]> Pileus Git - ~andy/linux/blob - arch/blackfin/kernel/process.c
3e16ad9b0a99ab0615731f12bfffbf0195cf20d0
[~andy/linux] / arch / blackfin / kernel / process.c
1 /*
2  * Blackfin architecture-dependent process handling
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/tick.h>
16 #include <linux/fs.h>
17 #include <linux/err.h>
18
19 #include <asm/blackfin.h>
20 #include <asm/fixed_code.h>
21 #include <asm/mem_map.h>
22 #include <asm/irq.h>
23
24 asmlinkage void ret_from_fork(void);
25
26 /* Points to the SDRAM backup memory for the stack that is currently in
27  * L1 scratchpad memory.
28  */
29 void *current_l1_stack_save;
30
31 /* The number of tasks currently using a L1 stack area.  The SRAM is
32  * allocated/deallocated whenever this changes from/to zero.
33  */
34 int nr_l1stack_tasks;
35
36 /* Start and length of the area in L1 scratchpad memory which we've allocated
37  * for process stacks.
38  */
39 void *l1_stack_base;
40 unsigned long l1_stack_len;
41
42 /*
43  * Powermanagement idle function, if any..
44  */
45 void (*pm_idle)(void) = NULL;
46 EXPORT_SYMBOL(pm_idle);
47
48 void (*pm_power_off)(void) = NULL;
49 EXPORT_SYMBOL(pm_power_off);
50
51 /*
52  * The idle loop on BFIN
53  */
54 #ifdef CONFIG_IDLE_L1
55 static void default_idle(void)__attribute__((l1_text));
56 void cpu_idle(void)__attribute__((l1_text));
57 #endif
58
59 /*
60  * This is our default idle handler.  We need to disable
61  * interrupts here to ensure we don't miss a wakeup call.
62  */
63 static void default_idle(void)
64 {
65 #ifdef CONFIG_IPIPE
66         ipipe_suspend_domain();
67 #endif
68         hard_local_irq_disable();
69         if (!need_resched())
70                 idle_with_irq_disabled();
71
72         hard_local_irq_enable();
73 }
74
75 /*
76  * The idle thread.  We try to conserve power, while trying to keep
77  * overall latency low.  The architecture specific idle is passed
78  * a value to indicate the level of "idleness" of the system.
79  */
80 void cpu_idle(void)
81 {
82         /* endless idle loop with no priority at all */
83         while (1) {
84                 void (*idle)(void) = pm_idle;
85
86 #ifdef CONFIG_HOTPLUG_CPU
87                 if (cpu_is_offline(smp_processor_id()))
88                         cpu_die();
89 #endif
90                 if (!idle)
91                         idle = default_idle;
92                 tick_nohz_idle_enter();
93                 rcu_idle_enter();
94                 while (!need_resched())
95                         idle();
96                 rcu_idle_exit();
97                 tick_nohz_idle_exit();
98                 preempt_enable_no_resched();
99                 schedule();
100                 preempt_disable();
101         }
102 }
103
104 /*
105  * Do necessary setup to start up a newly executed thread.
106  *
107  * pass the data segment into user programs if it exists,
108  * it can't hurt anything as far as I can tell
109  */
110 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
111 {
112         regs->pc = new_ip;
113         if (current->mm)
114                 regs->p5 = current->mm->start_data;
115 #ifndef CONFIG_SMP
116         task_thread_info(current)->l1_task_info.stack_start =
117                 (void *)current->mm->context.stack_start;
118         task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
119         memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
120                sizeof(*L1_SCRATCH_TASK_INFO));
121 #endif
122         wrusp(new_sp);
123 }
124 EXPORT_SYMBOL_GPL(start_thread);
125
126 void flush_thread(void)
127 {
128 }
129
130 asmlinkage int bfin_clone(unsigned long clone_flags, unsigned long newsp)
131 {
132 #ifdef __ARCH_SYNC_CORE_DCACHE
133         if (current->nr_cpus_allowed == num_possible_cpus())
134                 set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
135 #endif
136         if (newsp)
137                 newsp -= 12;
138         return do_fork(clone_flags, newsp, 0, NULL, NULL);
139 }
140
141 int
142 copy_thread(unsigned long clone_flags,
143             unsigned long usp, unsigned long topstk,
144             struct task_struct *p)
145 {
146         struct pt_regs *childregs;
147         unsigned long *v;
148
149         childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
150         v = ((unsigned long *)childregs) - 2;
151         if (unlikely(p->flags & PF_KTHREAD)) {
152                 memset(childregs, 0, sizeof(struct pt_regs));
153                 v[0] = usp;
154                 v[1] = topstk;
155                 childregs->orig_p0 = -1;
156                 childregs->ipend = 0x8000;
157                 __asm__ __volatile__("%0 = syscfg;":"=da"(childregs->syscfg):);
158                 p->thread.usp = 0;
159         } else {
160                 *childregs = *current_pt_regs();
161                 childregs->r0 = 0;
162                 p->thread.usp = usp ? : rdusp();
163                 v[0] = v[1] = 0;
164         }
165
166         p->thread.ksp = (unsigned long)v;
167         p->thread.pc = (unsigned long)ret_from_fork;
168
169         return 0;
170 }
171
172 unsigned long get_wchan(struct task_struct *p)
173 {
174         unsigned long fp, pc;
175         unsigned long stack_page;
176         int count = 0;
177         if (!p || p == current || p->state == TASK_RUNNING)
178                 return 0;
179
180         stack_page = (unsigned long)p;
181         fp = p->thread.usp;
182         do {
183                 if (fp < stack_page + sizeof(struct thread_info) ||
184                     fp >= 8184 + stack_page)
185                         return 0;
186                 pc = ((unsigned long *)fp)[1];
187                 if (!in_sched_functions(pc))
188                         return pc;
189                 fp = *(unsigned long *)fp;
190         }
191         while (count++ < 16);
192         return 0;
193 }
194
195 void finish_atomic_sections (struct pt_regs *regs)
196 {
197         int __user *up0 = (int __user *)regs->p0;
198
199         switch (regs->pc) {
200         default:
201                 /* not in middle of an atomic step, so resume like normal */
202                 return;
203
204         case ATOMIC_XCHG32 + 2:
205                 put_user(regs->r1, up0);
206                 break;
207
208         case ATOMIC_CAS32 + 2:
209         case ATOMIC_CAS32 + 4:
210                 if (regs->r0 == regs->r1)
211         case ATOMIC_CAS32 + 6:
212                         put_user(regs->r2, up0);
213                 break;
214
215         case ATOMIC_ADD32 + 2:
216                 regs->r0 = regs->r1 + regs->r0;
217                 /* fall through */
218         case ATOMIC_ADD32 + 4:
219                 put_user(regs->r0, up0);
220                 break;
221
222         case ATOMIC_SUB32 + 2:
223                 regs->r0 = regs->r1 - regs->r0;
224                 /* fall through */
225         case ATOMIC_SUB32 + 4:
226                 put_user(regs->r0, up0);
227                 break;
228
229         case ATOMIC_IOR32 + 2:
230                 regs->r0 = regs->r1 | regs->r0;
231                 /* fall through */
232         case ATOMIC_IOR32 + 4:
233                 put_user(regs->r0, up0);
234                 break;
235
236         case ATOMIC_AND32 + 2:
237                 regs->r0 = regs->r1 & regs->r0;
238                 /* fall through */
239         case ATOMIC_AND32 + 4:
240                 put_user(regs->r0, up0);
241                 break;
242
243         case ATOMIC_XOR32 + 2:
244                 regs->r0 = regs->r1 ^ regs->r0;
245                 /* fall through */
246         case ATOMIC_XOR32 + 4:
247                 put_user(regs->r0, up0);
248                 break;
249         }
250
251         /*
252          * We've finished the atomic section, and the only thing left for
253          * userspace is to do a RTS, so we might as well handle that too
254          * since we need to update the PC anyways.
255          */
256         regs->pc = regs->rets;
257 }
258
259 static inline
260 int in_mem(unsigned long addr, unsigned long size,
261            unsigned long start, unsigned long end)
262 {
263         return addr >= start && addr + size <= end;
264 }
265 static inline
266 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
267                      unsigned long const_addr, unsigned long const_size)
268 {
269         return const_size &&
270                in_mem(addr, size, const_addr + off, const_addr + const_size);
271 }
272 static inline
273 int in_mem_const(unsigned long addr, unsigned long size,
274                  unsigned long const_addr, unsigned long const_size)
275 {
276         return in_mem_const_off(addr, size, 0, const_addr, const_size);
277 }
278 #ifdef CONFIG_BF60x
279 #define ASYNC_ENABLED(bnum, bctlnum)    1
280 #else
281 #define ASYNC_ENABLED(bnum, bctlnum) \
282 ({ \
283         (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
284         bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
285         1; \
286 })
287 #endif
288 /*
289  * We can't read EBIU banks that aren't enabled or we end up hanging
290  * on the access to the async space.  Make sure we validate accesses
291  * that cross async banks too.
292  *      0 - found, but unusable
293  *      1 - found & usable
294  *      2 - not found
295  */
296 static
297 int in_async(unsigned long addr, unsigned long size)
298 {
299         if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
300                 if (!ASYNC_ENABLED(0, 0))
301                         return 0;
302                 if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
303                         return 1;
304                 size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
305                 addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
306         }
307         if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
308                 if (!ASYNC_ENABLED(1, 0))
309                         return 0;
310                 if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
311                         return 1;
312                 size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
313                 addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
314         }
315         if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
316                 if (!ASYNC_ENABLED(2, 1))
317                         return 0;
318                 if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
319                         return 1;
320                 size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
321                 addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
322         }
323         if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
324                 if (ASYNC_ENABLED(3, 1))
325                         return 0;
326                 if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
327                         return 1;
328                 return 0;
329         }
330
331         /* not within async bounds */
332         return 2;
333 }
334
335 int bfin_mem_access_type(unsigned long addr, unsigned long size)
336 {
337         int cpu = raw_smp_processor_id();
338
339         /* Check that things do not wrap around */
340         if (addr > ULONG_MAX - size)
341                 return -EFAULT;
342
343         if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
344                 return BFIN_MEM_ACCESS_CORE;
345
346         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
347                 return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
348         if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
349                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
350         if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
351                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
352         if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
353                 return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
354 #ifdef COREB_L1_CODE_START
355         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
356                 return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
357         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
358                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
359         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
360                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
361         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
362                 return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
363 #endif
364         if (in_mem_const(addr, size, L2_START, L2_LENGTH))
365                 return BFIN_MEM_ACCESS_CORE;
366
367         if (addr >= SYSMMR_BASE)
368                 return BFIN_MEM_ACCESS_CORE_ONLY;
369
370         switch (in_async(addr, size)) {
371         case 0: return -EFAULT;
372         case 1: return BFIN_MEM_ACCESS_CORE;
373         case 2: /* fall through */;
374         }
375
376         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
377                 return BFIN_MEM_ACCESS_CORE;
378         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
379                 return BFIN_MEM_ACCESS_DMA;
380
381         return -EFAULT;
382 }
383
384 #if defined(CONFIG_ACCESS_CHECK)
385 #ifdef CONFIG_ACCESS_OK_L1
386 __attribute__((l1_text))
387 #endif
388 /* Return 1 if access to memory range is OK, 0 otherwise */
389 int _access_ok(unsigned long addr, unsigned long size)
390 {
391         int aret;
392
393         if (size == 0)
394                 return 1;
395         /* Check that things do not wrap around */
396         if (addr > ULONG_MAX - size)
397                 return 0;
398         if (segment_eq(get_fs(), KERNEL_DS))
399                 return 1;
400 #ifdef CONFIG_MTD_UCLINUX
401         if (1)
402 #else
403         if (0)
404 #endif
405         {
406                 if (in_mem(addr, size, memory_start, memory_end))
407                         return 1;
408                 if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
409                         return 1;
410 # ifndef CONFIG_ROMFS_ON_MTD
411                 if (0)
412 # endif
413                         /* For XIP, allow user space to use pointers within the ROMFS.  */
414                         if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
415                                 return 1;
416         } else {
417                 if (in_mem(addr, size, memory_start, physical_mem_end))
418                         return 1;
419         }
420
421         if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
422                 return 1;
423
424         if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
425                 return 1;
426         if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
427                 return 1;
428         if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
429                 return 1;
430         if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
431                 return 1;
432 #ifdef COREB_L1_CODE_START
433         if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
434                 return 1;
435         if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
436                 return 1;
437         if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
438                 return 1;
439         if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
440                 return 1;
441 #endif
442
443 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
444         if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
445                 return 1;
446 #endif
447
448         aret = in_async(addr, size);
449         if (aret < 2)
450                 return aret;
451
452         if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
453                 return 1;
454
455         if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
456                 return 1;
457         if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
458                 return 1;
459
460         return 0;
461 }
462 EXPORT_SYMBOL(_access_ok);
463 #endif /* CONFIG_ACCESS_CHECK */