]> Pileus Git - ~andy/linux/blob - arch/ia64/kernel/efi.c
Linux 3.14
[~andy/linux] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *      David Mosberger-Tang <davidm@hpl.hp.com>
11  *      Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *      Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44
45 #define EFI_DEBUG       0
46
47 static __initdata unsigned long palo_phys;
48
49 static __initdata efi_config_table_type_t arch_tables[] = {
50         {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
51         {NULL_GUID, NULL, 0},
52 };
53
54 extern efi_status_t efi_call_phys (void *, ...);
55
56 static efi_runtime_services_t *runtime;
57 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
58
59 #define efi_call_virt(f, args...)       (*(f))(args)
60
61 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
62 static efi_status_t                                                            \
63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
64 {                                                                              \
65         struct ia64_fpreg fr[6];                                               \
66         efi_time_cap_t *atc = NULL;                                            \
67         efi_status_t ret;                                                      \
68                                                                                \
69         if (tc)                                                                \
70                 atc = adjust_arg(tc);                                          \
71         ia64_save_scratch_fpregs(fr);                                          \
72         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
73                                 adjust_arg(tm), atc);                          \
74         ia64_load_scratch_fpregs(fr);                                          \
75         return ret;                                                            \
76 }
77
78 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
79 static efi_status_t                                                            \
80 prefix##_set_time (efi_time_t *tm)                                             \
81 {                                                                              \
82         struct ia64_fpreg fr[6];                                               \
83         efi_status_t ret;                                                      \
84                                                                                \
85         ia64_save_scratch_fpregs(fr);                                          \
86         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
87                                 adjust_arg(tm));                               \
88         ia64_load_scratch_fpregs(fr);                                          \
89         return ret;                                                            \
90 }
91
92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
93 static efi_status_t                                                            \
94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
95                           efi_time_t *tm)                                      \
96 {                                                                              \
97         struct ia64_fpreg fr[6];                                               \
98         efi_status_t ret;                                                      \
99                                                                                \
100         ia64_save_scratch_fpregs(fr);                                          \
101         ret = efi_call_##prefix(                                               \
102                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
103                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
104         ia64_load_scratch_fpregs(fr);                                          \
105         return ret;                                                            \
106 }
107
108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
109 static efi_status_t                                                            \
110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
111 {                                                                              \
112         struct ia64_fpreg fr[6];                                               \
113         efi_time_t *atm = NULL;                                                \
114         efi_status_t ret;                                                      \
115                                                                                \
116         if (tm)                                                                \
117                 atm = adjust_arg(tm);                                          \
118         ia64_save_scratch_fpregs(fr);                                          \
119         ret = efi_call_##prefix(                                               \
120                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
121                 enabled, atm);                                                 \
122         ia64_load_scratch_fpregs(fr);                                          \
123         return ret;                                                            \
124 }
125
126 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
127 static efi_status_t                                                            \
128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
129                        unsigned long *data_size, void *data)                   \
130 {                                                                              \
131         struct ia64_fpreg fr[6];                                               \
132         u32 *aattr = NULL;                                                     \
133         efi_status_t ret;                                                      \
134                                                                                \
135         if (attr)                                                              \
136                 aattr = adjust_arg(attr);                                      \
137         ia64_save_scratch_fpregs(fr);                                          \
138         ret = efi_call_##prefix(                                               \
139                 (efi_get_variable_t *) __va(runtime->get_variable),            \
140                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
141                 adjust_arg(data_size), adjust_arg(data));                      \
142         ia64_load_scratch_fpregs(fr);                                          \
143         return ret;                                                            \
144 }
145
146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
147 static efi_status_t                                                            \
148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
149                             efi_guid_t *vendor)                                \
150 {                                                                              \
151         struct ia64_fpreg fr[6];                                               \
152         efi_status_t ret;                                                      \
153                                                                                \
154         ia64_save_scratch_fpregs(fr);                                          \
155         ret = efi_call_##prefix(                                               \
156                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
157                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
158         ia64_load_scratch_fpregs(fr);                                          \
159         return ret;                                                            \
160 }
161
162 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
163 static efi_status_t                                                            \
164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
165                        u32 attr, unsigned long data_size,                      \
166                        void *data)                                             \
167 {                                                                              \
168         struct ia64_fpreg fr[6];                                               \
169         efi_status_t ret;                                                      \
170                                                                                \
171         ia64_save_scratch_fpregs(fr);                                          \
172         ret = efi_call_##prefix(                                               \
173                 (efi_set_variable_t *) __va(runtime->set_variable),            \
174                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
175                 adjust_arg(data));                                             \
176         ia64_load_scratch_fpregs(fr);                                          \
177         return ret;                                                            \
178 }
179
180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
181 static efi_status_t                                                            \
182 prefix##_get_next_high_mono_count (u32 *count)                                 \
183 {                                                                              \
184         struct ia64_fpreg fr[6];                                               \
185         efi_status_t ret;                                                      \
186                                                                                \
187         ia64_save_scratch_fpregs(fr);                                          \
188         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
189                                 __va(runtime->get_next_high_mono_count),       \
190                                 adjust_arg(count));                            \
191         ia64_load_scratch_fpregs(fr);                                          \
192         return ret;                                                            \
193 }
194
195 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
196 static void                                                                    \
197 prefix##_reset_system (int reset_type, efi_status_t status,                    \
198                        unsigned long data_size, efi_char16_t *data)            \
199 {                                                                              \
200         struct ia64_fpreg fr[6];                                               \
201         efi_char16_t *adata = NULL;                                            \
202                                                                                \
203         if (data)                                                              \
204                 adata = adjust_arg(data);                                      \
205                                                                                \
206         ia64_save_scratch_fpregs(fr);                                          \
207         efi_call_##prefix(                                                     \
208                 (efi_reset_system_t *) __va(runtime->reset_system),            \
209                 reset_type, status, data_size, adata);                         \
210         /* should not return, but just in case... */                           \
211         ia64_load_scratch_fpregs(fr);                                          \
212 }
213
214 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
215
216 STUB_GET_TIME(phys, phys_ptr)
217 STUB_SET_TIME(phys, phys_ptr)
218 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
219 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
220 STUB_GET_VARIABLE(phys, phys_ptr)
221 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
222 STUB_SET_VARIABLE(phys, phys_ptr)
223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
224 STUB_RESET_SYSTEM(phys, phys_ptr)
225
226 #define id(arg) arg
227
228 STUB_GET_TIME(virt, id)
229 STUB_SET_TIME(virt, id)
230 STUB_GET_WAKEUP_TIME(virt, id)
231 STUB_SET_WAKEUP_TIME(virt, id)
232 STUB_GET_VARIABLE(virt, id)
233 STUB_GET_NEXT_VARIABLE(virt, id)
234 STUB_SET_VARIABLE(virt, id)
235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
236 STUB_RESET_SYSTEM(virt, id)
237
238 void
239 efi_gettimeofday (struct timespec *ts)
240 {
241         efi_time_t tm;
242
243         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
244                 memset(ts, 0, sizeof(*ts));
245                 return;
246         }
247
248         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
249                             tm.hour, tm.minute, tm.second);
250         ts->tv_nsec = tm.nanosecond;
251 }
252
253 static int
254 is_memory_available (efi_memory_desc_t *md)
255 {
256         if (!(md->attribute & EFI_MEMORY_WB))
257                 return 0;
258
259         switch (md->type) {
260               case EFI_LOADER_CODE:
261               case EFI_LOADER_DATA:
262               case EFI_BOOT_SERVICES_CODE:
263               case EFI_BOOT_SERVICES_DATA:
264               case EFI_CONVENTIONAL_MEMORY:
265                 return 1;
266         }
267         return 0;
268 }
269
270 typedef struct kern_memdesc {
271         u64 attribute;
272         u64 start;
273         u64 num_pages;
274 } kern_memdesc_t;
275
276 static kern_memdesc_t *kern_memmap;
277
278 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
279
280 static inline u64
281 kmd_end(kern_memdesc_t *kmd)
282 {
283         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
284 }
285
286 static inline u64
287 efi_md_end(efi_memory_desc_t *md)
288 {
289         return (md->phys_addr + efi_md_size(md));
290 }
291
292 static inline int
293 efi_wb(efi_memory_desc_t *md)
294 {
295         return (md->attribute & EFI_MEMORY_WB);
296 }
297
298 static inline int
299 efi_uc(efi_memory_desc_t *md)
300 {
301         return (md->attribute & EFI_MEMORY_UC);
302 }
303
304 static void
305 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
306 {
307         kern_memdesc_t *k;
308         u64 start, end, voff;
309
310         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
311         for (k = kern_memmap; k->start != ~0UL; k++) {
312                 if (k->attribute != attr)
313                         continue;
314                 start = PAGE_ALIGN(k->start);
315                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
316                 if (start < end)
317                         if ((*callback)(start + voff, end + voff, arg) < 0)
318                                 return;
319         }
320 }
321
322 /*
323  * Walk the EFI memory map and call CALLBACK once for each EFI memory
324  * descriptor that has memory that is available for OS use.
325  */
326 void
327 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
328 {
329         walk(callback, arg, EFI_MEMORY_WB);
330 }
331
332 /*
333  * Walk the EFI memory map and call CALLBACK once for each EFI memory
334  * descriptor that has memory that is available for uncached allocator.
335  */
336 void
337 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
338 {
339         walk(callback, arg, EFI_MEMORY_UC);
340 }
341
342 /*
343  * Look for the PAL_CODE region reported by EFI and map it using an
344  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
345  * Abstraction Layer chapter 11 in ADAG
346  */
347 void *
348 efi_get_pal_addr (void)
349 {
350         void *efi_map_start, *efi_map_end, *p;
351         efi_memory_desc_t *md;
352         u64 efi_desc_size;
353         int pal_code_count = 0;
354         u64 vaddr, mask;
355
356         efi_map_start = __va(ia64_boot_param->efi_memmap);
357         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
358         efi_desc_size = ia64_boot_param->efi_memdesc_size;
359
360         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
361                 md = p;
362                 if (md->type != EFI_PAL_CODE)
363                         continue;
364
365                 if (++pal_code_count > 1) {
366                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
367                                "dropped @ %llx\n", md->phys_addr);
368                         continue;
369                 }
370                 /*
371                  * The only ITLB entry in region 7 that is used is the one
372                  * installed by __start().  That entry covers a 64MB range.
373                  */
374                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
375                 vaddr = PAGE_OFFSET + md->phys_addr;
376
377                 /*
378                  * We must check that the PAL mapping won't overlap with the
379                  * kernel mapping.
380                  *
381                  * PAL code is guaranteed to be aligned on a power of 2 between
382                  * 4k and 256KB and that only one ITR is needed to map it. This
383                  * implies that the PAL code is always aligned on its size,
384                  * i.e., the closest matching page size supported by the TLB.
385                  * Therefore PAL code is guaranteed never to cross a 64MB unless
386                  * it is bigger than 64MB (very unlikely!).  So for now the
387                  * following test is enough to determine whether or not we need
388                  * a dedicated ITR for the PAL code.
389                  */
390                 if ((vaddr & mask) == (KERNEL_START & mask)) {
391                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
392                                __func__);
393                         continue;
394                 }
395
396                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
397                         panic("Whoa!  PAL code size bigger than a granule!");
398
399 #if EFI_DEBUG
400                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
401
402                 printk(KERN_INFO "CPU %d: mapping PAL code "
403                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
404                        smp_processor_id(), md->phys_addr,
405                        md->phys_addr + efi_md_size(md),
406                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
407 #endif
408                 return __va(md->phys_addr);
409         }
410         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
411                __func__);
412         return NULL;
413 }
414
415
416 static u8 __init palo_checksum(u8 *buffer, u32 length)
417 {
418         u8 sum = 0;
419         u8 *end = buffer + length;
420
421         while (buffer < end)
422                 sum = (u8) (sum + *(buffer++));
423
424         return sum;
425 }
426
427 /*
428  * Parse and handle PALO table which is published at:
429  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
430  */
431 static void __init handle_palo(unsigned long phys_addr)
432 {
433         struct palo_table *palo = __va(phys_addr);
434         u8  checksum;
435
436         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
437                 printk(KERN_INFO "PALO signature incorrect.\n");
438                 return;
439         }
440
441         checksum = palo_checksum((u8 *)palo, palo->length);
442         if (checksum) {
443                 printk(KERN_INFO "PALO checksum incorrect.\n");
444                 return;
445         }
446
447         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
448 }
449
450 void
451 efi_map_pal_code (void)
452 {
453         void *pal_vaddr = efi_get_pal_addr ();
454         u64 psr;
455
456         if (!pal_vaddr)
457                 return;
458
459         /*
460          * Cannot write to CRx with PSR.ic=1
461          */
462         psr = ia64_clear_ic();
463         ia64_itr(0x1, IA64_TR_PALCODE,
464                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
465                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
466                  IA64_GRANULE_SHIFT);
467         paravirt_dv_serialize_data();
468         ia64_set_psr(psr);              /* restore psr */
469 }
470
471 void __init
472 efi_init (void)
473 {
474         void *efi_map_start, *efi_map_end;
475         efi_char16_t *c16;
476         u64 efi_desc_size;
477         char *cp, vendor[100] = "unknown";
478         int i;
479
480         /*
481          * It's too early to be able to use the standard kernel command line
482          * support...
483          */
484         for (cp = boot_command_line; *cp; ) {
485                 if (memcmp(cp, "mem=", 4) == 0) {
486                         mem_limit = memparse(cp + 4, &cp);
487                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
488                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
489                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
490                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
491                 } else {
492                         while (*cp != ' ' && *cp)
493                                 ++cp;
494                         while (*cp == ' ')
495                                 ++cp;
496                 }
497         }
498         if (min_addr != 0UL)
499                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
500                        min_addr >> 20);
501         if (max_addr != ~0UL)
502                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
503                        max_addr >> 20);
504
505         efi.systab = __va(ia64_boot_param->efi_systab);
506
507         /*
508          * Verify the EFI Table
509          */
510         if (efi.systab == NULL)
511                 panic("Whoa! Can't find EFI system table.\n");
512         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
513                 panic("Whoa! EFI system table signature incorrect\n");
514         if ((efi.systab->hdr.revision >> 16) == 0)
515                 printk(KERN_WARNING "Warning: EFI system table version "
516                        "%d.%02d, expected 1.00 or greater\n",
517                        efi.systab->hdr.revision >> 16,
518                        efi.systab->hdr.revision & 0xffff);
519
520         /* Show what we know for posterity */
521         c16 = __va(efi.systab->fw_vendor);
522         if (c16) {
523                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
524                         vendor[i] = *c16++;
525                 vendor[i] = '\0';
526         }
527
528         printk(KERN_INFO "EFI v%u.%.02u by %s:",
529                efi.systab->hdr.revision >> 16,
530                efi.systab->hdr.revision & 0xffff, vendor);
531
532         palo_phys      = EFI_INVALID_TABLE_ADDR;
533
534         if (efi_config_init(arch_tables) != 0)
535                 return;
536
537         if (palo_phys != EFI_INVALID_TABLE_ADDR)
538                 handle_palo(palo_phys);
539
540         runtime = __va(efi.systab->runtime);
541         efi.get_time = phys_get_time;
542         efi.set_time = phys_set_time;
543         efi.get_wakeup_time = phys_get_wakeup_time;
544         efi.set_wakeup_time = phys_set_wakeup_time;
545         efi.get_variable = phys_get_variable;
546         efi.get_next_variable = phys_get_next_variable;
547         efi.set_variable = phys_set_variable;
548         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
549         efi.reset_system = phys_reset_system;
550
551         efi_map_start = __va(ia64_boot_param->efi_memmap);
552         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
553         efi_desc_size = ia64_boot_param->efi_memdesc_size;
554
555 #if EFI_DEBUG
556         /* print EFI memory map: */
557         {
558                 efi_memory_desc_t *md;
559                 void *p;
560
561                 for (i = 0, p = efi_map_start; p < efi_map_end;
562                      ++i, p += efi_desc_size)
563                 {
564                         const char *unit;
565                         unsigned long size;
566
567                         md = p;
568                         size = md->num_pages << EFI_PAGE_SHIFT;
569
570                         if ((size >> 40) > 0) {
571                                 size >>= 40;
572                                 unit = "TB";
573                         } else if ((size >> 30) > 0) {
574                                 size >>= 30;
575                                 unit = "GB";
576                         } else if ((size >> 20) > 0) {
577                                 size >>= 20;
578                                 unit = "MB";
579                         } else {
580                                 size >>= 10;
581                                 unit = "KB";
582                         }
583
584                         printk("mem%02d: type=%2u, attr=0x%016lx, "
585                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
586                                i, md->type, md->attribute, md->phys_addr,
587                                md->phys_addr + efi_md_size(md), size, unit);
588                 }
589         }
590 #endif
591
592         efi_map_pal_code();
593         efi_enter_virtual_mode();
594 }
595
596 void
597 efi_enter_virtual_mode (void)
598 {
599         void *efi_map_start, *efi_map_end, *p;
600         efi_memory_desc_t *md;
601         efi_status_t status;
602         u64 efi_desc_size;
603
604         efi_map_start = __va(ia64_boot_param->efi_memmap);
605         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
606         efi_desc_size = ia64_boot_param->efi_memdesc_size;
607
608         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
609                 md = p;
610                 if (md->attribute & EFI_MEMORY_RUNTIME) {
611                         /*
612                          * Some descriptors have multiple bits set, so the
613                          * order of the tests is relevant.
614                          */
615                         if (md->attribute & EFI_MEMORY_WB) {
616                                 md->virt_addr = (u64) __va(md->phys_addr);
617                         } else if (md->attribute & EFI_MEMORY_UC) {
618                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
619                         } else if (md->attribute & EFI_MEMORY_WC) {
620 #if 0
621                                 md->virt_addr = ia64_remap(md->phys_addr,
622                                                            (_PAGE_A |
623                                                             _PAGE_P |
624                                                             _PAGE_D |
625                                                             _PAGE_MA_WC |
626                                                             _PAGE_PL_0 |
627                                                             _PAGE_AR_RW));
628 #else
629                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
630                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
631 #endif
632                         } else if (md->attribute & EFI_MEMORY_WT) {
633 #if 0
634                                 md->virt_addr = ia64_remap(md->phys_addr,
635                                                            (_PAGE_A |
636                                                             _PAGE_P |
637                                                             _PAGE_D |
638                                                             _PAGE_MA_WT |
639                                                             _PAGE_PL_0 |
640                                                             _PAGE_AR_RW));
641 #else
642                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
643                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
644 #endif
645                         }
646                 }
647         }
648
649         status = efi_call_phys(__va(runtime->set_virtual_address_map),
650                                ia64_boot_param->efi_memmap_size,
651                                efi_desc_size,
652                                ia64_boot_param->efi_memdesc_version,
653                                ia64_boot_param->efi_memmap);
654         if (status != EFI_SUCCESS) {
655                 printk(KERN_WARNING "warning: unable to switch EFI into "
656                        "virtual mode (status=%lu)\n", status);
657                 return;
658         }
659
660         /*
661          * Now that EFI is in virtual mode, we call the EFI functions more
662          * efficiently:
663          */
664         efi.get_time = virt_get_time;
665         efi.set_time = virt_set_time;
666         efi.get_wakeup_time = virt_get_wakeup_time;
667         efi.set_wakeup_time = virt_set_wakeup_time;
668         efi.get_variable = virt_get_variable;
669         efi.get_next_variable = virt_get_next_variable;
670         efi.set_variable = virt_set_variable;
671         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
672         efi.reset_system = virt_reset_system;
673 }
674
675 /*
676  * Walk the EFI memory map looking for the I/O port range.  There can only be
677  * one entry of this type, other I/O port ranges should be described via ACPI.
678  */
679 u64
680 efi_get_iobase (void)
681 {
682         void *efi_map_start, *efi_map_end, *p;
683         efi_memory_desc_t *md;
684         u64 efi_desc_size;
685
686         efi_map_start = __va(ia64_boot_param->efi_memmap);
687         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
688         efi_desc_size = ia64_boot_param->efi_memdesc_size;
689
690         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
691                 md = p;
692                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
693                         if (md->attribute & EFI_MEMORY_UC)
694                                 return md->phys_addr;
695                 }
696         }
697         return 0;
698 }
699
700 static struct kern_memdesc *
701 kern_memory_descriptor (unsigned long phys_addr)
702 {
703         struct kern_memdesc *md;
704
705         for (md = kern_memmap; md->start != ~0UL; md++) {
706                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
707                          return md;
708         }
709         return NULL;
710 }
711
712 static efi_memory_desc_t *
713 efi_memory_descriptor (unsigned long phys_addr)
714 {
715         void *efi_map_start, *efi_map_end, *p;
716         efi_memory_desc_t *md;
717         u64 efi_desc_size;
718
719         efi_map_start = __va(ia64_boot_param->efi_memmap);
720         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
721         efi_desc_size = ia64_boot_param->efi_memdesc_size;
722
723         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
724                 md = p;
725
726                 if (phys_addr - md->phys_addr < efi_md_size(md))
727                          return md;
728         }
729         return NULL;
730 }
731
732 static int
733 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
734 {
735         void *efi_map_start, *efi_map_end, *p;
736         efi_memory_desc_t *md;
737         u64 efi_desc_size;
738         unsigned long end;
739
740         efi_map_start = __va(ia64_boot_param->efi_memmap);
741         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
742         efi_desc_size = ia64_boot_param->efi_memdesc_size;
743
744         end = phys_addr + size;
745
746         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
747                 md = p;
748                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
749                         return 1;
750         }
751         return 0;
752 }
753
754 u32
755 efi_mem_type (unsigned long phys_addr)
756 {
757         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
758
759         if (md)
760                 return md->type;
761         return 0;
762 }
763
764 u64
765 efi_mem_attributes (unsigned long phys_addr)
766 {
767         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
768
769         if (md)
770                 return md->attribute;
771         return 0;
772 }
773 EXPORT_SYMBOL(efi_mem_attributes);
774
775 u64
776 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
777 {
778         unsigned long end = phys_addr + size;
779         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
780         u64 attr;
781
782         if (!md)
783                 return 0;
784
785         /*
786          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
787          * the kernel that firmware needs this region mapped.
788          */
789         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
790         do {
791                 unsigned long md_end = efi_md_end(md);
792
793                 if (end <= md_end)
794                         return attr;
795
796                 md = efi_memory_descriptor(md_end);
797                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
798                         return 0;
799         } while (md);
800         return 0;       /* never reached */
801 }
802
803 u64
804 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
805 {
806         unsigned long end = phys_addr + size;
807         struct kern_memdesc *md;
808         u64 attr;
809
810         /*
811          * This is a hack for ioremap calls before we set up kern_memmap.
812          * Maybe we should do efi_memmap_init() earlier instead.
813          */
814         if (!kern_memmap) {
815                 attr = efi_mem_attribute(phys_addr, size);
816                 if (attr & EFI_MEMORY_WB)
817                         return EFI_MEMORY_WB;
818                 return 0;
819         }
820
821         md = kern_memory_descriptor(phys_addr);
822         if (!md)
823                 return 0;
824
825         attr = md->attribute;
826         do {
827                 unsigned long md_end = kmd_end(md);
828
829                 if (end <= md_end)
830                         return attr;
831
832                 md = kern_memory_descriptor(md_end);
833                 if (!md || md->attribute != attr)
834                         return 0;
835         } while (md);
836         return 0;       /* never reached */
837 }
838 EXPORT_SYMBOL(kern_mem_attribute);
839
840 int
841 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
842 {
843         u64 attr;
844
845         /*
846          * /dev/mem reads and writes use copy_to_user(), which implicitly
847          * uses a granule-sized kernel identity mapping.  It's really
848          * only safe to do this for regions in kern_memmap.  For more
849          * details, see Documentation/ia64/aliasing.txt.
850          */
851         attr = kern_mem_attribute(phys_addr, size);
852         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
853                 return 1;
854         return 0;
855 }
856
857 int
858 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
859 {
860         unsigned long phys_addr = pfn << PAGE_SHIFT;
861         u64 attr;
862
863         attr = efi_mem_attribute(phys_addr, size);
864
865         /*
866          * /dev/mem mmap uses normal user pages, so we don't need the entire
867          * granule, but the entire region we're mapping must support the same
868          * attribute.
869          */
870         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
871                 return 1;
872
873         /*
874          * Intel firmware doesn't tell us about all the MMIO regions, so
875          * in general we have to allow mmap requests.  But if EFI *does*
876          * tell us about anything inside this region, we should deny it.
877          * The user can always map a smaller region to avoid the overlap.
878          */
879         if (efi_memmap_intersects(phys_addr, size))
880                 return 0;
881
882         return 1;
883 }
884
885 pgprot_t
886 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
887                      pgprot_t vma_prot)
888 {
889         unsigned long phys_addr = pfn << PAGE_SHIFT;
890         u64 attr;
891
892         /*
893          * For /dev/mem mmap, we use user mappings, but if the region is
894          * in kern_memmap (and hence may be covered by a kernel mapping),
895          * we must use the same attribute as the kernel mapping.
896          */
897         attr = kern_mem_attribute(phys_addr, size);
898         if (attr & EFI_MEMORY_WB)
899                 return pgprot_cacheable(vma_prot);
900         else if (attr & EFI_MEMORY_UC)
901                 return pgprot_noncached(vma_prot);
902
903         /*
904          * Some chipsets don't support UC access to memory.  If
905          * WB is supported, we prefer that.
906          */
907         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
908                 return pgprot_cacheable(vma_prot);
909
910         return pgprot_noncached(vma_prot);
911 }
912
913 int __init
914 efi_uart_console_only(void)
915 {
916         efi_status_t status;
917         char *s, name[] = "ConOut";
918         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
919         efi_char16_t *utf16, name_utf16[32];
920         unsigned char data[1024];
921         unsigned long size = sizeof(data);
922         struct efi_generic_dev_path *hdr, *end_addr;
923         int uart = 0;
924
925         /* Convert to UTF-16 */
926         utf16 = name_utf16;
927         s = name;
928         while (*s)
929                 *utf16++ = *s++ & 0x7f;
930         *utf16 = 0;
931
932         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
933         if (status != EFI_SUCCESS) {
934                 printk(KERN_ERR "No EFI %s variable?\n", name);
935                 return 0;
936         }
937
938         hdr = (struct efi_generic_dev_path *) data;
939         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
940         while (hdr < end_addr) {
941                 if (hdr->type == EFI_DEV_MSG &&
942                     hdr->sub_type == EFI_DEV_MSG_UART)
943                         uart = 1;
944                 else if (hdr->type == EFI_DEV_END_PATH ||
945                           hdr->type == EFI_DEV_END_PATH2) {
946                         if (!uart)
947                                 return 0;
948                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
949                                 return 1;
950                         uart = 0;
951                 }
952                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
953         }
954         printk(KERN_ERR "Malformed %s value\n", name);
955         return 0;
956 }
957
958 /*
959  * Look for the first granule aligned memory descriptor memory
960  * that is big enough to hold EFI memory map. Make sure this
961  * descriptor is atleast granule sized so it does not get trimmed
962  */
963 struct kern_memdesc *
964 find_memmap_space (void)
965 {
966         u64     contig_low=0, contig_high=0;
967         u64     as = 0, ae;
968         void *efi_map_start, *efi_map_end, *p, *q;
969         efi_memory_desc_t *md, *pmd = NULL, *check_md;
970         u64     space_needed, efi_desc_size;
971         unsigned long total_mem = 0;
972
973         efi_map_start = __va(ia64_boot_param->efi_memmap);
974         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
975         efi_desc_size = ia64_boot_param->efi_memdesc_size;
976
977         /*
978          * Worst case: we need 3 kernel descriptors for each efi descriptor
979          * (if every entry has a WB part in the middle, and UC head and tail),
980          * plus one for the end marker.
981          */
982         space_needed = sizeof(kern_memdesc_t) *
983                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
984
985         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
986                 md = p;
987                 if (!efi_wb(md)) {
988                         continue;
989                 }
990                 if (pmd == NULL || !efi_wb(pmd) ||
991                     efi_md_end(pmd) != md->phys_addr) {
992                         contig_low = GRANULEROUNDUP(md->phys_addr);
993                         contig_high = efi_md_end(md);
994                         for (q = p + efi_desc_size; q < efi_map_end;
995                              q += efi_desc_size) {
996                                 check_md = q;
997                                 if (!efi_wb(check_md))
998                                         break;
999                                 if (contig_high != check_md->phys_addr)
1000                                         break;
1001                                 contig_high = efi_md_end(check_md);
1002                         }
1003                         contig_high = GRANULEROUNDDOWN(contig_high);
1004                 }
1005                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1006                         continue;
1007
1008                 /* Round ends inward to granule boundaries */
1009                 as = max(contig_low, md->phys_addr);
1010                 ae = min(contig_high, efi_md_end(md));
1011
1012                 /* keep within max_addr= and min_addr= command line arg */
1013                 as = max(as, min_addr);
1014                 ae = min(ae, max_addr);
1015                 if (ae <= as)
1016                         continue;
1017
1018                 /* avoid going over mem= command line arg */
1019                 if (total_mem + (ae - as) > mem_limit)
1020                         ae -= total_mem + (ae - as) - mem_limit;
1021
1022                 if (ae <= as)
1023                         continue;
1024
1025                 if (ae - as > space_needed)
1026                         break;
1027         }
1028         if (p >= efi_map_end)
1029                 panic("Can't allocate space for kernel memory descriptors");
1030
1031         return __va(as);
1032 }
1033
1034 /*
1035  * Walk the EFI memory map and gather all memory available for kernel
1036  * to use.  We can allocate partial granules only if the unavailable
1037  * parts exist, and are WB.
1038  */
1039 unsigned long
1040 efi_memmap_init(u64 *s, u64 *e)
1041 {
1042         struct kern_memdesc *k, *prev = NULL;
1043         u64     contig_low=0, contig_high=0;
1044         u64     as, ae, lim;
1045         void *efi_map_start, *efi_map_end, *p, *q;
1046         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1047         u64     efi_desc_size;
1048         unsigned long total_mem = 0;
1049
1050         k = kern_memmap = find_memmap_space();
1051
1052         efi_map_start = __va(ia64_boot_param->efi_memmap);
1053         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1054         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1055
1056         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1057                 md = p;
1058                 if (!efi_wb(md)) {
1059                         if (efi_uc(md) &&
1060                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1061                              md->type == EFI_BOOT_SERVICES_DATA)) {
1062                                 k->attribute = EFI_MEMORY_UC;
1063                                 k->start = md->phys_addr;
1064                                 k->num_pages = md->num_pages;
1065                                 k++;
1066                         }
1067                         continue;
1068                 }
1069                 if (pmd == NULL || !efi_wb(pmd) ||
1070                     efi_md_end(pmd) != md->phys_addr) {
1071                         contig_low = GRANULEROUNDUP(md->phys_addr);
1072                         contig_high = efi_md_end(md);
1073                         for (q = p + efi_desc_size; q < efi_map_end;
1074                              q += efi_desc_size) {
1075                                 check_md = q;
1076                                 if (!efi_wb(check_md))
1077                                         break;
1078                                 if (contig_high != check_md->phys_addr)
1079                                         break;
1080                                 contig_high = efi_md_end(check_md);
1081                         }
1082                         contig_high = GRANULEROUNDDOWN(contig_high);
1083                 }
1084                 if (!is_memory_available(md))
1085                         continue;
1086
1087                 /*
1088                  * Round ends inward to granule boundaries
1089                  * Give trimmings to uncached allocator
1090                  */
1091                 if (md->phys_addr < contig_low) {
1092                         lim = min(efi_md_end(md), contig_low);
1093                         if (efi_uc(md)) {
1094                                 if (k > kern_memmap &&
1095                                     (k-1)->attribute == EFI_MEMORY_UC &&
1096                                     kmd_end(k-1) == md->phys_addr) {
1097                                         (k-1)->num_pages +=
1098                                                 (lim - md->phys_addr)
1099                                                 >> EFI_PAGE_SHIFT;
1100                                 } else {
1101                                         k->attribute = EFI_MEMORY_UC;
1102                                         k->start = md->phys_addr;
1103                                         k->num_pages = (lim - md->phys_addr)
1104                                                 >> EFI_PAGE_SHIFT;
1105                                         k++;
1106                                 }
1107                         }
1108                         as = contig_low;
1109                 } else
1110                         as = md->phys_addr;
1111
1112                 if (efi_md_end(md) > contig_high) {
1113                         lim = max(md->phys_addr, contig_high);
1114                         if (efi_uc(md)) {
1115                                 if (lim == md->phys_addr && k > kern_memmap &&
1116                                     (k-1)->attribute == EFI_MEMORY_UC &&
1117                                     kmd_end(k-1) == md->phys_addr) {
1118                                         (k-1)->num_pages += md->num_pages;
1119                                 } else {
1120                                         k->attribute = EFI_MEMORY_UC;
1121                                         k->start = lim;
1122                                         k->num_pages = (efi_md_end(md) - lim)
1123                                                 >> EFI_PAGE_SHIFT;
1124                                         k++;
1125                                 }
1126                         }
1127                         ae = contig_high;
1128                 } else
1129                         ae = efi_md_end(md);
1130
1131                 /* keep within max_addr= and min_addr= command line arg */
1132                 as = max(as, min_addr);
1133                 ae = min(ae, max_addr);
1134                 if (ae <= as)
1135                         continue;
1136
1137                 /* avoid going over mem= command line arg */
1138                 if (total_mem + (ae - as) > mem_limit)
1139                         ae -= total_mem + (ae - as) - mem_limit;
1140
1141                 if (ae <= as)
1142                         continue;
1143                 if (prev && kmd_end(prev) == md->phys_addr) {
1144                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1145                         total_mem += ae - as;
1146                         continue;
1147                 }
1148                 k->attribute = EFI_MEMORY_WB;
1149                 k->start = as;
1150                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1151                 total_mem += ae - as;
1152                 prev = k++;
1153         }
1154         k->start = ~0L; /* end-marker */
1155
1156         /* reserve the memory we are using for kern_memmap */
1157         *s = (u64)kern_memmap;
1158         *e = (u64)++k;
1159
1160         return total_mem;
1161 }
1162
1163 void
1164 efi_initialize_iomem_resources(struct resource *code_resource,
1165                                struct resource *data_resource,
1166                                struct resource *bss_resource)
1167 {
1168         struct resource *res;
1169         void *efi_map_start, *efi_map_end, *p;
1170         efi_memory_desc_t *md;
1171         u64 efi_desc_size;
1172         char *name;
1173         unsigned long flags;
1174
1175         efi_map_start = __va(ia64_boot_param->efi_memmap);
1176         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1177         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1178
1179         res = NULL;
1180
1181         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1182                 md = p;
1183
1184                 if (md->num_pages == 0) /* should not happen */
1185                         continue;
1186
1187                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1188                 switch (md->type) {
1189
1190                         case EFI_MEMORY_MAPPED_IO:
1191                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1192                                 continue;
1193
1194                         case EFI_LOADER_CODE:
1195                         case EFI_LOADER_DATA:
1196                         case EFI_BOOT_SERVICES_DATA:
1197                         case EFI_BOOT_SERVICES_CODE:
1198                         case EFI_CONVENTIONAL_MEMORY:
1199                                 if (md->attribute & EFI_MEMORY_WP) {
1200                                         name = "System ROM";
1201                                         flags |= IORESOURCE_READONLY;
1202                                 } else if (md->attribute == EFI_MEMORY_UC)
1203                                         name = "Uncached RAM";
1204                                 else
1205                                         name = "System RAM";
1206                                 break;
1207
1208                         case EFI_ACPI_MEMORY_NVS:
1209                                 name = "ACPI Non-volatile Storage";
1210                                 break;
1211
1212                         case EFI_UNUSABLE_MEMORY:
1213                                 name = "reserved";
1214                                 flags |= IORESOURCE_DISABLED;
1215                                 break;
1216
1217                         case EFI_RESERVED_TYPE:
1218                         case EFI_RUNTIME_SERVICES_CODE:
1219                         case EFI_RUNTIME_SERVICES_DATA:
1220                         case EFI_ACPI_RECLAIM_MEMORY:
1221                         default:
1222                                 name = "reserved";
1223                                 break;
1224                 }
1225
1226                 if ((res = kzalloc(sizeof(struct resource),
1227                                    GFP_KERNEL)) == NULL) {
1228                         printk(KERN_ERR
1229                                "failed to allocate resource for iomem\n");
1230                         return;
1231                 }
1232
1233                 res->name = name;
1234                 res->start = md->phys_addr;
1235                 res->end = md->phys_addr + efi_md_size(md) - 1;
1236                 res->flags = flags;
1237
1238                 if (insert_resource(&iomem_resource, res) < 0)
1239                         kfree(res);
1240                 else {
1241                         /*
1242                          * We don't know which region contains
1243                          * kernel data so we try it repeatedly and
1244                          * let the resource manager test it.
1245                          */
1246                         insert_resource(res, code_resource);
1247                         insert_resource(res, data_resource);
1248                         insert_resource(res, bss_resource);
1249 #ifdef CONFIG_KEXEC
1250                         insert_resource(res, &efi_memmap_res);
1251                         insert_resource(res, &boot_param_res);
1252                         if (crashk_res.end > crashk_res.start)
1253                                 insert_resource(res, &crashk_res);
1254 #endif
1255                 }
1256         }
1257 }
1258
1259 #ifdef CONFIG_KEXEC
1260 /* find a block of memory aligned to 64M exclude reserved regions
1261    rsvd_regions are sorted
1262  */
1263 unsigned long __init
1264 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1265 {
1266         int i;
1267         u64 start, end;
1268         u64 alignment = 1UL << _PAGE_SIZE_64M;
1269         void *efi_map_start, *efi_map_end, *p;
1270         efi_memory_desc_t *md;
1271         u64 efi_desc_size;
1272
1273         efi_map_start = __va(ia64_boot_param->efi_memmap);
1274         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1275         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1276
1277         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1278                 md = p;
1279                 if (!efi_wb(md))
1280                         continue;
1281                 start = ALIGN(md->phys_addr, alignment);
1282                 end = efi_md_end(md);
1283                 for (i = 0; i < n; i++) {
1284                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1285                                 if (__pa(r[i].start) > start + size)
1286                                         return start;
1287                                 start = ALIGN(__pa(r[i].end), alignment);
1288                                 if (i < n-1 &&
1289                                     __pa(r[i+1].start) < start + size)
1290                                         continue;
1291                                 else
1292                                         break;
1293                         }
1294                 }
1295                 if (end > start + size)
1296                         return start;
1297         }
1298
1299         printk(KERN_WARNING
1300                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1301         return ~0UL;
1302 }
1303 #endif
1304
1305 #ifdef CONFIG_CRASH_DUMP
1306 /* locate the size find a the descriptor at a certain address */
1307 unsigned long __init
1308 vmcore_find_descriptor_size (unsigned long address)
1309 {
1310         void *efi_map_start, *efi_map_end, *p;
1311         efi_memory_desc_t *md;
1312         u64 efi_desc_size;
1313         unsigned long ret = 0;
1314
1315         efi_map_start = __va(ia64_boot_param->efi_memmap);
1316         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1317         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1318
1319         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1320                 md = p;
1321                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1322                     && md->phys_addr == address) {
1323                         ret = efi_md_size(md);
1324                         break;
1325                 }
1326         }
1327
1328         if (ret == 0)
1329                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1330
1331         return ret;
1332 }
1333 #endif