]> Pileus Git - ~andy/linux/blob - arch/parisc/mm/init.c
ASoC: wm8904: fix DSP mode B configuration
[~andy/linux] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages and page_cache_release */
26
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30 #include <asm/pdc_chassis.h>
31 #include <asm/mmzone.h>
32 #include <asm/sections.h>
33
34 extern int  data_start;
35
36 #if PT_NLEVELS == 3
37 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
38  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
39  * guarantee that global objects will be laid out in memory in the same order
40  * as the order of declaration, so put these in different sections and use
41  * the linker script to order them. */
42 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
43 #endif
44
45 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
46 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
47
48 #ifdef CONFIG_DISCONTIGMEM
49 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
50 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
51 #endif
52
53 static struct resource data_resource = {
54         .name   = "Kernel data",
55         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
56 };
57
58 static struct resource code_resource = {
59         .name   = "Kernel code",
60         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
61 };
62
63 static struct resource pdcdata_resource = {
64         .name   = "PDC data (Page Zero)",
65         .start  = 0,
66         .end    = 0x9ff,
67         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
68 };
69
70 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
71
72 /* The following array is initialized from the firmware specific
73  * information retrieved in kernel/inventory.c.
74  */
75
76 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
77 int npmem_ranges __read_mostly;
78
79 #ifdef CONFIG_64BIT
80 #define MAX_MEM         (~0UL)
81 #else /* !CONFIG_64BIT */
82 #define MAX_MEM         (3584U*1024U*1024U)
83 #endif /* !CONFIG_64BIT */
84
85 static unsigned long mem_limit __read_mostly = MAX_MEM;
86
87 static void __init mem_limit_func(void)
88 {
89         char *cp, *end;
90         unsigned long limit;
91
92         /* We need this before __setup() functions are called */
93
94         limit = MAX_MEM;
95         for (cp = boot_command_line; *cp; ) {
96                 if (memcmp(cp, "mem=", 4) == 0) {
97                         cp += 4;
98                         limit = memparse(cp, &end);
99                         if (end != cp)
100                                 break;
101                         cp = end;
102                 } else {
103                         while (*cp != ' ' && *cp)
104                                 ++cp;
105                         while (*cp == ' ')
106                                 ++cp;
107                 }
108         }
109
110         if (limit < mem_limit)
111                 mem_limit = limit;
112 }
113
114 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
115
116 static void __init setup_bootmem(void)
117 {
118         unsigned long bootmap_size;
119         unsigned long mem_max;
120         unsigned long bootmap_pages;
121         unsigned long bootmap_start_pfn;
122         unsigned long bootmap_pfn;
123 #ifndef CONFIG_DISCONTIGMEM
124         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
125         int npmem_holes;
126 #endif
127         int i, sysram_resource_count;
128
129         disable_sr_hashing(); /* Turn off space register hashing */
130
131         /*
132          * Sort the ranges. Since the number of ranges is typically
133          * small, and performance is not an issue here, just do
134          * a simple insertion sort.
135          */
136
137         for (i = 1; i < npmem_ranges; i++) {
138                 int j;
139
140                 for (j = i; j > 0; j--) {
141                         unsigned long tmp;
142
143                         if (pmem_ranges[j-1].start_pfn <
144                             pmem_ranges[j].start_pfn) {
145
146                                 break;
147                         }
148                         tmp = pmem_ranges[j-1].start_pfn;
149                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
150                         pmem_ranges[j].start_pfn = tmp;
151                         tmp = pmem_ranges[j-1].pages;
152                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
153                         pmem_ranges[j].pages = tmp;
154                 }
155         }
156
157 #ifndef CONFIG_DISCONTIGMEM
158         /*
159          * Throw out ranges that are too far apart (controlled by
160          * MAX_GAP).
161          */
162
163         for (i = 1; i < npmem_ranges; i++) {
164                 if (pmem_ranges[i].start_pfn -
165                         (pmem_ranges[i-1].start_pfn +
166                          pmem_ranges[i-1].pages) > MAX_GAP) {
167                         npmem_ranges = i;
168                         printk("Large gap in memory detected (%ld pages). "
169                                "Consider turning on CONFIG_DISCONTIGMEM\n",
170                                pmem_ranges[i].start_pfn -
171                                (pmem_ranges[i-1].start_pfn +
172                                 pmem_ranges[i-1].pages));
173                         break;
174                 }
175         }
176 #endif
177
178         if (npmem_ranges > 1) {
179
180                 /* Print the memory ranges */
181
182                 printk(KERN_INFO "Memory Ranges:\n");
183
184                 for (i = 0; i < npmem_ranges; i++) {
185                         unsigned long start;
186                         unsigned long size;
187
188                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
189                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
190                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
191                                 i,start, start + (size - 1), size >> 20);
192                 }
193         }
194
195         sysram_resource_count = npmem_ranges;
196         for (i = 0; i < sysram_resource_count; i++) {
197                 struct resource *res = &sysram_resources[i];
198                 res->name = "System RAM";
199                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
200                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
201                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
202                 request_resource(&iomem_resource, res);
203         }
204
205         /*
206          * For 32 bit kernels we limit the amount of memory we can
207          * support, in order to preserve enough kernel address space
208          * for other purposes. For 64 bit kernels we don't normally
209          * limit the memory, but this mechanism can be used to
210          * artificially limit the amount of memory (and it is written
211          * to work with multiple memory ranges).
212          */
213
214         mem_limit_func();       /* check for "mem=" argument */
215
216         mem_max = 0;
217         for (i = 0; i < npmem_ranges; i++) {
218                 unsigned long rsize;
219
220                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
221                 if ((mem_max + rsize) > mem_limit) {
222                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
223                         if (mem_max == mem_limit)
224                                 npmem_ranges = i;
225                         else {
226                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
227                                                        - (mem_max >> PAGE_SHIFT);
228                                 npmem_ranges = i + 1;
229                                 mem_max = mem_limit;
230                         }
231                         break;
232                 }
233                 mem_max += rsize;
234         }
235
236         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
237
238 #ifndef CONFIG_DISCONTIGMEM
239         /* Merge the ranges, keeping track of the holes */
240
241         {
242                 unsigned long end_pfn;
243                 unsigned long hole_pages;
244
245                 npmem_holes = 0;
246                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
247                 for (i = 1; i < npmem_ranges; i++) {
248
249                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
250                         if (hole_pages) {
251                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
252                                 pmem_holes[npmem_holes++].pages = hole_pages;
253                                 end_pfn += hole_pages;
254                         }
255                         end_pfn += pmem_ranges[i].pages;
256                 }
257
258                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
259                 npmem_ranges = 1;
260         }
261 #endif
262
263         bootmap_pages = 0;
264         for (i = 0; i < npmem_ranges; i++)
265                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
266
267         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
268
269 #ifdef CONFIG_DISCONTIGMEM
270         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
271                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
272                 NODE_DATA(i)->bdata = &bootmem_node_data[i];
273         }
274         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
275
276         for (i = 0; i < npmem_ranges; i++) {
277                 node_set_state(i, N_NORMAL_MEMORY);
278                 node_set_online(i);
279         }
280 #endif
281
282         /*
283          * Initialize and free the full range of memory in each range.
284          * Note that the only writing these routines do are to the bootmap,
285          * and we've made sure to locate the bootmap properly so that they
286          * won't be writing over anything important.
287          */
288
289         bootmap_pfn = bootmap_start_pfn;
290         max_pfn = 0;
291         for (i = 0; i < npmem_ranges; i++) {
292                 unsigned long start_pfn;
293                 unsigned long npages;
294
295                 start_pfn = pmem_ranges[i].start_pfn;
296                 npages = pmem_ranges[i].pages;
297
298                 bootmap_size = init_bootmem_node(NODE_DATA(i),
299                                                 bootmap_pfn,
300                                                 start_pfn,
301                                                 (start_pfn + npages) );
302                 free_bootmem_node(NODE_DATA(i),
303                                   (start_pfn << PAGE_SHIFT),
304                                   (npages << PAGE_SHIFT) );
305                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
306                 if ((start_pfn + npages) > max_pfn)
307                         max_pfn = start_pfn + npages;
308         }
309
310         /* IOMMU is always used to access "high mem" on those boxes
311          * that can support enough mem that a PCI device couldn't
312          * directly DMA to any physical addresses.
313          * ISA DMA support will need to revisit this.
314          */
315         max_low_pfn = max_pfn;
316
317         /* bootmap sizing messed up? */
318         BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
319
320         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
321
322 #define PDC_CONSOLE_IO_IODC_SIZE 32768
323
324         reserve_bootmem_node(NODE_DATA(0), 0UL,
325                         (unsigned long)(PAGE0->mem_free +
326                                 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
327         reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
328                         (unsigned long)(_end - _text), BOOTMEM_DEFAULT);
329         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
330                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
331                         BOOTMEM_DEFAULT);
332
333 #ifndef CONFIG_DISCONTIGMEM
334
335         /* reserve the holes */
336
337         for (i = 0; i < npmem_holes; i++) {
338                 reserve_bootmem_node(NODE_DATA(0),
339                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
340                                 (pmem_holes[i].pages << PAGE_SHIFT),
341                                 BOOTMEM_DEFAULT);
342         }
343 #endif
344
345 #ifdef CONFIG_BLK_DEV_INITRD
346         if (initrd_start) {
347                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
348                 if (__pa(initrd_start) < mem_max) {
349                         unsigned long initrd_reserve;
350
351                         if (__pa(initrd_end) > mem_max) {
352                                 initrd_reserve = mem_max - __pa(initrd_start);
353                         } else {
354                                 initrd_reserve = initrd_end - initrd_start;
355                         }
356                         initrd_below_start_ok = 1;
357                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
358
359                         reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
360                                         initrd_reserve, BOOTMEM_DEFAULT);
361                 }
362         }
363 #endif
364
365         data_resource.start =  virt_to_phys(&data_start);
366         data_resource.end = virt_to_phys(_end) - 1;
367         code_resource.start = virt_to_phys(_text);
368         code_resource.end = virt_to_phys(&data_start)-1;
369
370         /* We don't know which region the kernel will be in, so try
371          * all of them.
372          */
373         for (i = 0; i < sysram_resource_count; i++) {
374                 struct resource *res = &sysram_resources[i];
375                 request_resource(res, &code_resource);
376                 request_resource(res, &data_resource);
377         }
378         request_resource(&sysram_resources[0], &pdcdata_resource);
379 }
380
381 static void __init map_pages(unsigned long start_vaddr,
382                              unsigned long start_paddr, unsigned long size,
383                              pgprot_t pgprot, int force)
384 {
385         pgd_t *pg_dir;
386         pmd_t *pmd;
387         pte_t *pg_table;
388         unsigned long end_paddr;
389         unsigned long start_pmd;
390         unsigned long start_pte;
391         unsigned long tmp1;
392         unsigned long tmp2;
393         unsigned long address;
394         unsigned long vaddr;
395         unsigned long ro_start;
396         unsigned long ro_end;
397         unsigned long fv_addr;
398         unsigned long gw_addr;
399         extern const unsigned long fault_vector_20;
400         extern void * const linux_gateway_page;
401
402         ro_start = __pa((unsigned long)_text);
403         ro_end   = __pa((unsigned long)&data_start);
404         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
405         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
406
407         end_paddr = start_paddr + size;
408
409         pg_dir = pgd_offset_k(start_vaddr);
410
411 #if PTRS_PER_PMD == 1
412         start_pmd = 0;
413 #else
414         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
415 #endif
416         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
417
418         address = start_paddr;
419         vaddr = start_vaddr;
420         while (address < end_paddr) {
421 #if PTRS_PER_PMD == 1
422                 pmd = (pmd_t *)__pa(pg_dir);
423 #else
424                 pmd = (pmd_t *)pgd_address(*pg_dir);
425
426                 /*
427                  * pmd is physical at this point
428                  */
429
430                 if (!pmd) {
431                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
432                         pmd = (pmd_t *) __pa(pmd);
433                 }
434
435                 pgd_populate(NULL, pg_dir, __va(pmd));
436 #endif
437                 pg_dir++;
438
439                 /* now change pmd to kernel virtual addresses */
440
441                 pmd = (pmd_t *)__va(pmd) + start_pmd;
442                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
443
444                         /*
445                          * pg_table is physical at this point
446                          */
447
448                         pg_table = (pte_t *)pmd_address(*pmd);
449                         if (!pg_table) {
450                                 pg_table = (pte_t *)
451                                         alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
452                                 pg_table = (pte_t *) __pa(pg_table);
453                         }
454
455                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
456
457                         /* now change pg_table to kernel virtual addresses */
458
459                         pg_table = (pte_t *) __va(pg_table) + start_pte;
460                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
461                                 pte_t pte;
462
463                                 /*
464                                  * Map the fault vector writable so we can
465                                  * write the HPMC checksum.
466                                  */
467                                 if (force)
468                                         pte =  __mk_pte(address, pgprot);
469                                 else if (core_kernel_text(vaddr) &&
470                                          address != fv_addr)
471                                         pte = __mk_pte(address, PAGE_KERNEL_EXEC);
472                                 else
473 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
474                                 if (address >= ro_start && address < ro_end
475                                                         && address != fv_addr
476                                                         && address != gw_addr)
477                                         pte = __mk_pte(address, PAGE_KERNEL_RO);
478                                 else
479 #endif
480                                         pte = __mk_pte(address, pgprot);
481
482                                 if (address >= end_paddr) {
483                                         if (force)
484                                                 break;
485                                         else
486                                                 pte_val(pte) = 0;
487                                 }
488
489                                 set_pte(pg_table, pte);
490
491                                 address += PAGE_SIZE;
492                                 vaddr += PAGE_SIZE;
493                         }
494                         start_pte = 0;
495
496                         if (address >= end_paddr)
497                             break;
498                 }
499                 start_pmd = 0;
500         }
501 }
502
503 void free_initmem(void)
504 {
505         unsigned long init_begin = (unsigned long)__init_begin;
506         unsigned long init_end = (unsigned long)__init_end;
507
508         /* The init text pages are marked R-X.  We have to
509          * flush the icache and mark them RW-
510          *
511          * This is tricky, because map_pages is in the init section.
512          * Do a dummy remap of the data section first (the data
513          * section is already PAGE_KERNEL) to pull in the TLB entries
514          * for map_kernel */
515         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
516                   PAGE_KERNEL_RWX, 1);
517         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
518          * map_pages */
519         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
520                   PAGE_KERNEL, 1);
521
522         /* force the kernel to see the new TLB entries */
523         __flush_tlb_range(0, init_begin, init_end);
524         /* Attempt to catch anyone trying to execute code here
525          * by filling the page with BRK insns.
526          */
527         memset((void *)init_begin, 0x00, init_end - init_begin);
528         /* finally dump all the instructions which were cached, since the
529          * pages are no-longer executable */
530         flush_icache_range(init_begin, init_end);
531         
532         free_initmem_default(-1);
533
534         /* set up a new led state on systems shipped LED State panel */
535         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
536 }
537
538
539 #ifdef CONFIG_DEBUG_RODATA
540 void mark_rodata_ro(void)
541 {
542         /* rodata memory was already mapped with KERNEL_RO access rights by
543            pagetable_init() and map_pages(). No need to do additional stuff here */
544         printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
545                 (unsigned long)(__end_rodata - __start_rodata) >> 10);
546 }
547 #endif
548
549
550 /*
551  * Just an arbitrary offset to serve as a "hole" between mapping areas
552  * (between top of physical memory and a potential pcxl dma mapping
553  * area, and below the vmalloc mapping area).
554  *
555  * The current 32K value just means that there will be a 32K "hole"
556  * between mapping areas. That means that  any out-of-bounds memory
557  * accesses will hopefully be caught. The vmalloc() routines leaves
558  * a hole of 4kB between each vmalloced area for the same reason.
559  */
560
561  /* Leave room for gateway page expansion */
562 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
563 #error KERNEL_MAP_START is in gateway reserved region
564 #endif
565 #define MAP_START (KERNEL_MAP_START)
566
567 #define VM_MAP_OFFSET  (32*1024)
568 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
569                                      & ~(VM_MAP_OFFSET-1)))
570
571 void *parisc_vmalloc_start __read_mostly;
572 EXPORT_SYMBOL(parisc_vmalloc_start);
573
574 #ifdef CONFIG_PA11
575 unsigned long pcxl_dma_start __read_mostly;
576 #endif
577
578 void __init mem_init(void)
579 {
580         /* Do sanity checks on page table constants */
581         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
582         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
583         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
584         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
585                         > BITS_PER_LONG);
586
587         high_memory = __va((max_pfn << PAGE_SHIFT));
588         set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
589         free_all_bootmem();
590
591 #ifdef CONFIG_PA11
592         if (hppa_dma_ops == &pcxl_dma_ops) {
593                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
594                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
595                                                 + PCXL_DMA_MAP_SIZE);
596         } else {
597                 pcxl_dma_start = 0;
598                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
599         }
600 #else
601         parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
602 #endif
603
604         mem_init_print_info(NULL);
605 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
606         printk("virtual kernel memory layout:\n"
607                "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
608                "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
609                "      .init : 0x%p - 0x%p   (%4ld kB)\n"
610                "      .data : 0x%p - 0x%p   (%4ld kB)\n"
611                "      .text : 0x%p - 0x%p   (%4ld kB)\n",
612
613                (void*)VMALLOC_START, (void*)VMALLOC_END,
614                (VMALLOC_END - VMALLOC_START) >> 20,
615
616                __va(0), high_memory,
617                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
618
619                __init_begin, __init_end,
620                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
621
622                _etext, _edata,
623                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
624
625                _text, _etext,
626                ((unsigned long)_etext - (unsigned long)_text) >> 10);
627 #endif
628 }
629
630 unsigned long *empty_zero_page __read_mostly;
631 EXPORT_SYMBOL(empty_zero_page);
632
633 void show_mem(unsigned int filter)
634 {
635         int i,free = 0,total = 0,reserved = 0;
636         int shared = 0, cached = 0;
637
638         printk(KERN_INFO "Mem-info:\n");
639         show_free_areas(filter);
640         if (filter & SHOW_MEM_FILTER_PAGE_COUNT)
641                 return;
642 #ifndef CONFIG_DISCONTIGMEM
643         i = max_mapnr;
644         while (i-- > 0) {
645                 total++;
646                 if (PageReserved(mem_map+i))
647                         reserved++;
648                 else if (PageSwapCache(mem_map+i))
649                         cached++;
650                 else if (!page_count(&mem_map[i]))
651                         free++;
652                 else
653                         shared += page_count(&mem_map[i]) - 1;
654         }
655 #else
656         for (i = 0; i < npmem_ranges; i++) {
657                 int j;
658
659                 for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
660                         struct page *p;
661                         unsigned long flags;
662
663                         pgdat_resize_lock(NODE_DATA(i), &flags);
664                         p = nid_page_nr(i, j) - node_start_pfn(i);
665
666                         total++;
667                         if (PageReserved(p))
668                                 reserved++;
669                         else if (PageSwapCache(p))
670                                 cached++;
671                         else if (!page_count(p))
672                                 free++;
673                         else
674                                 shared += page_count(p) - 1;
675                         pgdat_resize_unlock(NODE_DATA(i), &flags);
676                 }
677         }
678 #endif
679         printk(KERN_INFO "%d pages of RAM\n", total);
680         printk(KERN_INFO "%d reserved pages\n", reserved);
681         printk(KERN_INFO "%d pages shared\n", shared);
682         printk(KERN_INFO "%d pages swap cached\n", cached);
683
684
685 #ifdef CONFIG_DISCONTIGMEM
686         {
687                 struct zonelist *zl;
688                 int i, j;
689
690                 for (i = 0; i < npmem_ranges; i++) {
691                         zl = node_zonelist(i, 0);
692                         for (j = 0; j < MAX_NR_ZONES; j++) {
693                                 struct zoneref *z;
694                                 struct zone *zone;
695
696                                 printk("Zone list for zone %d on node %d: ", j, i);
697                                 for_each_zone_zonelist(zone, z, zl, j)
698                                         printk("[%d/%s] ", zone_to_nid(zone),
699                                                                 zone->name);
700                                 printk("\n");
701                         }
702                 }
703         }
704 #endif
705 }
706
707 /*
708  * pagetable_init() sets up the page tables
709  *
710  * Note that gateway_init() places the Linux gateway page at page 0.
711  * Since gateway pages cannot be dereferenced this has the desirable
712  * side effect of trapping those pesky NULL-reference errors in the
713  * kernel.
714  */
715 static void __init pagetable_init(void)
716 {
717         int range;
718
719         /* Map each physical memory range to its kernel vaddr */
720
721         for (range = 0; range < npmem_ranges; range++) {
722                 unsigned long start_paddr;
723                 unsigned long end_paddr;
724                 unsigned long size;
725
726                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
727                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
728                 size = pmem_ranges[range].pages << PAGE_SHIFT;
729
730                 map_pages((unsigned long)__va(start_paddr), start_paddr,
731                           size, PAGE_KERNEL, 0);
732         }
733
734 #ifdef CONFIG_BLK_DEV_INITRD
735         if (initrd_end && initrd_end > mem_limit) {
736                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
737                 map_pages(initrd_start, __pa(initrd_start),
738                           initrd_end - initrd_start, PAGE_KERNEL, 0);
739         }
740 #endif
741
742         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
743         memset(empty_zero_page, 0, PAGE_SIZE);
744 }
745
746 static void __init gateway_init(void)
747 {
748         unsigned long linux_gateway_page_addr;
749         /* FIXME: This is 'const' in order to trick the compiler
750            into not treating it as DP-relative data. */
751         extern void * const linux_gateway_page;
752
753         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
754
755         /*
756          * Setup Linux Gateway page.
757          *
758          * The Linux gateway page will reside in kernel space (on virtual
759          * page 0), so it doesn't need to be aliased into user space.
760          */
761
762         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
763                   PAGE_SIZE, PAGE_GATEWAY, 1);
764 }
765
766 #ifdef CONFIG_HPUX
767 void
768 map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
769 {
770         pgd_t *pg_dir;
771         pmd_t *pmd;
772         pte_t *pg_table;
773         unsigned long start_pmd;
774         unsigned long start_pte;
775         unsigned long address;
776         unsigned long hpux_gw_page_addr;
777         /* FIXME: This is 'const' in order to trick the compiler
778            into not treating it as DP-relative data. */
779         extern void * const hpux_gateway_page;
780
781         hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
782
783         /*
784          * Setup HP-UX Gateway page.
785          *
786          * The HP-UX gateway page resides in the user address space,
787          * so it needs to be aliased into each process.
788          */
789
790         pg_dir = pgd_offset(mm,hpux_gw_page_addr);
791
792 #if PTRS_PER_PMD == 1
793         start_pmd = 0;
794 #else
795         start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
796 #endif
797         start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
798
799         address = __pa(&hpux_gateway_page);
800 #if PTRS_PER_PMD == 1
801         pmd = (pmd_t *)__pa(pg_dir);
802 #else
803         pmd = (pmd_t *) pgd_address(*pg_dir);
804
805         /*
806          * pmd is physical at this point
807          */
808
809         if (!pmd) {
810                 pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
811                 pmd = (pmd_t *) __pa(pmd);
812         }
813
814         __pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
815 #endif
816         /* now change pmd to kernel virtual addresses */
817
818         pmd = (pmd_t *)__va(pmd) + start_pmd;
819
820         /*
821          * pg_table is physical at this point
822          */
823
824         pg_table = (pte_t *) pmd_address(*pmd);
825         if (!pg_table)
826                 pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
827
828         __pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
829
830         /* now change pg_table to kernel virtual addresses */
831
832         pg_table = (pte_t *) __va(pg_table) + start_pte;
833         set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
834 }
835 EXPORT_SYMBOL(map_hpux_gateway_page);
836 #endif
837
838 void __init paging_init(void)
839 {
840         int i;
841
842         setup_bootmem();
843         pagetable_init();
844         gateway_init();
845         flush_cache_all_local(); /* start with known state */
846         flush_tlb_all_local(NULL);
847
848         for (i = 0; i < npmem_ranges; i++) {
849                 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
850
851                 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
852
853 #ifdef CONFIG_DISCONTIGMEM
854                 /* Need to initialize the pfnnid_map before we can initialize
855                    the zone */
856                 {
857                     int j;
858                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
859                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
860                          j++) {
861                         pfnnid_map[j] = i;
862                     }
863                 }
864 #endif
865
866                 free_area_init_node(i, zones_size,
867                                 pmem_ranges[i].start_pfn, NULL);
868         }
869 }
870
871 #ifdef CONFIG_PA20
872
873 /*
874  * Currently, all PA20 chips have 18 bit protection IDs, which is the
875  * limiting factor (space ids are 32 bits).
876  */
877
878 #define NR_SPACE_IDS 262144
879
880 #else
881
882 /*
883  * Currently we have a one-to-one relationship between space IDs and
884  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
885  * support 15 bit protection IDs, so that is the limiting factor.
886  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
887  * probably not worth the effort for a special case here.
888  */
889
890 #define NR_SPACE_IDS 32768
891
892 #endif  /* !CONFIG_PA20 */
893
894 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
895 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
896
897 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
898 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
899 static unsigned long space_id_index;
900 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
901 static unsigned long dirty_space_ids = 0;
902
903 static DEFINE_SPINLOCK(sid_lock);
904
905 unsigned long alloc_sid(void)
906 {
907         unsigned long index;
908
909         spin_lock(&sid_lock);
910
911         if (free_space_ids == 0) {
912                 if (dirty_space_ids != 0) {
913                         spin_unlock(&sid_lock);
914                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
915                         spin_lock(&sid_lock);
916                 }
917                 BUG_ON(free_space_ids == 0);
918         }
919
920         free_space_ids--;
921
922         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
923         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
924         space_id_index = index;
925
926         spin_unlock(&sid_lock);
927
928         return index << SPACEID_SHIFT;
929 }
930
931 void free_sid(unsigned long spaceid)
932 {
933         unsigned long index = spaceid >> SPACEID_SHIFT;
934         unsigned long *dirty_space_offset;
935
936         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
937         index &= (BITS_PER_LONG - 1);
938
939         spin_lock(&sid_lock);
940
941         BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
942
943         *dirty_space_offset |= (1L << index);
944         dirty_space_ids++;
945
946         spin_unlock(&sid_lock);
947 }
948
949
950 #ifdef CONFIG_SMP
951 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
952 {
953         int i;
954
955         /* NOTE: sid_lock must be held upon entry */
956
957         *ndirtyptr = dirty_space_ids;
958         if (dirty_space_ids != 0) {
959             for (i = 0; i < SID_ARRAY_SIZE; i++) {
960                 dirty_array[i] = dirty_space_id[i];
961                 dirty_space_id[i] = 0;
962             }
963             dirty_space_ids = 0;
964         }
965
966         return;
967 }
968
969 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
970 {
971         int i;
972
973         /* NOTE: sid_lock must be held upon entry */
974
975         if (ndirty != 0) {
976                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
977                         space_id[i] ^= dirty_array[i];
978                 }
979
980                 free_space_ids += ndirty;
981                 space_id_index = 0;
982         }
983 }
984
985 #else /* CONFIG_SMP */
986
987 static void recycle_sids(void)
988 {
989         int i;
990
991         /* NOTE: sid_lock must be held upon entry */
992
993         if (dirty_space_ids != 0) {
994                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
995                         space_id[i] ^= dirty_space_id[i];
996                         dirty_space_id[i] = 0;
997                 }
998
999                 free_space_ids += dirty_space_ids;
1000                 dirty_space_ids = 0;
1001                 space_id_index = 0;
1002         }
1003 }
1004 #endif
1005
1006 /*
1007  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1008  * purged, we can safely reuse the space ids that were released but
1009  * not flushed from the tlb.
1010  */
1011
1012 #ifdef CONFIG_SMP
1013
1014 static unsigned long recycle_ndirty;
1015 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1016 static unsigned int recycle_inuse;
1017
1018 void flush_tlb_all(void)
1019 {
1020         int do_recycle;
1021
1022         __inc_irq_stat(irq_tlb_count);
1023         do_recycle = 0;
1024         spin_lock(&sid_lock);
1025         if (dirty_space_ids > RECYCLE_THRESHOLD) {
1026             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1027             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1028             recycle_inuse++;
1029             do_recycle++;
1030         }
1031         spin_unlock(&sid_lock);
1032         on_each_cpu(flush_tlb_all_local, NULL, 1);
1033         if (do_recycle) {
1034             spin_lock(&sid_lock);
1035             recycle_sids(recycle_ndirty,recycle_dirty_array);
1036             recycle_inuse = 0;
1037             spin_unlock(&sid_lock);
1038         }
1039 }
1040 #else
1041 void flush_tlb_all(void)
1042 {
1043         __inc_irq_stat(irq_tlb_count);
1044         spin_lock(&sid_lock);
1045         flush_tlb_all_local(NULL);
1046         recycle_sids();
1047         spin_unlock(&sid_lock);
1048 }
1049 #endif
1050
1051 #ifdef CONFIG_BLK_DEV_INITRD
1052 void free_initrd_mem(unsigned long start, unsigned long end)
1053 {
1054         free_reserved_area((void *)start, (void *)end, -1, "initrd");
1055 }
1056 #endif