]> Pileus Git - ~andy/linux/blob - arch/ia64/mm/init.c
Merge branch 'for-3.10/core' of git://git.kernel.dk/linux-block
[~andy/linux] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/memblock.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/personality.h>
18 #include <linux/reboot.h>
19 #include <linux/slab.h>
20 #include <linux/swap.h>
21 #include <linux/proc_fs.h>
22 #include <linux/bitops.h>
23 #include <linux/kexec.h>
24
25 #include <asm/dma.h>
26 #include <asm/io.h>
27 #include <asm/machvec.h>
28 #include <asm/numa.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
31 #include <asm/sal.h>
32 #include <asm/sections.h>
33 #include <asm/tlb.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
36 #include <asm/mca.h>
37 #include <asm/paravirt.h>
38
39 extern void ia64_tlb_init (void);
40
41 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42
43 #ifdef CONFIG_VIRTUAL_MEM_MAP
44 unsigned long VMALLOC_END = VMALLOC_END_INIT;
45 EXPORT_SYMBOL(VMALLOC_END);
46 struct page *vmem_map;
47 EXPORT_SYMBOL(vmem_map);
48 #endif
49
50 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
51 EXPORT_SYMBOL(zero_page_memmap_ptr);
52
53 void
54 __ia64_sync_icache_dcache (pte_t pte)
55 {
56         unsigned long addr;
57         struct page *page;
58
59         page = pte_page(pte);
60         addr = (unsigned long) page_address(page);
61
62         if (test_bit(PG_arch_1, &page->flags))
63                 return;                         /* i-cache is already coherent with d-cache */
64
65         flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
66         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
67 }
68
69 /*
70  * Since DMA is i-cache coherent, any (complete) pages that were written via
71  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72  * flush them when they get mapped into an executable vm-area.
73  */
74 void
75 dma_mark_clean(void *addr, size_t size)
76 {
77         unsigned long pg_addr, end;
78
79         pg_addr = PAGE_ALIGN((unsigned long) addr);
80         end = (unsigned long) addr + size;
81         while (pg_addr + PAGE_SIZE <= end) {
82                 struct page *page = virt_to_page(pg_addr);
83                 set_bit(PG_arch_1, &page->flags);
84                 pg_addr += PAGE_SIZE;
85         }
86 }
87
88 inline void
89 ia64_set_rbs_bot (void)
90 {
91         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
92
93         if (stack_size > MAX_USER_STACK_SIZE)
94                 stack_size = MAX_USER_STACK_SIZE;
95         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
96 }
97
98 /*
99  * This performs some platform-dependent address space initialization.
100  * On IA-64, we want to setup the VM area for the register backing
101  * store (which grows upwards) and install the gateway page which is
102  * used for signal trampolines, etc.
103  */
104 void
105 ia64_init_addr_space (void)
106 {
107         struct vm_area_struct *vma;
108
109         ia64_set_rbs_bot();
110
111         /*
112          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113          * the problem.  When the process attempts to write to the register backing store
114          * for the first time, it will get a SEGFAULT in this case.
115          */
116         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117         if (vma) {
118                 INIT_LIST_HEAD(&vma->anon_vma_chain);
119                 vma->vm_mm = current->mm;
120                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121                 vma->vm_end = vma->vm_start + PAGE_SIZE;
122                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
123                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
124                 down_write(&current->mm->mmap_sem);
125                 if (insert_vm_struct(current->mm, vma)) {
126                         up_write(&current->mm->mmap_sem);
127                         kmem_cache_free(vm_area_cachep, vma);
128                         return;
129                 }
130                 up_write(&current->mm->mmap_sem);
131         }
132
133         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134         if (!(current->personality & MMAP_PAGE_ZERO)) {
135                 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136                 if (vma) {
137                         INIT_LIST_HEAD(&vma->anon_vma_chain);
138                         vma->vm_mm = current->mm;
139                         vma->vm_end = PAGE_SIZE;
140                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
142                                         VM_DONTEXPAND | VM_DONTDUMP;
143                         down_write(&current->mm->mmap_sem);
144                         if (insert_vm_struct(current->mm, vma)) {
145                                 up_write(&current->mm->mmap_sem);
146                                 kmem_cache_free(vm_area_cachep, vma);
147                                 return;
148                         }
149                         up_write(&current->mm->mmap_sem);
150                 }
151         }
152 }
153
154 void
155 free_initmem (void)
156 {
157         free_reserved_area((unsigned long)ia64_imva(__init_begin),
158                            (unsigned long)ia64_imva(__init_end),
159                            0, "unused kernel");
160 }
161
162 void __init
163 free_initrd_mem (unsigned long start, unsigned long end)
164 {
165         /*
166          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
167          * Thus EFI and the kernel may have different page sizes. It is
168          * therefore possible to have the initrd share the same page as
169          * the end of the kernel (given current setup).
170          *
171          * To avoid freeing/using the wrong page (kernel sized) we:
172          *      - align up the beginning of initrd
173          *      - align down the end of initrd
174          *
175          *  |             |
176          *  |=============| a000
177          *  |             |
178          *  |             |
179          *  |             | 9000
180          *  |/////////////|
181          *  |/////////////|
182          *  |=============| 8000
183          *  |///INITRD////|
184          *  |/////////////|
185          *  |/////////////| 7000
186          *  |             |
187          *  |KKKKKKKKKKKKK|
188          *  |=============| 6000
189          *  |KKKKKKKKKKKKK|
190          *  |KKKKKKKKKKKKK|
191          *  K=kernel using 8KB pages
192          *
193          * In this example, we must free page 8000 ONLY. So we must align up
194          * initrd_start and keep initrd_end as is.
195          */
196         start = PAGE_ALIGN(start);
197         end = end & PAGE_MASK;
198
199         if (start < end)
200                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
201
202         for (; start < end; start += PAGE_SIZE) {
203                 if (!virt_addr_valid(start))
204                         continue;
205                 free_reserved_page(virt_to_page(start));
206         }
207 }
208
209 /*
210  * This installs a clean page in the kernel's page table.
211  */
212 static struct page * __init
213 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
214 {
215         pgd_t *pgd;
216         pud_t *pud;
217         pmd_t *pmd;
218         pte_t *pte;
219
220         if (!PageReserved(page))
221                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
222                        page_address(page));
223
224         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
225
226         {
227                 pud = pud_alloc(&init_mm, pgd, address);
228                 if (!pud)
229                         goto out;
230                 pmd = pmd_alloc(&init_mm, pud, address);
231                 if (!pmd)
232                         goto out;
233                 pte = pte_alloc_kernel(pmd, address);
234                 if (!pte)
235                         goto out;
236                 if (!pte_none(*pte))
237                         goto out;
238                 set_pte(pte, mk_pte(page, pgprot));
239         }
240   out:
241         /* no need for flush_tlb */
242         return page;
243 }
244
245 static void __init
246 setup_gate (void)
247 {
248         void *gate_section;
249         struct page *page;
250
251         /*
252          * Map the gate page twice: once read-only to export the ELF
253          * headers etc. and once execute-only page to enable
254          * privilege-promotion via "epc":
255          */
256         gate_section = paravirt_get_gate_section();
257         page = virt_to_page(ia64_imva(gate_section));
258         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
259 #ifdef HAVE_BUGGY_SEGREL
260         page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
261         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
262 #else
263         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
264         /* Fill in the holes (if any) with read-only zero pages: */
265         {
266                 unsigned long addr;
267
268                 for (addr = GATE_ADDR + PAGE_SIZE;
269                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
270                      addr += PAGE_SIZE)
271                 {
272                         put_kernel_page(ZERO_PAGE(0), addr,
273                                         PAGE_READONLY);
274                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
275                                         PAGE_READONLY);
276                 }
277         }
278 #endif
279         ia64_patch_gate();
280 }
281
282 void ia64_mmu_init(void *my_cpu_data)
283 {
284         unsigned long pta, impl_va_bits;
285         extern void tlb_init(void);
286
287 #ifdef CONFIG_DISABLE_VHPT
288 #       define VHPT_ENABLE_BIT  0
289 #else
290 #       define VHPT_ENABLE_BIT  1
291 #endif
292
293         /*
294          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
295          * address space.  The IA-64 architecture guarantees that at least 50 bits of
296          * virtual address space are implemented but if we pick a large enough page size
297          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
298          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
299          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
300          * problem in practice.  Alternatively, we could truncate the top of the mapped
301          * address space to not permit mappings that would overlap with the VMLPT.
302          * --davidm 00/12/06
303          */
304 #       define pte_bits                 3
305 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
306         /*
307          * The virtual page table has to cover the entire implemented address space within
308          * a region even though not all of this space may be mappable.  The reason for
309          * this is that the Access bit and Dirty bit fault handlers perform
310          * non-speculative accesses to the virtual page table, so the address range of the
311          * virtual page table itself needs to be covered by virtual page table.
312          */
313 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
314 #       define POW2(n)                  (1ULL << (n))
315
316         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
317
318         if (impl_va_bits < 51 || impl_va_bits > 61)
319                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
320         /*
321          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
322          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
323          * the test makes sure that our mapped space doesn't overlap the
324          * unimplemented hole in the middle of the region.
325          */
326         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
327             (mapped_space_bits > impl_va_bits - 1))
328                 panic("Cannot build a big enough virtual-linear page table"
329                       " to cover mapped address space.\n"
330                       " Try using a smaller page size.\n");
331
332
333         /* place the VMLPT at the end of each page-table mapped region: */
334         pta = POW2(61) - POW2(vmlpt_bits);
335
336         /*
337          * Set the (virtually mapped linear) page table address.  Bit
338          * 8 selects between the short and long format, bits 2-7 the
339          * size of the table, and bit 0 whether the VHPT walker is
340          * enabled.
341          */
342         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
343
344         ia64_tlb_init();
345
346 #ifdef  CONFIG_HUGETLB_PAGE
347         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
348         ia64_srlz_d();
349 #endif
350 }
351
352 #ifdef CONFIG_VIRTUAL_MEM_MAP
353 int vmemmap_find_next_valid_pfn(int node, int i)
354 {
355         unsigned long end_address, hole_next_pfn;
356         unsigned long stop_address;
357         pg_data_t *pgdat = NODE_DATA(node);
358
359         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
360         end_address = PAGE_ALIGN(end_address);
361
362         stop_address = (unsigned long) &vmem_map[
363                 pgdat->node_start_pfn + pgdat->node_spanned_pages];
364
365         do {
366                 pgd_t *pgd;
367                 pud_t *pud;
368                 pmd_t *pmd;
369                 pte_t *pte;
370
371                 pgd = pgd_offset_k(end_address);
372                 if (pgd_none(*pgd)) {
373                         end_address += PGDIR_SIZE;
374                         continue;
375                 }
376
377                 pud = pud_offset(pgd, end_address);
378                 if (pud_none(*pud)) {
379                         end_address += PUD_SIZE;
380                         continue;
381                 }
382
383                 pmd = pmd_offset(pud, end_address);
384                 if (pmd_none(*pmd)) {
385                         end_address += PMD_SIZE;
386                         continue;
387                 }
388
389                 pte = pte_offset_kernel(pmd, end_address);
390 retry_pte:
391                 if (pte_none(*pte)) {
392                         end_address += PAGE_SIZE;
393                         pte++;
394                         if ((end_address < stop_address) &&
395                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
396                                 goto retry_pte;
397                         continue;
398                 }
399                 /* Found next valid vmem_map page */
400                 break;
401         } while (end_address < stop_address);
402
403         end_address = min(end_address, stop_address);
404         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
405         hole_next_pfn = end_address / sizeof(struct page);
406         return hole_next_pfn - pgdat->node_start_pfn;
407 }
408
409 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
410 {
411         unsigned long address, start_page, end_page;
412         struct page *map_start, *map_end;
413         int node;
414         pgd_t *pgd;
415         pud_t *pud;
416         pmd_t *pmd;
417         pte_t *pte;
418
419         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
420         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
421
422         start_page = (unsigned long) map_start & PAGE_MASK;
423         end_page = PAGE_ALIGN((unsigned long) map_end);
424         node = paddr_to_nid(__pa(start));
425
426         for (address = start_page; address < end_page; address += PAGE_SIZE) {
427                 pgd = pgd_offset_k(address);
428                 if (pgd_none(*pgd))
429                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
430                 pud = pud_offset(pgd, address);
431
432                 if (pud_none(*pud))
433                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
434                 pmd = pmd_offset(pud, address);
435
436                 if (pmd_none(*pmd))
437                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
438                 pte = pte_offset_kernel(pmd, address);
439
440                 if (pte_none(*pte))
441                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
442                                              PAGE_KERNEL));
443         }
444         return 0;
445 }
446
447 struct memmap_init_callback_data {
448         struct page *start;
449         struct page *end;
450         int nid;
451         unsigned long zone;
452 };
453
454 static int __meminit
455 virtual_memmap_init(u64 start, u64 end, void *arg)
456 {
457         struct memmap_init_callback_data *args;
458         struct page *map_start, *map_end;
459
460         args = (struct memmap_init_callback_data *) arg;
461         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
462         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
463
464         if (map_start < args->start)
465                 map_start = args->start;
466         if (map_end > args->end)
467                 map_end = args->end;
468
469         /*
470          * We have to initialize "out of bounds" struct page elements that fit completely
471          * on the same pages that were allocated for the "in bounds" elements because they
472          * may be referenced later (and found to be "reserved").
473          */
474         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
475         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
476                     / sizeof(struct page));
477
478         if (map_start < map_end)
479                 memmap_init_zone((unsigned long)(map_end - map_start),
480                                  args->nid, args->zone, page_to_pfn(map_start),
481                                  MEMMAP_EARLY);
482         return 0;
483 }
484
485 void __meminit
486 memmap_init (unsigned long size, int nid, unsigned long zone,
487              unsigned long start_pfn)
488 {
489         if (!vmem_map)
490                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
491         else {
492                 struct page *start;
493                 struct memmap_init_callback_data args;
494
495                 start = pfn_to_page(start_pfn);
496                 args.start = start;
497                 args.end = start + size;
498                 args.nid = nid;
499                 args.zone = zone;
500
501                 efi_memmap_walk(virtual_memmap_init, &args);
502         }
503 }
504
505 int
506 ia64_pfn_valid (unsigned long pfn)
507 {
508         char byte;
509         struct page *pg = pfn_to_page(pfn);
510
511         return     (__get_user(byte, (char __user *) pg) == 0)
512                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
513                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
514 }
515 EXPORT_SYMBOL(ia64_pfn_valid);
516
517 int __init find_largest_hole(u64 start, u64 end, void *arg)
518 {
519         u64 *max_gap = arg;
520
521         static u64 last_end = PAGE_OFFSET;
522
523         /* NOTE: this algorithm assumes efi memmap table is ordered */
524
525         if (*max_gap < (start - last_end))
526                 *max_gap = start - last_end;
527         last_end = end;
528         return 0;
529 }
530
531 #endif /* CONFIG_VIRTUAL_MEM_MAP */
532
533 int __init register_active_ranges(u64 start, u64 len, int nid)
534 {
535         u64 end = start + len;
536
537 #ifdef CONFIG_KEXEC
538         if (start > crashk_res.start && start < crashk_res.end)
539                 start = crashk_res.end;
540         if (end > crashk_res.start && end < crashk_res.end)
541                 end = crashk_res.start;
542 #endif
543
544         if (start < end)
545                 memblock_add_node(__pa(start), end - start, nid);
546         return 0;
547 }
548
549 static int __init
550 count_reserved_pages(u64 start, u64 end, void *arg)
551 {
552         unsigned long num_reserved = 0;
553         unsigned long *count = arg;
554
555         for (; start < end; start += PAGE_SIZE)
556                 if (PageReserved(virt_to_page(start)))
557                         ++num_reserved;
558         *count += num_reserved;
559         return 0;
560 }
561
562 int
563 find_max_min_low_pfn (u64 start, u64 end, void *arg)
564 {
565         unsigned long pfn_start, pfn_end;
566 #ifdef CONFIG_FLATMEM
567         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
568         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
569 #else
570         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
571         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
572 #endif
573         min_low_pfn = min(min_low_pfn, pfn_start);
574         max_low_pfn = max(max_low_pfn, pfn_end);
575         return 0;
576 }
577
578 /*
579  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
580  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
581  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
582  * useful for performance testing, but conceivably could also come in handy for debugging
583  * purposes.
584  */
585
586 static int nolwsys __initdata;
587
588 static int __init
589 nolwsys_setup (char *s)
590 {
591         nolwsys = 1;
592         return 1;
593 }
594
595 __setup("nolwsys", nolwsys_setup);
596
597 void __init
598 mem_init (void)
599 {
600         long reserved_pages, codesize, datasize, initsize;
601         pg_data_t *pgdat;
602         int i;
603
604         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
605         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
606         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
607
608 #ifdef CONFIG_PCI
609         /*
610          * This needs to be called _after_ the command line has been parsed but _before_
611          * any drivers that may need the PCI DMA interface are initialized or bootmem has
612          * been freed.
613          */
614         platform_dma_init();
615 #endif
616
617 #ifdef CONFIG_FLATMEM
618         BUG_ON(!mem_map);
619         max_mapnr = max_low_pfn;
620 #endif
621
622         high_memory = __va(max_low_pfn * PAGE_SIZE);
623
624         for_each_online_pgdat(pgdat)
625                 if (pgdat->bdata->node_bootmem_map)
626                         totalram_pages += free_all_bootmem_node(pgdat);
627
628         reserved_pages = 0;
629         efi_memmap_walk(count_reserved_pages, &reserved_pages);
630
631         codesize =  (unsigned long) _etext - (unsigned long) _stext;
632         datasize =  (unsigned long) _edata - (unsigned long) _etext;
633         initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
634
635         printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
636                "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
637                num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
638                reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
639
640
641         /*
642          * For fsyscall entrpoints with no light-weight handler, use the ordinary
643          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
644          * code can tell them apart.
645          */
646         for (i = 0; i < NR_syscalls; ++i) {
647                 extern unsigned long sys_call_table[NR_syscalls];
648                 unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
649
650                 if (!fsyscall_table[i] || nolwsys)
651                         fsyscall_table[i] = sys_call_table[i] | 1;
652         }
653         setup_gate();
654 }
655
656 #ifdef CONFIG_MEMORY_HOTPLUG
657 int arch_add_memory(int nid, u64 start, u64 size)
658 {
659         pg_data_t *pgdat;
660         struct zone *zone;
661         unsigned long start_pfn = start >> PAGE_SHIFT;
662         unsigned long nr_pages = size >> PAGE_SHIFT;
663         int ret;
664
665         pgdat = NODE_DATA(nid);
666
667         zone = pgdat->node_zones + ZONE_NORMAL;
668         ret = __add_pages(nid, zone, start_pfn, nr_pages);
669
670         if (ret)
671                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
672                        __func__,  ret);
673
674         return ret;
675 }
676
677 #ifdef CONFIG_MEMORY_HOTREMOVE
678 int arch_remove_memory(u64 start, u64 size)
679 {
680         unsigned long start_pfn = start >> PAGE_SHIFT;
681         unsigned long nr_pages = size >> PAGE_SHIFT;
682         struct zone *zone;
683         int ret;
684
685         zone = page_zone(pfn_to_page(start_pfn));
686         ret = __remove_pages(zone, start_pfn, nr_pages);
687         if (ret)
688                 pr_warn("%s: Problem encountered in __remove_pages() as"
689                         " ret=%d\n", __func__,  ret);
690
691         return ret;
692 }
693 #endif
694 #endif
695
696 /*
697  * Even when CONFIG_IA32_SUPPORT is not enabled it is
698  * useful to have the Linux/x86 domain registered to
699  * avoid an attempted module load when emulators call
700  * personality(PER_LINUX32). This saves several milliseconds
701  * on each such call.
702  */
703 static struct exec_domain ia32_exec_domain;
704
705 static int __init
706 per_linux32_init(void)
707 {
708         ia32_exec_domain.name = "Linux/x86";
709         ia32_exec_domain.handler = NULL;
710         ia32_exec_domain.pers_low = PER_LINUX32;
711         ia32_exec_domain.pers_high = PER_LINUX32;
712         ia32_exec_domain.signal_map = default_exec_domain.signal_map;
713         ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
714         register_exec_domain(&ia32_exec_domain);
715
716         return 0;
717 }
718
719 __initcall(per_linux32_init);