
762         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
763                 if (cpu_has_feature(CPU_FTR_VSX)) {
764                         long int i = id - KVM_REG_PPC_VSR0;
765                         val->vsxval[0] = vcpu->arch.vsr[2 * i];
766                         val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
767                 } else {
768                         r = -ENXIO;
769                 }
770                 break;
771 #endif /* CONFIG_VSX */
772         case KVM_REG_PPC_VPA_ADDR:
773                 spin_lock(&vcpu->arch.vpa_update_lock);
774                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
775                 spin_unlock(&vcpu->arch.vpa_update_lock);
776                 break;
777         case KVM_REG_PPC_VPA_SLB:
778                 spin_lock(&vcpu->arch.vpa_update_lock);
779                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
780                 val->vpaval.length = vcpu->arch.slb_shadow.len;
781                 spin_unlock(&vcpu->arch.vpa_update_lock);
782                 break;
783         case KVM_REG_PPC_VPA_DTL:
784                 spin_lock(&vcpu->arch.vpa_update_lock);
785                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
786                 val->vpaval.length = vcpu->arch.dtl.len;
787                 spin_unlock(&vcpu->arch.vpa_update_lock);
788                 break;
789         default:
790                 r = -EINVAL;
791                 break;
792         }
793
794         return r;
795 }
796
797 int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
798 {
799         int r = 0;
800         long int i;
801         unsigned long addr, len;
802
803         switch (id) {
804         case KVM_REG_PPC_HIOR:
805                 /* Only allow this to be set to zero */
806                 if (set_reg_val(id, *val))
807                         r = -EINVAL;
808                 break;
809         case KVM_REG_PPC_DABR:
810                 vcpu->arch.dabr = set_reg_val(id, *val);
811                 break;
812         case KVM_REG_PPC_DSCR:
813                 vcpu->arch.dscr = set_reg_val(id, *val);
814                 break;
815         case KVM_REG_PPC_PURR:
816                 vcpu->arch.purr = set_reg_val(id, *val);
817                 break;
818         case KVM_REG_PPC_SPURR:
819                 vcpu->arch.spurr = set_reg_val(id, *val);
820                 break;
821         case KVM_REG_PPC_AMR:
822                 vcpu->arch.amr = set_reg_val(id, *val);
823                 break;
824         case KVM_REG_PPC_UAMOR:
825                 vcpu->arch.uamor = set_reg_val(id, *val);
826                 break;
827         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
828                 i = id - KVM_REG_PPC_MMCR0;
829                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
830                 break;
831         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
832                 i = id - KVM_REG_PPC_PMC1;
833                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
834                 break;
835 #ifdef CONFIG_VSX
836         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
837                 if (cpu_has_feature(CPU_FTR_VSX)) {
838                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
839                         long int i = id - KVM_REG_PPC_FPR0;
840                         vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
841                 } else {
842                         /* let generic code handle it */
843                         r = -EINVAL;
844                 }
845                 break;
846         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
847                 if (cpu_has_feature(CPU_FTR_VSX)) {
848                         long int i = id - KVM_REG_PPC_VSR0;
849                         vcpu->arch.vsr[2 * i] = val->vsxval[0];
850                         vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
851                 } else {
852                         r = -ENXIO;
853                 }
854                 break;
855 #endif /* CONFIG_VSX */
856         case KVM_REG_PPC_VPA_ADDR:
857                 addr = set_reg_val(id, *val);
858                 r = -EINVAL;
859                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
860                               vcpu->arch.dtl.next_gpa))
861                         break;
862                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
863                 break;
864         case KVM_REG_PPC_VPA_SLB:
865                 addr = val->vpaval.addr;
866                 len = val->vpaval.length;
867                 r = -EINVAL;
868                 if (addr && !vcpu->arch.vpa.next_gpa)
869                         break;
870                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
871                 break;
872         case KVM_REG_PPC_VPA_DTL:
873                 addr = val->vpaval.addr;
874                 len = val->vpaval.length;
875                 r = -EINVAL;
876                 if (addr && (len < sizeof(struct dtl_entry) ||
877                              !vcpu->arch.vpa.next_gpa))
878                         break;
879                 len -= len % sizeof(struct dtl_entry);
880                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
881                 break;
882         default:
883                 r = -EINVAL;
884                 break;
885         }
886
887         return r;
888 }
889
890 int kvmppc_core_check_processor_compat(void)
891 {
892         if (cpu_has_feature(CPU_FTR_HVMODE))
893                 return 0;
894         return -EIO;
895 }
896
897 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
898 {
899         struct kvm_vcpu *vcpu;
900         int err = -EINVAL;
901         int core;
902         struct kvmppc_vcore *vcore;
903
904         core = id / threads_per_core;
905         if (core >= KVM_MAX_VCORES)
906                 goto out;
907
908         err = -ENOMEM;
909         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
910         if (!vcpu)
911                 goto out;
912
913         err = kvm_vcpu_init(vcpu, kvm, id);
914         if (err)
915                 goto free_vcpu;
916
917         vcpu->arch.shared = &vcpu->arch.shregs;
918         vcpu->arch.mmcr[0] = MMCR0_FC;
919         vcpu->arch.ctrl = CTRL_RUNLATCH;
920         /* default to host PVR, since we can't spoof it */
921         vcpu->arch.pvr = mfspr(SPRN_PVR);
922         kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
923         spin_lock_init(&vcpu->arch.vpa_update_lock);
924         spin_lock_init(&vcpu->arch.tbacct_lock);
925         vcpu->arch.busy_preempt = TB_NIL;
926
927         kvmppc_mmu_book3s_hv_init(vcpu);
928
929         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
930
931         init_waitqueue_head(&vcpu->arch.cpu_run);
932
933         mutex_lock(&kvm->lock);
934         vcore = kvm->arch.vcores[core];
935         if (!vcore) {
936                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
937                 if (vcore) {
938                         INIT_LIST_HEAD(&vcore->runnable_threads);
939                         spin_lock_init(&vcore->lock);
940                         init_waitqueue_head(&vcore->wq);
941                         vcore->preempt_tb = TB_NIL;
942                 }
943                 kvm->arch.vcores[core] = vcore;
944                 kvm->arch.online_vcores++;
945         }
946         mutex_unlock(&kvm->lock);
947
948         if (!vcore)
949                 goto free_vcpu;
950
951         spin_lock(&vcore->lock);
952         ++vcore->num_threads;
953         spin_unlock(&vcore->lock);
954         vcpu->arch.vcore = vcore;
955
956         vcpu->arch.cpu_type = KVM_CPU_3S_64;
957         kvmppc_sanity_check(vcpu);
958
959         return vcpu;
960
961 free_vcpu:
962         kmem_cache_free(kvm_vcpu_cache, vcpu);
963 out:
964         return ERR_PTR(err);
965 }
966
967 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
968 {
969         if (vpa->pinned_addr)
970                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
971                                         vpa->dirty);
972 }
973
974 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
975 {
976         spin_lock(&vcpu->arch.vpa_update_lock);
977         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
978         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
979         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
980         spin_unlock(&vcpu->arch.vpa_update_lock);
981         kvm_vcpu_uninit(vcpu);
982         kmem_cache_free(kvm_vcpu_cache, vcpu);
983 }
984
985 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
986 {
987         unsigned long dec_nsec, now;
988
989         now = get_tb();
990         if (now > vcpu->arch.dec_expires) {
991                 /* decrementer has already gone negative */
992                 kvmppc_core_queue_dec(vcpu);
993                 kvmppc_core_prepare_to_enter(vcpu);
994                 return;
995         }
996         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
997                    / tb_ticks_per_sec;
998         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
999                       HRTIMER_MODE_REL);
1000         vcpu->arch.timer_running = 1;
1001 }
1002
1003 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1004 {
1005         vcpu->arch.ceded = 0;
1006         if (vcpu->arch.timer_running) {
1007                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1008                 vcpu->arch.timer_running = 0;
1009         }
1010 }
1011
1012 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1013
1014 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1015                                    struct kvm_vcpu *vcpu)
1016 {
1017         u64 now;
1018
1019         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1020                 return;
1021         spin_lock(&vcpu->arch.tbacct_lock);
1022         now = mftb();
1023         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1024                 vcpu->arch.stolen_logged;
1025         vcpu->arch.busy_preempt = now;
1026         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1027         spin_unlock(&vcpu->arch.tbacct_lock);
1028         --vc->n_runnable;
1029         list_del(&vcpu->arch.run_list);
1030 }
1031
1032 static int kvmppc_grab_hwthread(int cpu)
1033 {
1034         struct paca_struct *tpaca;
1035         long timeout = 1000;
1036
1037         tpaca = &paca[cpu];
1038
1039         /* Ensure the thread won't go into the kernel if it wakes */
1040         tpaca->kvm_hstate.hwthread_req = 1;
1041         tpaca->kvm_hstate.kvm_vcpu = NULL;
1042
1043         /*
1044          * If the thread is already executing in the kernel (e.g. handling
1045          * a stray interrupt), wait for it to get back to nap mode.
1046          * The smp_mb() is to ensure that our setting of hwthread_req
1047          * is visible before we look at hwthread_state, so if this
1048          * races with the code at system_reset_pSeries and the thread
1049          * misses our setting of hwthread_req, we are sure to see its
1050          * setting of hwthread_state, and vice versa.
1051          */
1052         smp_mb();
1053         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1054                 if (--timeout <= 0) {
1055                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1056                         return -EBUSY;
1057                 }
1058                 udelay(1);
1059         }
1060         return 0;
1061 }
1062
1063 static void kvmppc_release_hwthread(int cpu)
1064 {
1065         struct paca_struct *tpaca;
1066
1067         tpaca = &paca[cpu];
1068         tpaca->kvm_hstate.hwthread_req = 0;
1069         tpaca->kvm_hstate.kvm_vcpu = NULL;
1070 }
1071
1072 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1073 {
1074         int cpu;
1075         struct paca_struct *tpaca;
1076         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1077
1078         if (vcpu->arch.timer_running) {
1079                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1080                 vcpu->arch.timer_running = 0;
1081         }
1082         cpu = vc->pcpu + vcpu->arch.ptid;
1083         tpaca = &paca[cpu];
1084         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1085         tpaca->kvm_hstate.kvm_vcore = vc;
1086         tpaca->kvm_hstate.napping = 0;
1087         vcpu->cpu = vc->pcpu;
1088         smp_wmb();
1089 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1090         if (vcpu->arch.ptid) {
1091                 xics_wake_cpu(cpu);
1092                 ++vc->n_woken;
1093         }
1094 #endif
1095 }
1096
1097 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1098 {
1099         int i;
1100
1101         HMT_low();
1102         i = 0;
1103         while (vc->nap_count < vc->n_woken) {
1104                 if (++i >= 1000000) {
1105                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1106                                vc->nap_count, vc->n_woken);
1107                         break;
1108                 }
1109                 cpu_relax();
1110         }
1111         HMT_medium();
1112 }
1113
1114 /*
1115  * Check that we are on thread 0 and that any other threads in
1116  * this core are off-line.  Then grab the threads so they can't
1117  * enter the kernel.
1118  */
1119 static int on_primary_thread(void)
1120 {
1121         int cpu = smp_processor_id();
1122         int thr = cpu_thread_in_core(cpu);
1123
1124         if (thr)
1125                 return 0;
1126         while (++thr < threads_per_core)
1127                 if (cpu_online(cpu + thr))
1128                         return 0;
1129
1130         /* Grab all hw threads so they can't go into the kernel */
1131         for (thr = 1; thr < threads_per_core; ++thr) {
1132                 if (kvmppc_grab_hwthread(cpu + thr)) {
1133                         /* Couldn't grab one; let the others go */
1134                         do {
1135                                 kvmppc_release_hwthread(cpu + thr);
1136                         } while (--thr > 0);
1137                         return 0;
1138                 }
1139         }
1140         return 1;
1141 }
1142
1143 /*
1144  * Run a set of guest threads on a physical core.
1145  * Called with vc->lock held.
1146  */
1147 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1148 {
1149         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1150         long ret;
1151         u64 now;
1152         int ptid, i, need_vpa_update;
1153         int srcu_idx;
1154         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1155
1156         /* don't start if any threads have a signal pending */
1157         need_vpa_update = 0;
1158         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1159                 if (signal_pending(vcpu->arch.run_task))
1160                         return;
1161                 if (vcpu->arch.vpa.update_pending ||
1162                     vcpu->arch.slb_shadow.update_pending ||
1163                     vcpu->arch.dtl.update_pending)
1164                         vcpus_to_update[need_vpa_update++] = vcpu;
1165         }
1166
1167         /*
1168          * Initialize *vc, in particular vc->vcore_state, so we can
1169          * drop the vcore lock if necessary.
1170          */
1171         vc->n_woken = 0;
1172         vc->nap_count = 0;
1173         vc->entry_exit_count = 0;
1174         vc->vcore_state = VCORE_STARTING;
1175         vc->in_guest = 0;
1176         vc->napping_threads = 0;
1177
1178         /*
1179          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1180          * which can't be called with any spinlocks held.
1181          */
1182         if (need_vpa_update) {
1183                 spin_unlock(&vc->lock);
1184                 for (i = 0; i < need_vpa_update; ++i)
1185                         kvmppc_update_vpas(vcpus_to_update[i]);
1186                 spin_lock(&vc->lock);
1187         }
1188
1189         /*
1190          * Assign physical thread IDs, first to non-ceded vcpus
1191          * and then to ceded ones.
1192          */
1193         ptid = 0;
1194         vcpu0 = NULL;
1195         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1196                 if (!vcpu->arch.ceded) {
1197                         if (!ptid)
1198                                 vcpu0 = vcpu;
1199                         vcpu->arch.ptid = ptid++;
1200                 }
1201         }
1202         if (!vcpu0)
1203                 goto out;       /* nothing to run; should never happen */
1204         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1205                 if (vcpu->arch.ceded)
1206                         vcpu->arch.ptid = ptid++;
1207
1208         /*
1209          * Make sure we are running on thread 0, and that
1210          * secondary threads are offline.
1211          */
1212         if (threads_per_core > 1 && !on_primary_thread()) {
1213                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1214                         vcpu->arch.ret = -EBUSY;
1215                 goto out;
1216         }
1217
1218         vc->pcpu = smp_processor_id();
1219         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1220                 kvmppc_start_thread(vcpu);
1221                 kvmppc_create_dtl_entry(vcpu, vc);
1222         }
1223
1224         vc->vcore_state = VCORE_RUNNING;
1225         preempt_disable();
1226         spin_unlock(&vc->lock);
1227
1228         kvm_guest_enter();
1229
1230         srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1231
1232         __kvmppc_vcore_entry(NULL, vcpu0);
1233
1234         spin_lock(&vc->lock);
1235         /* disable sending of IPIs on virtual external irqs */
1236         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1237                 vcpu->cpu = -1;
1238         /* wait for secondary threads to finish writing their state to memory */
1239         if (vc->nap_count < vc->n_woken)
1240                 kvmppc_wait_for_nap(vc);
1241         for (i = 0; i < threads_per_core; ++i)
1242                 kvmppc_release_hwthread(vc->pcpu + i);
1243         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1244         vc->vcore_state = VCORE_EXITING;
1245         spin_unlock(&vc->lock);
1246
1247         srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1248
1249         /* make sure updates to secondary vcpu structs are visible now */
1250         smp_mb();
1251         kvm_guest_exit();
1252
1253         preempt_enable();
1254         kvm_resched(vcpu);
1255
1256         spin_lock(&vc->lock);
1257         now = get_tb();
1258         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1259                 /* cancel pending dec exception if dec is positive */
1260                 if (now < vcpu->arch.dec_expires &&
1261                     kvmppc_core_pending_dec(vcpu))
1262                         kvmppc_core_dequeue_dec(vcpu);
1263
1264                 ret = RESUME_GUEST;
1265                 if (vcpu->arch.trap)
1266                         ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
1267                                                  vcpu->arch.run_task);
1268
1269                 vcpu->arch.ret = ret;
1270                 vcpu->arch.trap = 0;
1271
1272                 if (vcpu->arch.ceded) {
1273                         if (ret != RESUME_GUEST)
1274                                 kvmppc_end_cede(vcpu);
1275                         else
1276                                 kvmppc_set_timer(vcpu);
1277                 }
1278         }
1279
1280  out:
1281         vc->vcore_state = VCORE_INACTIVE;
1282         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1283                                  arch.run_list) {
1284                 if (vcpu->arch.ret != RESUME_GUEST) {
1285                         kvmppc_remove_runnable(vc, vcpu);
1286                         wake_up(&vcpu->arch.cpu_run);
1287                 }
1288         }
1289 }
1290
1291 /*
1292  * Wait for some other vcpu thread to execute us, and
1293  * wake us up when we need to handle something in the host.
1294  */
1295 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1296 {
1297         DEFINE_WAIT(wait);
1298
1299         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1300         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1301                 schedule();
1302         finish_wait(&vcpu->arch.cpu_run, &wait);
1303 }
1304
1305 /*
1306  * All the vcpus in this vcore are idle, so wait for a decrementer
1307  * or external interrupt to one of the vcpus.  vc->lock is held.
1308  */
1309 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1310 {
1311         DEFINE_WAIT(wait);
1312
1313         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1314         vc->vcore_state = VCORE_SLEEPING;
1315         spin_unlock(&vc->lock);
1316         schedule();
1317         finish_wait(&vc->wq, &wait);
1318         spin_lock(&vc->lock);
1319         vc->vcore_state = VCORE_INACTIVE;
1320 }
1321
1322 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1323 {
1324         int n_ceded;
1325         struct kvmppc_vcore *vc;
1326         struct kvm_vcpu *v, *vn;
1327
1328         kvm_run->exit_reason = 0;
1329         vcpu->arch.ret = RESUME_GUEST;
1330         vcpu->arch.trap = 0;
1331         kvmppc_update_vpas(vcpu);
1332
1333         /*
1334          * Synchronize with other threads in this virtual core
1335          */
1336         vc = vcpu->arch.vcore;
1337         spin_lock(&vc->lock);
1338         vcpu->arch.ceded = 0;
1339         vcpu->arch.run_task = current;
1340         vcpu->arch.kvm_run = kvm_run;
1341         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1342         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1343         vcpu->arch.busy_preempt = TB_NIL;
1344         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1345         ++vc->n_runnable;
1346
1347         /*
1348          * This happens the first time this is called for a vcpu.
1349          * If the vcore is already running, we may be able to start
1350          * this thread straight away and have it join in.
1351          */
1352         if (!signal_pending(current)) {
1353                 if (vc->vcore_state == VCORE_RUNNING &&
1354                     VCORE_EXIT_COUNT(vc) == 0) {
1355                         vcpu->arch.ptid = vc->n_runnable - 1;
1356                         kvmppc_create_dtl_entry(vcpu, vc);
1357                         kvmppc_start_thread(vcpu);
1358                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1359                         wake_up(&vc->wq);
1360                 }
1361
1362         }
1363
1364         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1365                !signal_pending(current)) {
1366                 if (vc->vcore_state != VCORE_INACTIVE) {
1367                         spin_unlock(&vc->lock);
1368                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1369                         spin_lock(&vc->lock);
1370                         continue;
1371                 }
1372                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1373                                          arch.run_list) {
1374                         kvmppc_core_prepare_to_enter(v);
1375                         if (signal_pending(v->arch.run_task)) {
1376                                 kvmppc_remove_runnable(vc, v);
1377                                 v->stat.signal_exits++;
1378                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1379                                 v->arch.ret = -EINTR;
1380                                 wake_up(&v->arch.cpu_run);
1381                         }
1382                 }
1383                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1384                         break;
1385                 vc->runner = vcpu;
1386                 n_ceded = 0;
1387                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1388                         if (!v->arch.pending_exceptions)
1389                                 n_ceded += v->arch.ceded;
1390                         else
1391                                 v->arch.ceded = 0;
1392                 }
1393                 if (n_ceded == vc->n_runnable)
1394                         kvmppc_vcore_blocked(vc);
1395                 else
1396                         kvmppc_run_core(vc);
1397                 vc->runner = NULL;
1398         }
1399
1400         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1401                (vc->vcore_state == VCORE_RUNNING ||
1402                 vc->vcore_state == VCORE_EXITING)) {
1403                 spin_unlock(&vc->lock);
1404                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1405                 spin_lock(&vc->lock);
1406         }
1407
1408         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1409                 kvmppc_remove_runnable(vc, vcpu);
1410                 vcpu->stat.signal_exits++;
1411                 kvm_run->exit_reason = KVM_EXIT_INTR;
1412                 vcpu->arch.ret = -EINTR;
1413         }
1414
1415         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1416                 /* Wake up some vcpu to run the core */
1417                 v = list_first_entry(&vc->runnable_threads,
1418                                      struct kvm_vcpu, arch.run_list);
1419                 wake_up(&v->arch.cpu_run);
1420         }
1421
1422         spin_unlock(&vc->lock);
1423         return vcpu->arch.ret;
1424 }
1425
1426 int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
1427 {
1428         int r;
1429         int srcu_idx;
1430
1431         if (!vcpu->arch.sane) {
1432                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1433                 return -EINVAL;
1434         }
1435
1436         kvmppc_core_prepare_to_enter(vcpu);
1437
1438         /* No need to go into the guest when all we'll do is come back out */
1439         if (signal_pending(current)) {
1440                 run->exit_reason = KVM_EXIT_INTR;
1441                 return -EINTR;
1442         }
1443
1444         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1445         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1446         smp_mb();
1447
1448         /* On the first time here, set up HTAB and VRMA or RMA */
1449         if (!vcpu->kvm->arch.rma_setup_done) {
1450                 r = kvmppc_hv_setup_htab_rma(vcpu);
1451                 if (r)
1452                         goto out;
1453         }
1454
1455         flush_fp_to_thread(current);
1456         flush_altivec_to_thread(current);
1457         flush_vsx_to_thread(current);
1458         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1459         vcpu->arch.pgdir = current->mm->pgd;
1460         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1461
1462         do {
1463                 r = kvmppc_run_vcpu(run, vcpu);
1464
1465                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1466                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1467                         r = kvmppc_pseries_do_hcall(vcpu);
1468                         kvmppc_core_prepare_to_enter(vcpu);
1469                 } else if (r == RESUME_PAGE_FAULT) {
1470                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1471                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1472                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1473                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1474                 }
1475         } while (r == RESUME_GUEST);
1476
1477  out:
1478         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1479         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1480         return r;
1481 }
1482
1483
1484 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1485    Assumes POWER7 or PPC970. */
1486 static inline int lpcr_rmls(unsigned long rma_size)
1487 {
1488         switch (rma_size) {
1489         case 32ul << 20:        /* 32 MB */
1490                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1491                         return 8;       /* only supported on POWER7 */
1492                 return -1;
1493         case 64ul << 20:        /* 64 MB */
1494                 return 3;
1495         case 128ul << 20:       /* 128 MB */
1496                 return 7;
1497         case 256ul << 20:       /* 256 MB */
1498                 return 4;
1499         case 1ul << 30:         /* 1 GB */
1500                 return 2;
1501         case 16ul << 30:        /* 16 GB */
1502                 return 1;
1503         case 256ul << 30:       /* 256 GB */
1504                 return 0;
1505         default:
1506                 return -1;
1507         }
1508 }
1509
1510 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1511 {
1512         struct kvmppc_linear_info *ri = vma->vm_file->private_data;
1513         struct page *page;
1514
1515         if (vmf->pgoff >= ri->npages)
1516                 return VM_FAULT_SIGBUS;
1517
1518         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1519         get_page(page);
1520         vmf->page = page;
1521         return 0;
1522 }
1523
1524 static const struct vm_operations_struct kvm_rma_vm_ops = {
1525         .fault = kvm_rma_fault,
1526 };
1527
1528 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1529 {
1530         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1531         vma->vm_ops = &kvm_rma_vm_ops;
1532         return 0;
1533 }
1534
1535 static int kvm_rma_release(struct inode *inode, struct file *filp)
1536 {
1537         struct kvmppc_linear_info *ri = filp->private_data;
1538
1539         kvm_release_rma(ri);
1540         return 0;
1541 }
1542
1543 static const struct file_operations kvm_rma_fops = {
1544         .mmap           = kvm_rma_mmap,
1545         .release        = kvm_rma_release,
1546 };
1547
1548 long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
1549 {
1550         struct kvmppc_linear_info *ri;
1551         long fd;
1552
1553         ri = kvm_alloc_rma();
1554         if (!ri)
1555                 return -ENOMEM;
1556
1557         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
1558         if (fd < 0)
1559                 kvm_release_rma(ri);
1560
1561         ret->rma_size = ri->npages << PAGE_SHIFT;
1562         return fd;
1563 }
1564
1565 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1566                                      int linux_psize)
1567 {
1568         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1569
1570         if (!def->shift)
1571                 return;
1572         (*sps)->page_shift = def->shift;
1573         (*sps)->slb_enc = def->sllp;
1574         (*sps)->enc[0].page_shift = def->shift;
1575         /*
1576          * Only return base page encoding. We don't want to return
1577          * all the supporting pte_enc, because our H_ENTER doesn't
1578          * support MPSS yet. Once they do, we can start passing all
1579          * support pte_enc here
1580          */
1581         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1582         (*sps)++;
1583 }
1584
1585 int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
1586 {
1587         struct kvm_ppc_one_seg_page_size *sps;
1588
1589         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1590         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1591                 info->flags |= KVM_PPC_1T_SEGMENTS;
1592         info->slb_size = mmu_slb_size;
1593
1594         /* We only support these sizes for now, and no muti-size segments */
1595         sps = &info->sps[0];
1596         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1597         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1598         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1599
1600         return 0;
1601 }
1602
1603 /*
1604  * Get (and clear) the dirty memory log for a memory slot.
1605  */
1606 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1607 {
1608         struct kvm_memory_slot *memslot;
1609         int r;
1610         unsigned long n;
1611
1612         mutex_lock(&kvm->slots_lock);
1613
1614         r = -EINVAL;
1615         if (log->slot >= KVM_USER_MEM_SLOTS)
1616                 goto out;
1617
1618         memslot = id_to_memslot(kvm->memslots, log->slot);
1619         r = -ENOENT;
1620         if (!memslot->dirty_bitmap)
1621                 goto out;
1622
1623         n = kvm_dirty_bitmap_bytes(memslot);
1624         memset(memslot->dirty_bitmap, 0, n);
1625
1626         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1627         if (r)
1628                 goto out;
1629
1630         r = -EFAULT;
1631         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1632                 goto out;
1633
1634         r = 0;
1635 out:
1636         mutex_unlock(&kvm->slots_lock);
1637         return r;
1638 }
1639
1640 static void unpin_slot(struct kvm_memory_slot *memslot)
1641 {
1642         unsigned long *physp;
1643         unsigned long j, npages, pfn;
1644         struct page *page;
1645
1646         physp = memslot->arch.slot_phys;
1647         npages = memslot->npages;
1648         if (!physp)
1649                 return;
1650         for (j = 0; j < npages; j++) {
1651                 if (!(physp[j] & KVMPPC_GOT_PAGE))
1652                         continue;
1653                 pfn = physp[j] >> PAGE_SHIFT;
1654                 page = pfn_to_page(pfn);
1655                 SetPageDirty(page);
1656                 put_page(page);
1657         }
1658 }
1659
1660 void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
1661                               struct kvm_memory_slot *dont)
1662 {
1663         if (!dont || free->arch.rmap != dont->arch.rmap) {
1664                 vfree(free->arch.rmap);
1665                 free->arch.rmap = NULL;
1666         }
1667         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1668                 unpin_slot(free);
1669                 vfree(free->arch.slot_phys);
1670                 free->arch.slot_phys = NULL;
1671         }
1672 }
1673
1674 int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
1675                                unsigned long npages)
1676 {
1677         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1678         if (!slot->arch.rmap)
1679                 return -ENOMEM;
1680         slot->arch.slot_phys = NULL;
1681
1682         return 0;
1683 }
1684
1685 int kvmppc_core_prepare_memory_region(struct kvm *kvm,
1686                                       struct kvm_memory_slot *memslot,
1687                                       struct kvm_userspace_memory_region *mem)
1688 {
1689         unsigned long *phys;
1690
1691         /* Allocate a slot_phys array if needed */
1692         phys = memslot->arch.slot_phys;
1693         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1694                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1695                 if (!phys)
1696                         return -ENOMEM;
1697                 memslot->arch.slot_phys = phys;
1698         }
1699
1700         return 0;
1701 }
1702
1703 void kvmppc_core_commit_memory_region(struct kvm *kvm,
1704                                       struct kvm_userspace_memory_region *mem,
1705                                       const struct kvm_memory_slot *old)
1706 {
1707         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1708         struct kvm_memory_slot *memslot;
1709
1710         if (npages && old->npages) {
1711                 /*
1712                  * If modifying a memslot, reset all the rmap dirty bits.
1713                  * If this is a new memslot, we don't need to do anything
1714                  * since the rmap array starts out as all zeroes,
1715                  * i.e. no pages are dirty.
1716                  */
1717                 memslot = id_to_memslot(kvm->memslots, mem->slot);
1718                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1719         }
1720 }
1721
1722 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1723 {
1724         int err = 0;
1725         struct kvm *kvm = vcpu->kvm;
1726         struct kvmppc_linear_info *ri = NULL;
1727         unsigned long hva;
1728         struct kvm_memory_slot *memslot;
1729         struct vm_area_struct *vma;
1730         unsigned long lpcr, senc;
1731         unsigned long psize, porder;
1732         unsigned long rma_size;
1733         unsigned long rmls;
1734         unsigned long *physp;
1735         unsigned long i, npages;
1736         int srcu_idx;
1737
1738         mutex_lock(&kvm->lock);
1739         if (kvm->arch.rma_setup_done)
1740                 goto out;       /* another vcpu beat us to it */
1741
1742         /* Allocate hashed page table (if not done already) and reset it */
1743         if (!kvm->arch.hpt_virt) {
1744                 err = kvmppc_alloc_hpt(kvm, NULL);
1745                 if (err) {
1746                         pr_err("KVM: Couldn't alloc HPT\n");
1747                         goto out;
1748                 }
1749         }
1750
1751         /* Look up the memslot for guest physical address 0 */
1752         srcu_idx = srcu_read_lock(&kvm->srcu);
1753         memslot = gfn_to_memslot(kvm, 0);
1754
1755         /* We must have some memory at 0 by now */
1756         err = -EINVAL;
1757         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1758                 goto out_srcu;
1759
1760         /* Look up the VMA for the start of this memory slot */
1761         hva = memslot->userspace_addr;
1762         down_read(&current->mm->mmap_sem);
1763         vma = find_vma(current->mm, hva);
1764         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1765                 goto up_out;
1766
1767         psize = vma_kernel_pagesize(vma);
1768         porder = __ilog2(psize);
1769
1770         /* Is this one of our preallocated RMAs? */
1771         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1772             hva == vma->vm_start)
1773                 ri = vma->vm_file->private_data;
1774
1775         up_read(&current->mm->mmap_sem);
1776
1777         if (!ri) {
1778                 /* On POWER7, use VRMA; on PPC970, give up */
1779                 err = -EPERM;
1780                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1781                         pr_err("KVM: CPU requires an RMO\n");
1782                         goto out_srcu;
1783                 }
1784
1785                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1786                 err = -EINVAL;
1787                 if (!(psize == 0x1000 || psize == 0x10000 ||
1788                       psize == 0x1000000))
1789                         goto out_srcu;
1790
1791                 /* Update VRMASD field in the LPCR */
1792                 senc = slb_pgsize_encoding(psize);
1793                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1794                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1795                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1796                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1797                 kvm->arch.lpcr = lpcr;
1798
1799                 /* Create HPTEs in the hash page table for the VRMA */
1800                 kvmppc_map_vrma(vcpu, memslot, porder);
1801
1802         } else {
1803                 /* Set up to use an RMO region */
1804                 rma_size = ri->npages;
1805                 if (rma_size > memslot->npages)
1806                         rma_size = memslot->npages;
1807                 rma_size <<= PAGE_SHIFT;
1808                 rmls = lpcr_rmls(rma_size);
1809                 err = -EINVAL;
1810                 if (rmls < 0) {
1811                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1812                         goto out_srcu;
1813                 }
1814                 atomic_inc(&ri->use_count);
1815                 kvm->arch.rma = ri;
1816
1817                 /* Update LPCR and RMOR */
1818                 lpcr = kvm->arch.lpcr;
1819                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1820                         /* PPC970; insert RMLS value (split field) in HID4 */
1821                         lpcr &= ~((1ul << HID4_RMLS0_SH) |
1822                                   (3ul << HID4_RMLS2_SH));
1823                         lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
1824                                 ((rmls & 3) << HID4_RMLS2_SH);
1825                         /* RMOR is also in HID4 */
1826                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1827                                 << HID4_RMOR_SH;
1828                 } else {
1829                         /* POWER7 */
1830                         lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
1831                         lpcr |= rmls << LPCR_RMLS_SH;
1832                         kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
1833                 }
1834                 kvm->arch.lpcr = lpcr;
1835                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1836                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1837
1838                 /* Initialize phys addrs of pages in RMO */
1839                 npages = ri->npages;
1840                 porder = __ilog2(npages);
1841                 physp = memslot->arch.slot_phys;
1842                 if (physp) {
1843                         if (npages > memslot->npages)
1844                                 npages = memslot->npages;
1845                         spin_lock(&kvm->arch.slot_phys_lock);
1846                         for (i = 0; i < npages; ++i)
1847                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1848                                         porder;
1849                         spin_unlock(&kvm->arch.slot_phys_lock);
1850                 }
1851         }
1852
1853         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1854         smp_wmb();
1855         kvm->arch.rma_setup_done = 1;
1856         err = 0;
1857  out_srcu:
1858         srcu_read_unlock(&kvm->srcu, srcu_idx);
1859  out:
1860         mutex_unlock(&kvm->lock);
1861         return err;
1862
1863  up_out:
1864         up_read(&current->mm->mmap_sem);
1865         goto out;
1866 }
1867
1868 int kvmppc_core_init_vm(struct kvm *kvm)
1869 {
1870         unsigned long lpcr, lpid;
1871
1872         /* Allocate the guest's logical partition ID */
1873
1874         lpid = kvmppc_alloc_lpid();
1875         if (lpid < 0)
1876                 return -ENOMEM;
1877         kvm->arch.lpid = lpid;
1878
1879         /*
1880          * Since we don't flush the TLB when tearing down a VM,
1881          * and this lpid might have previously been used,
1882          * make sure we flush on each core before running the new VM.
1883          */
1884         cpumask_setall(&kvm->arch.need_tlb_flush);
1885
1886         INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
1887         INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
1888
1889         kvm->arch.rma = NULL;
1890
1891         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
1892
1893         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1894                 /* PPC970; HID4 is effectively the LPCR */
1895                 kvm->arch.host_lpid = 0;
1896                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
1897                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
1898                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
1899                         ((lpid & 0xf) << HID4_LPID5_SH);
1900         } else {
1901                 /* POWER7; init LPCR for virtual RMA mode */
1902                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
1903                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
1904                 lpcr &= LPCR_PECE | LPCR_LPES;
1905                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
1906                         LPCR_VPM0 | LPCR_VPM1;
1907                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
1908                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1909         }
1910         kvm->arch.lpcr = lpcr;
1911
1912         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
1913         spin_lock_init(&kvm->arch.slot_phys_lock);
1914
1915         /*
1916          * Don't allow secondary CPU threads to come online
1917          * while any KVM VMs exist.
1918          */
1919         inhibit_secondary_onlining();
1920
1921         return 0;
1922 }
1923
1924 void kvmppc_core_destroy_vm(struct kvm *kvm)
1925 {
1926         uninhibit_secondary_onlining();
1927
1928         if (kvm->arch.rma) {
1929                 kvm_release_rma(kvm->arch.rma);
1930                 kvm->arch.rma = NULL;
1931         }
1932
1933         kvmppc_rtas_tokens_free(kvm);
1934
1935         kvmppc_free_hpt(kvm);
1936         WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
1937 }
1938
1939 /* These are stubs for now */
1940 void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
1941 {
1942 }
1943
1944 /* We don't need to emulate any privileged instructions or dcbz */
1945 int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
1946                            unsigned int inst, int *advance)
1947 {
1948         return EMULATE_FAIL;
1949 }
1950
1951 int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
1952 {
1953         return EMULATE_FAIL;
1954 }
1955
1956 int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
1957 {
1958         return EMULATE_FAIL;
1959 }
1960
1961 static int kvmppc_book3s_hv_init(void)
1962 {
1963         int r;
1964
1965         r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1966
1967         if (r)
1968                 return r;
1969
1970         r = kvmppc_mmu_hv_init();
1971
1972         return r;
1973 }
1974
1975 static void kvmppc_book3s_hv_exit(void)
1976 {
1977         kvm_exit();
1978 }
1979
1980 module_init(kvmppc_book3s_hv_init);
1981 module_exit(kvmppc_book3s_hv_exit);