]> Pileus Git - ~andy/linux/blob - arch/powerpc/kvm/book3s_64_mmu_hv.c
8cc18abd6dde6b486996bf9f4719fdeb12e0c65e
[~andy/linux] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39
40 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
41 #define MAX_LPID_970    63
42
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER       18
45
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47                                 long pte_index, unsigned long pteh,
48                                 unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
50
51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52 {
53         unsigned long hpt;
54         struct revmap_entry *rev;
55         struct kvmppc_linear_info *li;
56         long order = kvm_hpt_order;
57
58         if (htab_orderp) {
59                 order = *htab_orderp;
60                 if (order < PPC_MIN_HPT_ORDER)
61                         order = PPC_MIN_HPT_ORDER;
62         }
63
64         /*
65          * If the user wants a different size from default,
66          * try first to allocate it from the kernel page allocator.
67          */
68         hpt = 0;
69         if (order != kvm_hpt_order) {
70                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
71                                        __GFP_NOWARN, order - PAGE_SHIFT);
72                 if (!hpt)
73                         --order;
74         }
75
76         /* Next try to allocate from the preallocated pool */
77         if (!hpt) {
78                 li = kvm_alloc_hpt();
79                 if (li) {
80                         hpt = (ulong)li->base_virt;
81                         kvm->arch.hpt_li = li;
82                         order = kvm_hpt_order;
83                 }
84         }
85
86         /* Lastly try successively smaller sizes from the page allocator */
87         while (!hpt && order > PPC_MIN_HPT_ORDER) {
88                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
89                                        __GFP_NOWARN, order - PAGE_SHIFT);
90                 if (!hpt)
91                         --order;
92         }
93
94         if (!hpt)
95                 return -ENOMEM;
96
97         kvm->arch.hpt_virt = hpt;
98         kvm->arch.hpt_order = order;
99         /* HPTEs are 2**4 bytes long */
100         kvm->arch.hpt_npte = 1ul << (order - 4);
101         /* 128 (2**7) bytes in each HPTEG */
102         kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
103
104         /* Allocate reverse map array */
105         rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
106         if (!rev) {
107                 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
108                 goto out_freehpt;
109         }
110         kvm->arch.revmap = rev;
111         kvm->arch.sdr1 = __pa(hpt) | (order - 18);
112
113         pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
114                 hpt, order, kvm->arch.lpid);
115
116         if (htab_orderp)
117                 *htab_orderp = order;
118         return 0;
119
120  out_freehpt:
121         if (kvm->arch.hpt_li)
122                 kvm_release_hpt(kvm->arch.hpt_li);
123         else
124                 free_pages(hpt, order - PAGE_SHIFT);
125         return -ENOMEM;
126 }
127
128 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
129 {
130         long err = -EBUSY;
131         long order;
132
133         mutex_lock(&kvm->lock);
134         if (kvm->arch.rma_setup_done) {
135                 kvm->arch.rma_setup_done = 0;
136                 /* order rma_setup_done vs. vcpus_running */
137                 smp_mb();
138                 if (atomic_read(&kvm->arch.vcpus_running)) {
139                         kvm->arch.rma_setup_done = 1;
140                         goto out;
141                 }
142         }
143         if (kvm->arch.hpt_virt) {
144                 order = kvm->arch.hpt_order;
145                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
146                 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
147                 /*
148                  * Reset all the reverse-mapping chains for all memslots
149                  */
150                 kvmppc_rmap_reset(kvm);
151                 /* Ensure that each vcpu will flush its TLB on next entry. */
152                 cpumask_setall(&kvm->arch.need_tlb_flush);
153                 *htab_orderp = order;
154                 err = 0;
155         } else {
156                 err = kvmppc_alloc_hpt(kvm, htab_orderp);
157                 order = *htab_orderp;
158         }
159  out:
160         mutex_unlock(&kvm->lock);
161         return err;
162 }
163
164 void kvmppc_free_hpt(struct kvm *kvm)
165 {
166         kvmppc_free_lpid(kvm->arch.lpid);
167         vfree(kvm->arch.revmap);
168         if (kvm->arch.hpt_li)
169                 kvm_release_hpt(kvm->arch.hpt_li);
170         else
171                 free_pages(kvm->arch.hpt_virt,
172                            kvm->arch.hpt_order - PAGE_SHIFT);
173 }
174
175 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
176 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
177 {
178         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
179 }
180
181 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
182 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
183 {
184         return (pgsize == 0x10000) ? 0x1000 : 0;
185 }
186
187 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
188                      unsigned long porder)
189 {
190         unsigned long i;
191         unsigned long npages;
192         unsigned long hp_v, hp_r;
193         unsigned long addr, hash;
194         unsigned long psize;
195         unsigned long hp0, hp1;
196         unsigned long idx_ret;
197         long ret;
198         struct kvm *kvm = vcpu->kvm;
199
200         psize = 1ul << porder;
201         npages = memslot->npages >> (porder - PAGE_SHIFT);
202
203         /* VRMA can't be > 1TB */
204         if (npages > 1ul << (40 - porder))
205                 npages = 1ul << (40 - porder);
206         /* Can't use more than 1 HPTE per HPTEG */
207         if (npages > kvm->arch.hpt_mask + 1)
208                 npages = kvm->arch.hpt_mask + 1;
209
210         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
211                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
212         hp1 = hpte1_pgsize_encoding(psize) |
213                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
214
215         for (i = 0; i < npages; ++i) {
216                 addr = i << porder;
217                 /* can't use hpt_hash since va > 64 bits */
218                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
219                 /*
220                  * We assume that the hash table is empty and no
221                  * vcpus are using it at this stage.  Since we create
222                  * at most one HPTE per HPTEG, we just assume entry 7
223                  * is available and use it.
224                  */
225                 hash = (hash << 3) + 7;
226                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
227                 hp_r = hp1 | addr;
228                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
229                                                  &idx_ret);
230                 if (ret != H_SUCCESS) {
231                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
232                                addr, ret);
233                         break;
234                 }
235         }
236 }
237
238 int kvmppc_mmu_hv_init(void)
239 {
240         unsigned long host_lpid, rsvd_lpid;
241
242         if (!cpu_has_feature(CPU_FTR_HVMODE))
243                 return -EINVAL;
244
245         /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
246         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
247                 host_lpid = mfspr(SPRN_LPID);   /* POWER7 */
248                 rsvd_lpid = LPID_RSVD;
249         } else {
250                 host_lpid = 0;                  /* PPC970 */
251                 rsvd_lpid = MAX_LPID_970;
252         }
253
254         kvmppc_init_lpid(rsvd_lpid + 1);
255
256         kvmppc_claim_lpid(host_lpid);
257         /* rsvd_lpid is reserved for use in partition switching */
258         kvmppc_claim_lpid(rsvd_lpid);
259
260         return 0;
261 }
262
263 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
264 {
265 }
266
267 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
268 {
269         kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
270 }
271
272 /*
273  * This is called to get a reference to a guest page if there isn't
274  * one already in the memslot->arch.slot_phys[] array.
275  */
276 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
277                                   struct kvm_memory_slot *memslot,
278                                   unsigned long psize)
279 {
280         unsigned long start;
281         long np, err;
282         struct page *page, *hpage, *pages[1];
283         unsigned long s, pgsize;
284         unsigned long *physp;
285         unsigned int is_io, got, pgorder;
286         struct vm_area_struct *vma;
287         unsigned long pfn, i, npages;
288
289         physp = memslot->arch.slot_phys;
290         if (!physp)
291                 return -EINVAL;
292         if (physp[gfn - memslot->base_gfn])
293                 return 0;
294
295         is_io = 0;
296         got = 0;
297         page = NULL;
298         pgsize = psize;
299         err = -EINVAL;
300         start = gfn_to_hva_memslot(memslot, gfn);
301
302         /* Instantiate and get the page we want access to */
303         np = get_user_pages_fast(start, 1, 1, pages);
304         if (np != 1) {
305                 /* Look up the vma for the page */
306                 down_read(&current->mm->mmap_sem);
307                 vma = find_vma(current->mm, start);
308                 if (!vma || vma->vm_start > start ||
309                     start + psize > vma->vm_end ||
310                     !(vma->vm_flags & VM_PFNMAP))
311                         goto up_err;
312                 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
313                 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
314                 /* check alignment of pfn vs. requested page size */
315                 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
316                         goto up_err;
317                 up_read(&current->mm->mmap_sem);
318
319         } else {
320                 page = pages[0];
321                 got = KVMPPC_GOT_PAGE;
322
323                 /* See if this is a large page */
324                 s = PAGE_SIZE;
325                 if (PageHuge(page)) {
326                         hpage = compound_head(page);
327                         s <<= compound_order(hpage);
328                         /* Get the whole large page if slot alignment is ok */
329                         if (s > psize && slot_is_aligned(memslot, s) &&
330                             !(memslot->userspace_addr & (s - 1))) {
331                                 start &= ~(s - 1);
332                                 pgsize = s;
333                                 get_page(hpage);
334                                 put_page(page);
335                                 page = hpage;
336                         }
337                 }
338                 if (s < psize)
339                         goto out;
340                 pfn = page_to_pfn(page);
341         }
342
343         npages = pgsize >> PAGE_SHIFT;
344         pgorder = __ilog2(npages);
345         physp += (gfn - memslot->base_gfn) & ~(npages - 1);
346         spin_lock(&kvm->arch.slot_phys_lock);
347         for (i = 0; i < npages; ++i) {
348                 if (!physp[i]) {
349                         physp[i] = ((pfn + i) << PAGE_SHIFT) +
350                                 got + is_io + pgorder;
351                         got = 0;
352                 }
353         }
354         spin_unlock(&kvm->arch.slot_phys_lock);
355         err = 0;
356
357  out:
358         if (got)
359                 put_page(page);
360         return err;
361
362  up_err:
363         up_read(&current->mm->mmap_sem);
364         return err;
365 }
366
367 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
368                                 long pte_index, unsigned long pteh,
369                                 unsigned long ptel, unsigned long *pte_idx_ret)
370 {
371         unsigned long psize, gpa, gfn;
372         struct kvm_memory_slot *memslot;
373         long ret;
374
375         if (kvm->arch.using_mmu_notifiers)
376                 goto do_insert;
377
378         psize = hpte_page_size(pteh, ptel);
379         if (!psize)
380                 return H_PARAMETER;
381
382         pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
383
384         /* Find the memslot (if any) for this address */
385         gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
386         gfn = gpa >> PAGE_SHIFT;
387         memslot = gfn_to_memslot(kvm, gfn);
388         if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
389                 if (!slot_is_aligned(memslot, psize))
390                         return H_PARAMETER;
391                 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
392                         return H_PARAMETER;
393         }
394
395  do_insert:
396         /* Protect linux PTE lookup from page table destruction */
397         rcu_read_lock_sched();  /* this disables preemption too */
398         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
399                                 current->mm->pgd, false, pte_idx_ret);
400         rcu_read_unlock_sched();
401         if (ret == H_TOO_HARD) {
402                 /* this can't happen */
403                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
404                 ret = H_RESOURCE;       /* or something */
405         }
406         return ret;
407
408 }
409
410 /*
411  * We come here on a H_ENTER call from the guest when we are not
412  * using mmu notifiers and we don't have the requested page pinned
413  * already.
414  */
415 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
416                              long pte_index, unsigned long pteh,
417                              unsigned long ptel)
418 {
419         return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
420                                           pteh, ptel, &vcpu->arch.gpr[4]);
421 }
422
423 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
424                                                          gva_t eaddr)
425 {
426         u64 mask;
427         int i;
428
429         for (i = 0; i < vcpu->arch.slb_nr; i++) {
430                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
431                         continue;
432
433                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
434                         mask = ESID_MASK_1T;
435                 else
436                         mask = ESID_MASK;
437
438                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
439                         return &vcpu->arch.slb[i];
440         }
441         return NULL;
442 }
443
444 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
445                         unsigned long ea)
446 {
447         unsigned long ra_mask;
448
449         ra_mask = hpte_page_size(v, r) - 1;
450         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
451 }
452
453 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
454                         struct kvmppc_pte *gpte, bool data)
455 {
456         struct kvm *kvm = vcpu->kvm;
457         struct kvmppc_slb *slbe;
458         unsigned long slb_v;
459         unsigned long pp, key;
460         unsigned long v, gr;
461         unsigned long *hptep;
462         int index;
463         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
464
465         /* Get SLB entry */
466         if (virtmode) {
467                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
468                 if (!slbe)
469                         return -EINVAL;
470                 slb_v = slbe->origv;
471         } else {
472                 /* real mode access */
473                 slb_v = vcpu->kvm->arch.vrma_slb_v;
474         }
475
476         /* Find the HPTE in the hash table */
477         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
478                                          HPTE_V_VALID | HPTE_V_ABSENT);
479         if (index < 0)
480                 return -ENOENT;
481         hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
482         v = hptep[0] & ~HPTE_V_HVLOCK;
483         gr = kvm->arch.revmap[index].guest_rpte;
484
485         /* Unlock the HPTE */
486         asm volatile("lwsync" : : : "memory");
487         hptep[0] = v;
488
489         gpte->eaddr = eaddr;
490         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
491
492         /* Get PP bits and key for permission check */
493         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
494         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
495         key &= slb_v;
496
497         /* Calculate permissions */
498         gpte->may_read = hpte_read_permission(pp, key);
499         gpte->may_write = hpte_write_permission(pp, key);
500         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
501
502         /* Storage key permission check for POWER7 */
503         if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
504                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
505                 if (amrfield & 1)
506                         gpte->may_read = 0;
507                 if (amrfield & 2)
508                         gpte->may_write = 0;
509         }
510
511         /* Get the guest physical address */
512         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
513         return 0;
514 }
515
516 /*
517  * Quick test for whether an instruction is a load or a store.
518  * If the instruction is a load or a store, then this will indicate
519  * which it is, at least on server processors.  (Embedded processors
520  * have some external PID instructions that don't follow the rule
521  * embodied here.)  If the instruction isn't a load or store, then
522  * this doesn't return anything useful.
523  */
524 static int instruction_is_store(unsigned int instr)
525 {
526         unsigned int mask;
527
528         mask = 0x10000000;
529         if ((instr & 0xfc000000) == 0x7c000000)
530                 mask = 0x100;           /* major opcode 31 */
531         return (instr & mask) != 0;
532 }
533
534 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
535                                   unsigned long gpa, gva_t ea, int is_store)
536 {
537         int ret;
538         u32 last_inst;
539         unsigned long srr0 = kvmppc_get_pc(vcpu);
540
541         /* We try to load the last instruction.  We don't let
542          * emulate_instruction do it as it doesn't check what
543          * kvmppc_ld returns.
544          * If we fail, we just return to the guest and try executing it again.
545          */
546         if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
547                 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
548                 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
549                         return RESUME_GUEST;
550                 vcpu->arch.last_inst = last_inst;
551         }
552
553         /*
554          * WARNING: We do not know for sure whether the instruction we just
555          * read from memory is the same that caused the fault in the first
556          * place.  If the instruction we read is neither an load or a store,
557          * then it can't access memory, so we don't need to worry about
558          * enforcing access permissions.  So, assuming it is a load or
559          * store, we just check that its direction (load or store) is
560          * consistent with the original fault, since that's what we
561          * checked the access permissions against.  If there is a mismatch
562          * we just return and retry the instruction.
563          */
564
565         if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
566                 return RESUME_GUEST;
567
568         /*
569          * Emulated accesses are emulated by looking at the hash for
570          * translation once, then performing the access later. The
571          * translation could be invalidated in the meantime in which
572          * point performing the subsequent memory access on the old
573          * physical address could possibly be a security hole for the
574          * guest (but not the host).
575          *
576          * This is less of an issue for MMIO stores since they aren't
577          * globally visible. It could be an issue for MMIO loads to
578          * a certain extent but we'll ignore it for now.
579          */
580
581         vcpu->arch.paddr_accessed = gpa;
582         vcpu->arch.vaddr_accessed = ea;
583         return kvmppc_emulate_mmio(run, vcpu);
584 }
585
586 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
587                                 unsigned long ea, unsigned long dsisr)
588 {
589         struct kvm *kvm = vcpu->kvm;
590         unsigned long *hptep, hpte[3], r;
591         unsigned long mmu_seq, psize, pte_size;
592         unsigned long gpa, gfn, hva, pfn;
593         struct kvm_memory_slot *memslot;
594         unsigned long *rmap;
595         struct revmap_entry *rev;
596         struct page *page, *pages[1];
597         long index, ret, npages;
598         unsigned long is_io;
599         unsigned int writing, write_ok;
600         struct vm_area_struct *vma;
601         unsigned long rcbits;
602
603         /*
604          * Real-mode code has already searched the HPT and found the
605          * entry we're interested in.  Lock the entry and check that
606          * it hasn't changed.  If it has, just return and re-execute the
607          * instruction.
608          */
609         if (ea != vcpu->arch.pgfault_addr)
610                 return RESUME_GUEST;
611         index = vcpu->arch.pgfault_index;
612         hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
613         rev = &kvm->arch.revmap[index];
614         preempt_disable();
615         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
616                 cpu_relax();
617         hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
618         hpte[1] = hptep[1];
619         hpte[2] = r = rev->guest_rpte;
620         asm volatile("lwsync" : : : "memory");
621         hptep[0] = hpte[0];
622         preempt_enable();
623
624         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
625             hpte[1] != vcpu->arch.pgfault_hpte[1])
626                 return RESUME_GUEST;
627
628         /* Translate the logical address and get the page */
629         psize = hpte_page_size(hpte[0], r);
630         gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
631         gfn = gpa >> PAGE_SHIFT;
632         memslot = gfn_to_memslot(kvm, gfn);
633
634         /* No memslot means it's an emulated MMIO region */
635         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
636                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
637                                               dsisr & DSISR_ISSTORE);
638
639         if (!kvm->arch.using_mmu_notifiers)
640                 return -EFAULT;         /* should never get here */
641
642         /* used to check for invalidations in progress */
643         mmu_seq = kvm->mmu_notifier_seq;
644         smp_rmb();
645
646         is_io = 0;
647         pfn = 0;
648         page = NULL;
649         pte_size = PAGE_SIZE;
650         writing = (dsisr & DSISR_ISSTORE) != 0;
651         /* If writing != 0, then the HPTE must allow writing, if we get here */
652         write_ok = writing;
653         hva = gfn_to_hva_memslot(memslot, gfn);
654         npages = get_user_pages_fast(hva, 1, writing, pages);
655         if (npages < 1) {
656                 /* Check if it's an I/O mapping */
657                 down_read(&current->mm->mmap_sem);
658                 vma = find_vma(current->mm, hva);
659                 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
660                     (vma->vm_flags & VM_PFNMAP)) {
661                         pfn = vma->vm_pgoff +
662                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
663                         pte_size = psize;
664                         is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
665                         write_ok = vma->vm_flags & VM_WRITE;
666                 }
667                 up_read(&current->mm->mmap_sem);
668                 if (!pfn)
669                         return -EFAULT;
670         } else {
671                 page = pages[0];
672                 if (PageHuge(page)) {
673                         page = compound_head(page);
674                         pte_size <<= compound_order(page);
675                 }
676                 /* if the guest wants write access, see if that is OK */
677                 if (!writing && hpte_is_writable(r)) {
678                         pte_t *ptep, pte;
679
680                         /*
681                          * We need to protect against page table destruction
682                          * while looking up and updating the pte.
683                          */
684                         rcu_read_lock_sched();
685                         ptep = find_linux_pte_or_hugepte(current->mm->pgd,
686                                                          hva, NULL);
687                         if (ptep && pte_present(*ptep)) {
688                                 pte = kvmppc_read_update_linux_pte(ptep, 1);
689                                 if (pte_write(pte))
690                                         write_ok = 1;
691                         }
692                         rcu_read_unlock_sched();
693                 }
694                 pfn = page_to_pfn(page);
695         }
696
697         ret = -EFAULT;
698         if (psize > pte_size)
699                 goto out_put;
700
701         /* Check WIMG vs. the actual page we're accessing */
702         if (!hpte_cache_flags_ok(r, is_io)) {
703                 if (is_io)
704                         return -EFAULT;
705                 /*
706                  * Allow guest to map emulated device memory as
707                  * uncacheable, but actually make it cacheable.
708                  */
709                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
710         }
711
712         /* Set the HPTE to point to pfn */
713         r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
714         if (hpte_is_writable(r) && !write_ok)
715                 r = hpte_make_readonly(r);
716         ret = RESUME_GUEST;
717         preempt_disable();
718         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
719                 cpu_relax();
720         if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
721             rev->guest_rpte != hpte[2])
722                 /* HPTE has been changed under us; let the guest retry */
723                 goto out_unlock;
724         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
725
726         rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
727         lock_rmap(rmap);
728
729         /* Check if we might have been invalidated; let the guest retry if so */
730         ret = RESUME_GUEST;
731         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
732                 unlock_rmap(rmap);
733                 goto out_unlock;
734         }
735
736         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
737         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
738         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
739
740         if (hptep[0] & HPTE_V_VALID) {
741                 /* HPTE was previously valid, so we need to invalidate it */
742                 unlock_rmap(rmap);
743                 hptep[0] |= HPTE_V_ABSENT;
744                 kvmppc_invalidate_hpte(kvm, hptep, index);
745                 /* don't lose previous R and C bits */
746                 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
747         } else {
748                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
749         }
750
751         hptep[1] = r;
752         eieio();
753         hptep[0] = hpte[0];
754         asm volatile("ptesync" : : : "memory");
755         preempt_enable();
756         if (page && hpte_is_writable(r))
757                 SetPageDirty(page);
758
759  out_put:
760         if (page) {
761                 /*
762                  * We drop pages[0] here, not page because page might
763                  * have been set to the head page of a compound, but
764                  * we have to drop the reference on the correct tail
765                  * page to match the get inside gup()
766                  */
767                 put_page(pages[0]);
768         }
769         return ret;
770
771  out_unlock:
772         hptep[0] &= ~HPTE_V_HVLOCK;
773         preempt_enable();
774         goto out_put;
775 }
776
777 static void kvmppc_rmap_reset(struct kvm *kvm)
778 {
779         struct kvm_memslots *slots;
780         struct kvm_memory_slot *memslot;
781         int srcu_idx;
782
783         srcu_idx = srcu_read_lock(&kvm->srcu);
784         slots = kvm->memslots;
785         kvm_for_each_memslot(memslot, slots) {
786                 /*
787                  * This assumes it is acceptable to lose reference and
788                  * change bits across a reset.
789                  */
790                 memset(memslot->arch.rmap, 0,
791                        memslot->npages * sizeof(*memslot->arch.rmap));
792         }
793         srcu_read_unlock(&kvm->srcu, srcu_idx);
794 }
795
796 static int kvm_handle_hva_range(struct kvm *kvm,
797                                 unsigned long start,
798                                 unsigned long end,
799                                 int (*handler)(struct kvm *kvm,
800                                                unsigned long *rmapp,
801                                                unsigned long gfn))
802 {
803         int ret;
804         int retval = 0;
805         struct kvm_memslots *slots;
806         struct kvm_memory_slot *memslot;
807
808         slots = kvm_memslots(kvm);
809         kvm_for_each_memslot(memslot, slots) {
810                 unsigned long hva_start, hva_end;
811                 gfn_t gfn, gfn_end;
812
813                 hva_start = max(start, memslot->userspace_addr);
814                 hva_end = min(end, memslot->userspace_addr +
815                                         (memslot->npages << PAGE_SHIFT));
816                 if (hva_start >= hva_end)
817                         continue;
818                 /*
819                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
820                  * {gfn, gfn+1, ..., gfn_end-1}.
821                  */
822                 gfn = hva_to_gfn_memslot(hva_start, memslot);
823                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
824
825                 for (; gfn < gfn_end; ++gfn) {
826                         gfn_t gfn_offset = gfn - memslot->base_gfn;
827
828                         ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
829                         retval |= ret;
830                 }
831         }
832
833         return retval;
834 }
835
836 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
837                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
838                                          unsigned long gfn))
839 {
840         return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
841 }
842
843 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
844                            unsigned long gfn)
845 {
846         struct revmap_entry *rev = kvm->arch.revmap;
847         unsigned long h, i, j;
848         unsigned long *hptep;
849         unsigned long ptel, psize, rcbits;
850
851         for (;;) {
852                 lock_rmap(rmapp);
853                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
854                         unlock_rmap(rmapp);
855                         break;
856                 }
857
858                 /*
859                  * To avoid an ABBA deadlock with the HPTE lock bit,
860                  * we can't spin on the HPTE lock while holding the
861                  * rmap chain lock.
862                  */
863                 i = *rmapp & KVMPPC_RMAP_INDEX;
864                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
865                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
866                         /* unlock rmap before spinning on the HPTE lock */
867                         unlock_rmap(rmapp);
868                         while (hptep[0] & HPTE_V_HVLOCK)
869                                 cpu_relax();
870                         continue;
871                 }
872                 j = rev[i].forw;
873                 if (j == i) {
874                         /* chain is now empty */
875                         *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
876                 } else {
877                         /* remove i from chain */
878                         h = rev[i].back;
879                         rev[h].forw = j;
880                         rev[j].back = h;
881                         rev[i].forw = rev[i].back = i;
882                         *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
883                 }
884
885                 /* Now check and modify the HPTE */
886                 ptel = rev[i].guest_rpte;
887                 psize = hpte_page_size(hptep[0], ptel);
888                 if ((hptep[0] & HPTE_V_VALID) &&
889                     hpte_rpn(ptel, psize) == gfn) {
890                         if (kvm->arch.using_mmu_notifiers)
891                                 hptep[0] |= HPTE_V_ABSENT;
892                         kvmppc_invalidate_hpte(kvm, hptep, i);
893                         /* Harvest R and C */
894                         rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
895                         *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
896                         rev[i].guest_rpte = ptel | rcbits;
897                 }
898                 unlock_rmap(rmapp);
899                 hptep[0] &= ~HPTE_V_HVLOCK;
900         }
901         return 0;
902 }
903
904 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
905 {
906         if (kvm->arch.using_mmu_notifiers)
907                 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
908         return 0;
909 }
910
911 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
912 {
913         if (kvm->arch.using_mmu_notifiers)
914                 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
915         return 0;
916 }
917
918 void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
919 {
920         unsigned long *rmapp;
921         unsigned long gfn;
922         unsigned long n;
923
924         rmapp = memslot->arch.rmap;
925         gfn = memslot->base_gfn;
926         for (n = memslot->npages; n; --n) {
927                 /*
928                  * Testing the present bit without locking is OK because
929                  * the memslot has been marked invalid already, and hence
930                  * no new HPTEs referencing this page can be created,
931                  * thus the present bit can't go from 0 to 1.
932                  */
933                 if (*rmapp & KVMPPC_RMAP_PRESENT)
934                         kvm_unmap_rmapp(kvm, rmapp, gfn);
935                 ++rmapp;
936                 ++gfn;
937         }
938 }
939
940 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
941                          unsigned long gfn)
942 {
943         struct revmap_entry *rev = kvm->arch.revmap;
944         unsigned long head, i, j;
945         unsigned long *hptep;
946         int ret = 0;
947
948  retry:
949         lock_rmap(rmapp);
950         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
951                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
952                 ret = 1;
953         }
954         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
955                 unlock_rmap(rmapp);
956                 return ret;
957         }
958
959         i = head = *rmapp & KVMPPC_RMAP_INDEX;
960         do {
961                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
962                 j = rev[i].forw;
963
964                 /* If this HPTE isn't referenced, ignore it */
965                 if (!(hptep[1] & HPTE_R_R))
966                         continue;
967
968                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
969                         /* unlock rmap before spinning on the HPTE lock */
970                         unlock_rmap(rmapp);
971                         while (hptep[0] & HPTE_V_HVLOCK)
972                                 cpu_relax();
973                         goto retry;
974                 }
975
976                 /* Now check and modify the HPTE */
977                 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
978                         kvmppc_clear_ref_hpte(kvm, hptep, i);
979                         rev[i].guest_rpte |= HPTE_R_R;
980                         ret = 1;
981                 }
982                 hptep[0] &= ~HPTE_V_HVLOCK;
983         } while ((i = j) != head);
984
985         unlock_rmap(rmapp);
986         return ret;
987 }
988
989 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
990 {
991         if (!kvm->arch.using_mmu_notifiers)
992                 return 0;
993         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
994 }
995
996 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
997                               unsigned long gfn)
998 {
999         struct revmap_entry *rev = kvm->arch.revmap;
1000         unsigned long head, i, j;
1001         unsigned long *hp;
1002         int ret = 1;
1003
1004         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1005                 return 1;
1006
1007         lock_rmap(rmapp);
1008         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1009                 goto out;
1010
1011         if (*rmapp & KVMPPC_RMAP_PRESENT) {
1012                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1013                 do {
1014                         hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1015                         j = rev[i].forw;
1016                         if (hp[1] & HPTE_R_R)
1017                                 goto out;
1018                 } while ((i = j) != head);
1019         }
1020         ret = 0;
1021
1022  out:
1023         unlock_rmap(rmapp);
1024         return ret;
1025 }
1026
1027 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1028 {
1029         if (!kvm->arch.using_mmu_notifiers)
1030                 return 0;
1031         return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1032 }
1033
1034 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1035 {
1036         if (!kvm->arch.using_mmu_notifiers)
1037                 return;
1038         kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1039 }
1040
1041 static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1042 {
1043         struct revmap_entry *rev = kvm->arch.revmap;
1044         unsigned long head, i, j;
1045         unsigned long *hptep;
1046         int ret = 0;
1047
1048  retry:
1049         lock_rmap(rmapp);
1050         if (*rmapp & KVMPPC_RMAP_CHANGED) {
1051                 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1052                 ret = 1;
1053         }
1054         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1055                 unlock_rmap(rmapp);
1056                 return ret;
1057         }
1058
1059         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1060         do {
1061                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1062                 j = rev[i].forw;
1063
1064                 if (!(hptep[1] & HPTE_R_C))
1065                         continue;
1066
1067                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1068                         /* unlock rmap before spinning on the HPTE lock */
1069                         unlock_rmap(rmapp);
1070                         while (hptep[0] & HPTE_V_HVLOCK)
1071                                 cpu_relax();
1072                         goto retry;
1073                 }
1074
1075                 /* Now check and modify the HPTE */
1076                 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1077                         /* need to make it temporarily absent to clear C */
1078                         hptep[0] |= HPTE_V_ABSENT;
1079                         kvmppc_invalidate_hpte(kvm, hptep, i);
1080                         hptep[1] &= ~HPTE_R_C;
1081                         eieio();
1082                         hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
1083                         rev[i].guest_rpte |= HPTE_R_C;
1084                         ret = 1;
1085                 }
1086                 hptep[0] &= ~HPTE_V_HVLOCK;
1087         } while ((i = j) != head);
1088
1089         unlock_rmap(rmapp);
1090         return ret;
1091 }
1092
1093 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1094                              unsigned long *map)
1095 {
1096         unsigned long i;
1097         unsigned long *rmapp;
1098
1099         preempt_disable();
1100         rmapp = memslot->arch.rmap;
1101         for (i = 0; i < memslot->npages; ++i) {
1102                 if (kvm_test_clear_dirty(kvm, rmapp) && map)
1103                         __set_bit_le(i, map);
1104                 ++rmapp;
1105         }
1106         preempt_enable();
1107         return 0;
1108 }
1109
1110 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1111                             unsigned long *nb_ret)
1112 {
1113         struct kvm_memory_slot *memslot;
1114         unsigned long gfn = gpa >> PAGE_SHIFT;
1115         struct page *page, *pages[1];
1116         int npages;
1117         unsigned long hva, psize, offset;
1118         unsigned long pa;
1119         unsigned long *physp;
1120         int srcu_idx;
1121
1122         srcu_idx = srcu_read_lock(&kvm->srcu);
1123         memslot = gfn_to_memslot(kvm, gfn);
1124         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1125                 goto err;
1126         if (!kvm->arch.using_mmu_notifiers) {
1127                 physp = memslot->arch.slot_phys;
1128                 if (!physp)
1129                         goto err;
1130                 physp += gfn - memslot->base_gfn;
1131                 pa = *physp;
1132                 if (!pa) {
1133                         if (kvmppc_get_guest_page(kvm, gfn, memslot,
1134                                                   PAGE_SIZE) < 0)
1135                                 goto err;
1136                         pa = *physp;
1137                 }
1138                 page = pfn_to_page(pa >> PAGE_SHIFT);
1139                 get_page(page);
1140         } else {
1141                 hva = gfn_to_hva_memslot(memslot, gfn);
1142                 npages = get_user_pages_fast(hva, 1, 1, pages);
1143                 if (npages < 1)
1144                         goto err;
1145                 page = pages[0];
1146         }
1147         srcu_read_unlock(&kvm->srcu, srcu_idx);
1148
1149         psize = PAGE_SIZE;
1150         if (PageHuge(page)) {
1151                 page = compound_head(page);
1152                 psize <<= compound_order(page);
1153         }
1154         offset = gpa & (psize - 1);
1155         if (nb_ret)
1156                 *nb_ret = psize - offset;
1157         return page_address(page) + offset;
1158
1159  err:
1160         srcu_read_unlock(&kvm->srcu, srcu_idx);
1161         return NULL;
1162 }
1163
1164 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
1165 {
1166         struct page *page = virt_to_page(va);
1167
1168         put_page(page);
1169 }
1170
1171 /*
1172  * Functions for reading and writing the hash table via reads and
1173  * writes on a file descriptor.
1174  *
1175  * Reads return the guest view of the hash table, which has to be
1176  * pieced together from the real hash table and the guest_rpte
1177  * values in the revmap array.
1178  *
1179  * On writes, each HPTE written is considered in turn, and if it
1180  * is valid, it is written to the HPT as if an H_ENTER with the
1181  * exact flag set was done.  When the invalid count is non-zero
1182  * in the header written to the stream, the kernel will make
1183  * sure that that many HPTEs are invalid, and invalidate them
1184  * if not.
1185  */
1186
1187 struct kvm_htab_ctx {
1188         unsigned long   index;
1189         unsigned long   flags;
1190         struct kvm      *kvm;
1191         int             first_pass;
1192 };
1193
1194 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1195
1196 static long record_hpte(unsigned long flags, unsigned long *hptp,
1197                         unsigned long *hpte, struct revmap_entry *revp,
1198                         int want_valid, int first_pass)
1199 {
1200         unsigned long v, r;
1201         int ok = 1;
1202         int valid, dirty;
1203
1204         /* Unmodified entries are uninteresting except on the first pass */
1205         dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1206         if (!first_pass && !dirty)
1207                 return 0;
1208
1209         valid = 0;
1210         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1211                 valid = 1;
1212                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1213                     !(hptp[0] & HPTE_V_BOLTED))
1214                         valid = 0;
1215         }
1216         if (valid != want_valid)
1217                 return 0;
1218
1219         v = r = 0;
1220         if (valid || dirty) {
1221                 /* lock the HPTE so it's stable and read it */
1222                 preempt_disable();
1223                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1224                         cpu_relax();
1225                 v = hptp[0];
1226                 if (v & HPTE_V_ABSENT) {
1227                         v &= ~HPTE_V_ABSENT;
1228                         v |= HPTE_V_VALID;
1229                 }
1230                 /* re-evaluate valid and dirty from synchronized HPTE value */
1231                 valid = !!(v & HPTE_V_VALID);
1232                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1233                         valid = 0;
1234                 r = revp->guest_rpte | (hptp[1] & (HPTE_R_R | HPTE_R_C));
1235                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1236                 /* only clear modified if this is the right sort of entry */
1237                 if (valid == want_valid && dirty) {
1238                         r &= ~HPTE_GR_MODIFIED;
1239                         revp->guest_rpte = r;
1240                 }
1241                 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1242                 hptp[0] &= ~HPTE_V_HVLOCK;
1243                 preempt_enable();
1244                 if (!(valid == want_valid && (first_pass || dirty)))
1245                         ok = 0;
1246         }
1247         hpte[0] = v;
1248         hpte[1] = r;
1249         return ok;
1250 }
1251
1252 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1253                              size_t count, loff_t *ppos)
1254 {
1255         struct kvm_htab_ctx *ctx = file->private_data;
1256         struct kvm *kvm = ctx->kvm;
1257         struct kvm_get_htab_header hdr;
1258         unsigned long *hptp;
1259         struct revmap_entry *revp;
1260         unsigned long i, nb, nw;
1261         unsigned long __user *lbuf;
1262         struct kvm_get_htab_header __user *hptr;
1263         unsigned long flags;
1264         int first_pass;
1265         unsigned long hpte[2];
1266
1267         if (!access_ok(VERIFY_WRITE, buf, count))
1268                 return -EFAULT;
1269
1270         first_pass = ctx->first_pass;
1271         flags = ctx->flags;
1272
1273         i = ctx->index;
1274         hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1275         revp = kvm->arch.revmap + i;
1276         lbuf = (unsigned long __user *)buf;
1277
1278         nb = 0;
1279         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1280                 /* Initialize header */
1281                 hptr = (struct kvm_get_htab_header __user *)buf;
1282                 hdr.n_valid = 0;
1283                 hdr.n_invalid = 0;
1284                 nw = nb;
1285                 nb += sizeof(hdr);
1286                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1287
1288                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1289                 if (!first_pass) {
1290                         while (i < kvm->arch.hpt_npte &&
1291                                !(revp->guest_rpte & HPTE_GR_MODIFIED)) {
1292                                 ++i;
1293                                 hptp += 2;
1294                                 ++revp;
1295                         }
1296                 }
1297                 hdr.index = i;
1298
1299                 /* Grab a series of valid entries */
1300                 while (i < kvm->arch.hpt_npte &&
1301                        hdr.n_valid < 0xffff &&
1302                        nb + HPTE_SIZE < count &&
1303                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1304                         /* valid entry, write it out */
1305                         ++hdr.n_valid;
1306                         if (__put_user(hpte[0], lbuf) ||
1307                             __put_user(hpte[1], lbuf + 1))
1308                                 return -EFAULT;
1309                         nb += HPTE_SIZE;
1310                         lbuf += 2;
1311                         ++i;
1312                         hptp += 2;
1313                         ++revp;
1314                 }
1315                 /* Now skip invalid entries while we can */
1316                 while (i < kvm->arch.hpt_npte &&
1317                        hdr.n_invalid < 0xffff &&
1318                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1319                         /* found an invalid entry */
1320                         ++hdr.n_invalid;
1321                         ++i;
1322                         hptp += 2;
1323                         ++revp;
1324                 }
1325
1326                 if (hdr.n_valid || hdr.n_invalid) {
1327                         /* write back the header */
1328                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1329                                 return -EFAULT;
1330                         nw = nb;
1331                         buf = (char __user *)lbuf;
1332                 } else {
1333                         nb = nw;
1334                 }
1335
1336                 /* Check if we've wrapped around the hash table */
1337                 if (i >= kvm->arch.hpt_npte) {
1338                         i = 0;
1339                         ctx->first_pass = 0;
1340                         break;
1341                 }
1342         }
1343
1344         ctx->index = i;
1345
1346         return nb;
1347 }
1348
1349 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1350                               size_t count, loff_t *ppos)
1351 {
1352         struct kvm_htab_ctx *ctx = file->private_data;
1353         struct kvm *kvm = ctx->kvm;
1354         struct kvm_get_htab_header hdr;
1355         unsigned long i, j;
1356         unsigned long v, r;
1357         unsigned long __user *lbuf;
1358         unsigned long *hptp;
1359         unsigned long tmp[2];
1360         ssize_t nb;
1361         long int err, ret;
1362         int rma_setup;
1363
1364         if (!access_ok(VERIFY_READ, buf, count))
1365                 return -EFAULT;
1366
1367         /* lock out vcpus from running while we're doing this */
1368         mutex_lock(&kvm->lock);
1369         rma_setup = kvm->arch.rma_setup_done;
1370         if (rma_setup) {
1371                 kvm->arch.rma_setup_done = 0;   /* temporarily */
1372                 /* order rma_setup_done vs. vcpus_running */
1373                 smp_mb();
1374                 if (atomic_read(&kvm->arch.vcpus_running)) {
1375                         kvm->arch.rma_setup_done = 1;
1376                         mutex_unlock(&kvm->lock);
1377                         return -EBUSY;
1378                 }
1379         }
1380
1381         err = 0;
1382         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1383                 err = -EFAULT;
1384                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1385                         break;
1386
1387                 err = 0;
1388                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1389                         break;
1390
1391                 nb += sizeof(hdr);
1392                 buf += sizeof(hdr);
1393
1394                 err = -EINVAL;
1395                 i = hdr.index;
1396                 if (i >= kvm->arch.hpt_npte ||
1397                     i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1398                         break;
1399
1400                 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1401                 lbuf = (unsigned long __user *)buf;
1402                 for (j = 0; j < hdr.n_valid; ++j) {
1403                         err = -EFAULT;
1404                         if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1405                                 goto out;
1406                         err = -EINVAL;
1407                         if (!(v & HPTE_V_VALID))
1408                                 goto out;
1409                         lbuf += 2;
1410                         nb += HPTE_SIZE;
1411
1412                         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1413                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1414                         err = -EIO;
1415                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1416                                                          tmp);
1417                         if (ret != H_SUCCESS) {
1418                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1419                                        "r=%lx\n", ret, i, v, r);
1420                                 goto out;
1421                         }
1422                         if (!rma_setup && is_vrma_hpte(v)) {
1423                                 unsigned long psize = hpte_page_size(v, r);
1424                                 unsigned long senc = slb_pgsize_encoding(psize);
1425                                 unsigned long lpcr;
1426
1427                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1428                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1429                                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1430                                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1431                                 kvm->arch.lpcr = lpcr;
1432                                 rma_setup = 1;
1433                         }
1434                         ++i;
1435                         hptp += 2;
1436                 }
1437
1438                 for (j = 0; j < hdr.n_invalid; ++j) {
1439                         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1440                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1441                         ++i;
1442                         hptp += 2;
1443                 }
1444                 err = 0;
1445         }
1446
1447  out:
1448         /* Order HPTE updates vs. rma_setup_done */
1449         smp_wmb();
1450         kvm->arch.rma_setup_done = rma_setup;
1451         mutex_unlock(&kvm->lock);
1452
1453         if (err)
1454                 return err;
1455         return nb;
1456 }
1457
1458 static int kvm_htab_release(struct inode *inode, struct file *filp)
1459 {
1460         struct kvm_htab_ctx *ctx = filp->private_data;
1461
1462         filp->private_data = NULL;
1463         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1464                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1465         kvm_put_kvm(ctx->kvm);
1466         kfree(ctx);
1467         return 0;
1468 }
1469
1470 static struct file_operations kvm_htab_fops = {
1471         .read           = kvm_htab_read,
1472         .write          = kvm_htab_write,
1473         .llseek         = default_llseek,
1474         .release        = kvm_htab_release,
1475 };
1476
1477 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1478 {
1479         int ret;
1480         struct kvm_htab_ctx *ctx;
1481         int rwflag;
1482
1483         /* reject flags we don't recognize */
1484         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1485                 return -EINVAL;
1486         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1487         if (!ctx)
1488                 return -ENOMEM;
1489         kvm_get_kvm(kvm);
1490         ctx->kvm = kvm;
1491         ctx->index = ghf->start_index;
1492         ctx->flags = ghf->flags;
1493         ctx->first_pass = 1;
1494
1495         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1496         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag);
1497         if (ret < 0) {
1498                 kvm_put_kvm(kvm);
1499                 return ret;
1500         }
1501
1502         if (rwflag == O_RDONLY) {
1503                 mutex_lock(&kvm->slots_lock);
1504                 atomic_inc(&kvm->arch.hpte_mod_interest);
1505                 /* make sure kvmppc_do_h_enter etc. see the increment */
1506                 synchronize_srcu_expedited(&kvm->srcu);
1507                 mutex_unlock(&kvm->slots_lock);
1508         }
1509
1510         return ret;
1511 }
1512
1513 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1514 {
1515         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1516
1517         if (cpu_has_feature(CPU_FTR_ARCH_206))
1518                 vcpu->arch.slb_nr = 32;         /* POWER7 */
1519         else
1520                 vcpu->arch.slb_nr = 64;
1521
1522         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1523         mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1524
1525         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1526 }