]> Pileus Git - ~andy/linux/blob - arch/arm/mm/mmu.c
Merge tag 'for-linus-20120712' of git://git.infradead.org/linux-mtd
[~andy/linux] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19
20 #include <asm/cp15.h>
21 #include <asm/cputype.h>
22 #include <asm/sections.h>
23 #include <asm/cachetype.h>
24 #include <asm/setup.h>
25 #include <asm/sizes.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34
35 #include "mm.h"
36
37 /*
38  * empty_zero_page is a special page that is used for
39  * zero-initialized data and COW.
40  */
41 struct page *empty_zero_page;
42 EXPORT_SYMBOL(empty_zero_page);
43
44 /*
45  * The pmd table for the upper-most set of pages.
46  */
47 pmd_t *top_pmd;
48
49 #define CPOLICY_UNCACHED        0
50 #define CPOLICY_BUFFERED        1
51 #define CPOLICY_WRITETHROUGH    2
52 #define CPOLICY_WRITEBACK       3
53 #define CPOLICY_WRITEALLOC      4
54
55 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56 static unsigned int ecc_mask __initdata = 0;
57 pgprot_t pgprot_user;
58 pgprot_t pgprot_kernel;
59
60 EXPORT_SYMBOL(pgprot_user);
61 EXPORT_SYMBOL(pgprot_kernel);
62
63 struct cachepolicy {
64         const char      policy[16];
65         unsigned int    cr_mask;
66         pmdval_t        pmd;
67         pteval_t        pte;
68 };
69
70 static struct cachepolicy cache_policies[] __initdata = {
71         {
72                 .policy         = "uncached",
73                 .cr_mask        = CR_W|CR_C,
74                 .pmd            = PMD_SECT_UNCACHED,
75                 .pte            = L_PTE_MT_UNCACHED,
76         }, {
77                 .policy         = "buffered",
78                 .cr_mask        = CR_C,
79                 .pmd            = PMD_SECT_BUFFERED,
80                 .pte            = L_PTE_MT_BUFFERABLE,
81         }, {
82                 .policy         = "writethrough",
83                 .cr_mask        = 0,
84                 .pmd            = PMD_SECT_WT,
85                 .pte            = L_PTE_MT_WRITETHROUGH,
86         }, {
87                 .policy         = "writeback",
88                 .cr_mask        = 0,
89                 .pmd            = PMD_SECT_WB,
90                 .pte            = L_PTE_MT_WRITEBACK,
91         }, {
92                 .policy         = "writealloc",
93                 .cr_mask        = 0,
94                 .pmd            = PMD_SECT_WBWA,
95                 .pte            = L_PTE_MT_WRITEALLOC,
96         }
97 };
98
99 /*
100  * These are useful for identifying cache coherency
101  * problems by allowing the cache or the cache and
102  * writebuffer to be turned off.  (Note: the write
103  * buffer should not be on and the cache off).
104  */
105 static int __init early_cachepolicy(char *p)
106 {
107         int i;
108
109         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110                 int len = strlen(cache_policies[i].policy);
111
112                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
113                         cachepolicy = i;
114                         cr_alignment &= ~cache_policies[i].cr_mask;
115                         cr_no_alignment &= ~cache_policies[i].cr_mask;
116                         break;
117                 }
118         }
119         if (i == ARRAY_SIZE(cache_policies))
120                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121         /*
122          * This restriction is partly to do with the way we boot; it is
123          * unpredictable to have memory mapped using two different sets of
124          * memory attributes (shared, type, and cache attribs).  We can not
125          * change these attributes once the initial assembly has setup the
126          * page tables.
127          */
128         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130                 cachepolicy = CPOLICY_WRITEBACK;
131         }
132         flush_cache_all();
133         set_cr(cr_alignment);
134         return 0;
135 }
136 early_param("cachepolicy", early_cachepolicy);
137
138 static int __init early_nocache(char *__unused)
139 {
140         char *p = "buffered";
141         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142         early_cachepolicy(p);
143         return 0;
144 }
145 early_param("nocache", early_nocache);
146
147 static int __init early_nowrite(char *__unused)
148 {
149         char *p = "uncached";
150         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151         early_cachepolicy(p);
152         return 0;
153 }
154 early_param("nowb", early_nowrite);
155
156 #ifndef CONFIG_ARM_LPAE
157 static int __init early_ecc(char *p)
158 {
159         if (memcmp(p, "on", 2) == 0)
160                 ecc_mask = PMD_PROTECTION;
161         else if (memcmp(p, "off", 3) == 0)
162                 ecc_mask = 0;
163         return 0;
164 }
165 early_param("ecc", early_ecc);
166 #endif
167
168 static int __init noalign_setup(char *__unused)
169 {
170         cr_alignment &= ~CR_A;
171         cr_no_alignment &= ~CR_A;
172         set_cr(cr_alignment);
173         return 1;
174 }
175 __setup("noalign", noalign_setup);
176
177 #ifndef CONFIG_SMP
178 void adjust_cr(unsigned long mask, unsigned long set)
179 {
180         unsigned long flags;
181
182         mask &= ~CR_A;
183
184         set &= mask;
185
186         local_irq_save(flags);
187
188         cr_no_alignment = (cr_no_alignment & ~mask) | set;
189         cr_alignment = (cr_alignment & ~mask) | set;
190
191         set_cr((get_cr() & ~mask) | set);
192
193         local_irq_restore(flags);
194 }
195 #endif
196
197 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199
200 static struct mem_type mem_types[] = {
201         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
202                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203                                   L_PTE_SHARED,
204                 .prot_l1        = PMD_TYPE_TABLE,
205                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
206                 .domain         = DOMAIN_IO,
207         },
208         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210                 .prot_l1        = PMD_TYPE_TABLE,
211                 .prot_sect      = PROT_SECT_DEVICE,
212                 .domain         = DOMAIN_IO,
213         },
214         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
215                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216                 .prot_l1        = PMD_TYPE_TABLE,
217                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
218                 .domain         = DOMAIN_IO,
219         },      
220         [MT_DEVICE_WC] = {      /* ioremap_wc */
221                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222                 .prot_l1        = PMD_TYPE_TABLE,
223                 .prot_sect      = PROT_SECT_DEVICE,
224                 .domain         = DOMAIN_IO,
225         },
226         [MT_UNCACHED] = {
227                 .prot_pte       = PROT_PTE_DEVICE,
228                 .prot_l1        = PMD_TYPE_TABLE,
229                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
230                 .domain         = DOMAIN_IO,
231         },
232         [MT_CACHECLEAN] = {
233                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234                 .domain    = DOMAIN_KERNEL,
235         },
236 #ifndef CONFIG_ARM_LPAE
237         [MT_MINICLEAN] = {
238                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239                 .domain    = DOMAIN_KERNEL,
240         },
241 #endif
242         [MT_LOW_VECTORS] = {
243                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244                                 L_PTE_RDONLY,
245                 .prot_l1   = PMD_TYPE_TABLE,
246                 .domain    = DOMAIN_USER,
247         },
248         [MT_HIGH_VECTORS] = {
249                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250                                 L_PTE_USER | L_PTE_RDONLY,
251                 .prot_l1   = PMD_TYPE_TABLE,
252                 .domain    = DOMAIN_USER,
253         },
254         [MT_MEMORY] = {
255                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256                 .prot_l1   = PMD_TYPE_TABLE,
257                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258                 .domain    = DOMAIN_KERNEL,
259         },
260         [MT_ROM] = {
261                 .prot_sect = PMD_TYPE_SECT,
262                 .domain    = DOMAIN_KERNEL,
263         },
264         [MT_MEMORY_NONCACHED] = {
265                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266                                 L_PTE_MT_BUFFERABLE,
267                 .prot_l1   = PMD_TYPE_TABLE,
268                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269                 .domain    = DOMAIN_KERNEL,
270         },
271         [MT_MEMORY_DTCM] = {
272                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273                                 L_PTE_XN,
274                 .prot_l1   = PMD_TYPE_TABLE,
275                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276                 .domain    = DOMAIN_KERNEL,
277         },
278         [MT_MEMORY_ITCM] = {
279                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280                 .prot_l1   = PMD_TYPE_TABLE,
281                 .domain    = DOMAIN_KERNEL,
282         },
283         [MT_MEMORY_SO] = {
284                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285                                 L_PTE_MT_UNCACHED,
286                 .prot_l1   = PMD_TYPE_TABLE,
287                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
289                 .domain    = DOMAIN_KERNEL,
290         },
291         [MT_MEMORY_DMA_READY] = {
292                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293                 .prot_l1   = PMD_TYPE_TABLE,
294                 .domain    = DOMAIN_KERNEL,
295         },
296 };
297
298 const struct mem_type *get_mem_type(unsigned int type)
299 {
300         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
301 }
302 EXPORT_SYMBOL(get_mem_type);
303
304 /*
305  * Adjust the PMD section entries according to the CPU in use.
306  */
307 static void __init build_mem_type_table(void)
308 {
309         struct cachepolicy *cp;
310         unsigned int cr = get_cr();
311         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
312         int cpu_arch = cpu_architecture();
313         int i;
314
315         if (cpu_arch < CPU_ARCH_ARMv6) {
316 #if defined(CONFIG_CPU_DCACHE_DISABLE)
317                 if (cachepolicy > CPOLICY_BUFFERED)
318                         cachepolicy = CPOLICY_BUFFERED;
319 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
320                 if (cachepolicy > CPOLICY_WRITETHROUGH)
321                         cachepolicy = CPOLICY_WRITETHROUGH;
322 #endif
323         }
324         if (cpu_arch < CPU_ARCH_ARMv5) {
325                 if (cachepolicy >= CPOLICY_WRITEALLOC)
326                         cachepolicy = CPOLICY_WRITEBACK;
327                 ecc_mask = 0;
328         }
329         if (is_smp())
330                 cachepolicy = CPOLICY_WRITEALLOC;
331
332         /*
333          * Strip out features not present on earlier architectures.
334          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
335          * without extended page tables don't have the 'Shared' bit.
336          */
337         if (cpu_arch < CPU_ARCH_ARMv5)
338                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
339                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
340         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
341                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
342                         mem_types[i].prot_sect &= ~PMD_SECT_S;
343
344         /*
345          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
346          * "update-able on write" bit on ARM610).  However, Xscale and
347          * Xscale3 require this bit to be cleared.
348          */
349         if (cpu_is_xscale() || cpu_is_xsc3()) {
350                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351                         mem_types[i].prot_sect &= ~PMD_BIT4;
352                         mem_types[i].prot_l1 &= ~PMD_BIT4;
353                 }
354         } else if (cpu_arch < CPU_ARCH_ARMv6) {
355                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
356                         if (mem_types[i].prot_l1)
357                                 mem_types[i].prot_l1 |= PMD_BIT4;
358                         if (mem_types[i].prot_sect)
359                                 mem_types[i].prot_sect |= PMD_BIT4;
360                 }
361         }
362
363         /*
364          * Mark the device areas according to the CPU/architecture.
365          */
366         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
367                 if (!cpu_is_xsc3()) {
368                         /*
369                          * Mark device regions on ARMv6+ as execute-never
370                          * to prevent speculative instruction fetches.
371                          */
372                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
373                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
374                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
375                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
376                 }
377                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
378                         /*
379                          * For ARMv7 with TEX remapping,
380                          * - shared device is SXCB=1100
381                          * - nonshared device is SXCB=0100
382                          * - write combine device mem is SXCB=0001
383                          * (Uncached Normal memory)
384                          */
385                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
386                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
387                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
388                 } else if (cpu_is_xsc3()) {
389                         /*
390                          * For Xscale3,
391                          * - shared device is TEXCB=00101
392                          * - nonshared device is TEXCB=01000
393                          * - write combine device mem is TEXCB=00100
394                          * (Inner/Outer Uncacheable in xsc3 parlance)
395                          */
396                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
397                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399                 } else {
400                         /*
401                          * For ARMv6 and ARMv7 without TEX remapping,
402                          * - shared device is TEXCB=00001
403                          * - nonshared device is TEXCB=01000
404                          * - write combine device mem is TEXCB=00100
405                          * (Uncached Normal in ARMv6 parlance).
406                          */
407                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
408                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
409                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
410                 }
411         } else {
412                 /*
413                  * On others, write combining is "Uncached/Buffered"
414                  */
415                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
416         }
417
418         /*
419          * Now deal with the memory-type mappings
420          */
421         cp = &cache_policies[cachepolicy];
422         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
423
424         /*
425          * Only use write-through for non-SMP systems
426          */
427         if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
428                 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
429
430         /*
431          * Enable CPU-specific coherency if supported.
432          * (Only available on XSC3 at the moment.)
433          */
434         if (arch_is_coherent() && cpu_is_xsc3()) {
435                 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
436                 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
437                 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
438                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
439                 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
440         }
441         /*
442          * ARMv6 and above have extended page tables.
443          */
444         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
445 #ifndef CONFIG_ARM_LPAE
446                 /*
447                  * Mark cache clean areas and XIP ROM read only
448                  * from SVC mode and no access from userspace.
449                  */
450                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
451                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
452                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
453 #endif
454
455                 if (is_smp()) {
456                         /*
457                          * Mark memory with the "shared" attribute
458                          * for SMP systems
459                          */
460                         user_pgprot |= L_PTE_SHARED;
461                         kern_pgprot |= L_PTE_SHARED;
462                         vecs_pgprot |= L_PTE_SHARED;
463                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
464                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
465                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
466                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
467                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
468                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
469                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
470                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
471                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
472                 }
473         }
474
475         /*
476          * Non-cacheable Normal - intended for memory areas that must
477          * not cause dirty cache line writebacks when used
478          */
479         if (cpu_arch >= CPU_ARCH_ARMv6) {
480                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
481                         /* Non-cacheable Normal is XCB = 001 */
482                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
483                                 PMD_SECT_BUFFERED;
484                 } else {
485                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
486                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
487                                 PMD_SECT_TEX(1);
488                 }
489         } else {
490                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
491         }
492
493 #ifdef CONFIG_ARM_LPAE
494         /*
495          * Do not generate access flag faults for the kernel mappings.
496          */
497         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
498                 mem_types[i].prot_pte |= PTE_EXT_AF;
499                 if (mem_types[i].prot_sect)
500                         mem_types[i].prot_sect |= PMD_SECT_AF;
501         }
502         kern_pgprot |= PTE_EXT_AF;
503         vecs_pgprot |= PTE_EXT_AF;
504 #endif
505
506         for (i = 0; i < 16; i++) {
507                 unsigned long v = pgprot_val(protection_map[i]);
508                 protection_map[i] = __pgprot(v | user_pgprot);
509         }
510
511         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
512         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
513
514         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
515         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
516                                  L_PTE_DIRTY | kern_pgprot);
517
518         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
519         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
520         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
521         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
522         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
523         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
524         mem_types[MT_ROM].prot_sect |= cp->pmd;
525
526         switch (cp->pmd) {
527         case PMD_SECT_WT:
528                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
529                 break;
530         case PMD_SECT_WB:
531         case PMD_SECT_WBWA:
532                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
533                 break;
534         }
535         printk("Memory policy: ECC %sabled, Data cache %s\n",
536                 ecc_mask ? "en" : "dis", cp->policy);
537
538         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
539                 struct mem_type *t = &mem_types[i];
540                 if (t->prot_l1)
541                         t->prot_l1 |= PMD_DOMAIN(t->domain);
542                 if (t->prot_sect)
543                         t->prot_sect |= PMD_DOMAIN(t->domain);
544         }
545 }
546
547 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
548 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
549                               unsigned long size, pgprot_t vma_prot)
550 {
551         if (!pfn_valid(pfn))
552                 return pgprot_noncached(vma_prot);
553         else if (file->f_flags & O_SYNC)
554                 return pgprot_writecombine(vma_prot);
555         return vma_prot;
556 }
557 EXPORT_SYMBOL(phys_mem_access_prot);
558 #endif
559
560 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
561
562 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
563 {
564         void *ptr = __va(memblock_alloc(sz, align));
565         memset(ptr, 0, sz);
566         return ptr;
567 }
568
569 static void __init *early_alloc(unsigned long sz)
570 {
571         return early_alloc_aligned(sz, sz);
572 }
573
574 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
575 {
576         if (pmd_none(*pmd)) {
577                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
578                 __pmd_populate(pmd, __pa(pte), prot);
579         }
580         BUG_ON(pmd_bad(*pmd));
581         return pte_offset_kernel(pmd, addr);
582 }
583
584 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
585                                   unsigned long end, unsigned long pfn,
586                                   const struct mem_type *type)
587 {
588         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
589         do {
590                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
591                 pfn++;
592         } while (pte++, addr += PAGE_SIZE, addr != end);
593 }
594
595 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
596                                       unsigned long end, phys_addr_t phys,
597                                       const struct mem_type *type)
598 {
599         pmd_t *pmd = pmd_offset(pud, addr);
600
601         /*
602          * Try a section mapping - end, addr and phys must all be aligned
603          * to a section boundary.  Note that PMDs refer to the individual
604          * L1 entries, whereas PGDs refer to a group of L1 entries making
605          * up one logical pointer to an L2 table.
606          */
607         if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
608                 pmd_t *p = pmd;
609
610 #ifndef CONFIG_ARM_LPAE
611                 if (addr & SECTION_SIZE)
612                         pmd++;
613 #endif
614
615                 do {
616                         *pmd = __pmd(phys | type->prot_sect);
617                         phys += SECTION_SIZE;
618                 } while (pmd++, addr += SECTION_SIZE, addr != end);
619
620                 flush_pmd_entry(p);
621         } else {
622                 /*
623                  * No need to loop; pte's aren't interested in the
624                  * individual L1 entries.
625                  */
626                 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
627         }
628 }
629
630 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
631         unsigned long end, unsigned long phys, const struct mem_type *type)
632 {
633         pud_t *pud = pud_offset(pgd, addr);
634         unsigned long next;
635
636         do {
637                 next = pud_addr_end(addr, end);
638                 alloc_init_section(pud, addr, next, phys, type);
639                 phys += next - addr;
640         } while (pud++, addr = next, addr != end);
641 }
642
643 #ifndef CONFIG_ARM_LPAE
644 static void __init create_36bit_mapping(struct map_desc *md,
645                                         const struct mem_type *type)
646 {
647         unsigned long addr, length, end;
648         phys_addr_t phys;
649         pgd_t *pgd;
650
651         addr = md->virtual;
652         phys = __pfn_to_phys(md->pfn);
653         length = PAGE_ALIGN(md->length);
654
655         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
656                 printk(KERN_ERR "MM: CPU does not support supersection "
657                        "mapping for 0x%08llx at 0x%08lx\n",
658                        (long long)__pfn_to_phys((u64)md->pfn), addr);
659                 return;
660         }
661
662         /* N.B. ARMv6 supersections are only defined to work with domain 0.
663          *      Since domain assignments can in fact be arbitrary, the
664          *      'domain == 0' check below is required to insure that ARMv6
665          *      supersections are only allocated for domain 0 regardless
666          *      of the actual domain assignments in use.
667          */
668         if (type->domain) {
669                 printk(KERN_ERR "MM: invalid domain in supersection "
670                        "mapping for 0x%08llx at 0x%08lx\n",
671                        (long long)__pfn_to_phys((u64)md->pfn), addr);
672                 return;
673         }
674
675         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
676                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
677                        " at 0x%08lx invalid alignment\n",
678                        (long long)__pfn_to_phys((u64)md->pfn), addr);
679                 return;
680         }
681
682         /*
683          * Shift bits [35:32] of address into bits [23:20] of PMD
684          * (See ARMv6 spec).
685          */
686         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
687
688         pgd = pgd_offset_k(addr);
689         end = addr + length;
690         do {
691                 pud_t *pud = pud_offset(pgd, addr);
692                 pmd_t *pmd = pmd_offset(pud, addr);
693                 int i;
694
695                 for (i = 0; i < 16; i++)
696                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
697
698                 addr += SUPERSECTION_SIZE;
699                 phys += SUPERSECTION_SIZE;
700                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
701         } while (addr != end);
702 }
703 #endif  /* !CONFIG_ARM_LPAE */
704
705 /*
706  * Create the page directory entries and any necessary
707  * page tables for the mapping specified by `md'.  We
708  * are able to cope here with varying sizes and address
709  * offsets, and we take full advantage of sections and
710  * supersections.
711  */
712 static void __init create_mapping(struct map_desc *md)
713 {
714         unsigned long addr, length, end;
715         phys_addr_t phys;
716         const struct mem_type *type;
717         pgd_t *pgd;
718
719         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
720                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
721                        " at 0x%08lx in user region\n",
722                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
723                 return;
724         }
725
726         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
727             md->virtual >= PAGE_OFFSET &&
728             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
729                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
730                        " at 0x%08lx out of vmalloc space\n",
731                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
732         }
733
734         type = &mem_types[md->type];
735
736 #ifndef CONFIG_ARM_LPAE
737         /*
738          * Catch 36-bit addresses
739          */
740         if (md->pfn >= 0x100000) {
741                 create_36bit_mapping(md, type);
742                 return;
743         }
744 #endif
745
746         addr = md->virtual & PAGE_MASK;
747         phys = __pfn_to_phys(md->pfn);
748         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
749
750         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
751                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
752                        "be mapped using pages, ignoring.\n",
753                        (long long)__pfn_to_phys(md->pfn), addr);
754                 return;
755         }
756
757         pgd = pgd_offset_k(addr);
758         end = addr + length;
759         do {
760                 unsigned long next = pgd_addr_end(addr, end);
761
762                 alloc_init_pud(pgd, addr, next, phys, type);
763
764                 phys += next - addr;
765                 addr = next;
766         } while (pgd++, addr != end);
767 }
768
769 /*
770  * Create the architecture specific mappings
771  */
772 void __init iotable_init(struct map_desc *io_desc, int nr)
773 {
774         struct map_desc *md;
775         struct vm_struct *vm;
776
777         if (!nr)
778                 return;
779
780         vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
781
782         for (md = io_desc; nr; md++, nr--) {
783                 create_mapping(md);
784                 vm->addr = (void *)(md->virtual & PAGE_MASK);
785                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
786                 vm->phys_addr = __pfn_to_phys(md->pfn); 
787                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; 
788                 vm->flags |= VM_ARM_MTYPE(md->type);
789                 vm->caller = iotable_init;
790                 vm_area_add_early(vm++);
791         }
792 }
793
794 #ifndef CONFIG_ARM_LPAE
795
796 /*
797  * The Linux PMD is made of two consecutive section entries covering 2MB
798  * (see definition in include/asm/pgtable-2level.h).  However a call to
799  * create_mapping() may optimize static mappings by using individual
800  * 1MB section mappings.  This leaves the actual PMD potentially half
801  * initialized if the top or bottom section entry isn't used, leaving it
802  * open to problems if a subsequent ioremap() or vmalloc() tries to use
803  * the virtual space left free by that unused section entry.
804  *
805  * Let's avoid the issue by inserting dummy vm entries covering the unused
806  * PMD halves once the static mappings are in place.
807  */
808
809 static void __init pmd_empty_section_gap(unsigned long addr)
810 {
811         struct vm_struct *vm;
812
813         vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
814         vm->addr = (void *)addr;
815         vm->size = SECTION_SIZE;
816         vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
817         vm->caller = pmd_empty_section_gap;
818         vm_area_add_early(vm);
819 }
820
821 static void __init fill_pmd_gaps(void)
822 {
823         struct vm_struct *vm;
824         unsigned long addr, next = 0;
825         pmd_t *pmd;
826
827         /* we're still single threaded hence no lock needed here */
828         for (vm = vmlist; vm; vm = vm->next) {
829                 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
830                         continue;
831                 addr = (unsigned long)vm->addr;
832                 if (addr < next)
833                         continue;
834
835                 /*
836                  * Check if this vm starts on an odd section boundary.
837                  * If so and the first section entry for this PMD is free
838                  * then we block the corresponding virtual address.
839                  */
840                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
841                         pmd = pmd_off_k(addr);
842                         if (pmd_none(*pmd))
843                                 pmd_empty_section_gap(addr & PMD_MASK);
844                 }
845
846                 /*
847                  * Then check if this vm ends on an odd section boundary.
848                  * If so and the second section entry for this PMD is empty
849                  * then we block the corresponding virtual address.
850                  */
851                 addr += vm->size;
852                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
853                         pmd = pmd_off_k(addr) + 1;
854                         if (pmd_none(*pmd))
855                                 pmd_empty_section_gap(addr);
856                 }
857
858                 /* no need to look at any vm entry until we hit the next PMD */
859                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
860         }
861 }
862
863 #else
864 #define fill_pmd_gaps() do { } while (0)
865 #endif
866
867 static void * __initdata vmalloc_min =
868         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
869
870 /*
871  * vmalloc=size forces the vmalloc area to be exactly 'size'
872  * bytes. This can be used to increase (or decrease) the vmalloc
873  * area - the default is 240m.
874  */
875 static int __init early_vmalloc(char *arg)
876 {
877         unsigned long vmalloc_reserve = memparse(arg, NULL);
878
879         if (vmalloc_reserve < SZ_16M) {
880                 vmalloc_reserve = SZ_16M;
881                 printk(KERN_WARNING
882                         "vmalloc area too small, limiting to %luMB\n",
883                         vmalloc_reserve >> 20);
884         }
885
886         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
887                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
888                 printk(KERN_WARNING
889                         "vmalloc area is too big, limiting to %luMB\n",
890                         vmalloc_reserve >> 20);
891         }
892
893         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
894         return 0;
895 }
896 early_param("vmalloc", early_vmalloc);
897
898 phys_addr_t arm_lowmem_limit __initdata = 0;
899
900 void __init sanity_check_meminfo(void)
901 {
902         int i, j, highmem = 0;
903
904         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
905                 struct membank *bank = &meminfo.bank[j];
906                 *bank = meminfo.bank[i];
907
908                 if (bank->start > ULONG_MAX)
909                         highmem = 1;
910
911 #ifdef CONFIG_HIGHMEM
912                 if (__va(bank->start) >= vmalloc_min ||
913                     __va(bank->start) < (void *)PAGE_OFFSET)
914                         highmem = 1;
915
916                 bank->highmem = highmem;
917
918                 /*
919                  * Split those memory banks which are partially overlapping
920                  * the vmalloc area greatly simplifying things later.
921                  */
922                 if (!highmem && __va(bank->start) < vmalloc_min &&
923                     bank->size > vmalloc_min - __va(bank->start)) {
924                         if (meminfo.nr_banks >= NR_BANKS) {
925                                 printk(KERN_CRIT "NR_BANKS too low, "
926                                                  "ignoring high memory\n");
927                         } else {
928                                 memmove(bank + 1, bank,
929                                         (meminfo.nr_banks - i) * sizeof(*bank));
930                                 meminfo.nr_banks++;
931                                 i++;
932                                 bank[1].size -= vmalloc_min - __va(bank->start);
933                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
934                                 bank[1].highmem = highmem = 1;
935                                 j++;
936                         }
937                         bank->size = vmalloc_min - __va(bank->start);
938                 }
939 #else
940                 bank->highmem = highmem;
941
942                 /*
943                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
944                  */
945                 if (highmem) {
946                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
947                                "(!CONFIG_HIGHMEM).\n",
948                                (unsigned long long)bank->start,
949                                (unsigned long long)bank->start + bank->size - 1);
950                         continue;
951                 }
952
953                 /*
954                  * Check whether this memory bank would entirely overlap
955                  * the vmalloc area.
956                  */
957                 if (__va(bank->start) >= vmalloc_min ||
958                     __va(bank->start) < (void *)PAGE_OFFSET) {
959                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
960                                "(vmalloc region overlap).\n",
961                                (unsigned long long)bank->start,
962                                (unsigned long long)bank->start + bank->size - 1);
963                         continue;
964                 }
965
966                 /*
967                  * Check whether this memory bank would partially overlap
968                  * the vmalloc area.
969                  */
970                 if (__va(bank->start + bank->size) > vmalloc_min ||
971                     __va(bank->start + bank->size) < __va(bank->start)) {
972                         unsigned long newsize = vmalloc_min - __va(bank->start);
973                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
974                                "to -%.8llx (vmalloc region overlap).\n",
975                                (unsigned long long)bank->start,
976                                (unsigned long long)bank->start + bank->size - 1,
977                                (unsigned long long)bank->start + newsize - 1);
978                         bank->size = newsize;
979                 }
980 #endif
981                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
982                         arm_lowmem_limit = bank->start + bank->size;
983
984                 j++;
985         }
986 #ifdef CONFIG_HIGHMEM
987         if (highmem) {
988                 const char *reason = NULL;
989
990                 if (cache_is_vipt_aliasing()) {
991                         /*
992                          * Interactions between kmap and other mappings
993                          * make highmem support with aliasing VIPT caches
994                          * rather difficult.
995                          */
996                         reason = "with VIPT aliasing cache";
997                 }
998                 if (reason) {
999                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1000                                 reason);
1001                         while (j > 0 && meminfo.bank[j - 1].highmem)
1002                                 j--;
1003                 }
1004         }
1005 #endif
1006         meminfo.nr_banks = j;
1007         high_memory = __va(arm_lowmem_limit - 1) + 1;
1008         memblock_set_current_limit(arm_lowmem_limit);
1009 }
1010
1011 static inline void prepare_page_table(void)
1012 {
1013         unsigned long addr;
1014         phys_addr_t end;
1015
1016         /*
1017          * Clear out all the mappings below the kernel image.
1018          */
1019         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1020                 pmd_clear(pmd_off_k(addr));
1021
1022 #ifdef CONFIG_XIP_KERNEL
1023         /* The XIP kernel is mapped in the module area -- skip over it */
1024         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1025 #endif
1026         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1027                 pmd_clear(pmd_off_k(addr));
1028
1029         /*
1030          * Find the end of the first block of lowmem.
1031          */
1032         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1033         if (end >= arm_lowmem_limit)
1034                 end = arm_lowmem_limit;
1035
1036         /*
1037          * Clear out all the kernel space mappings, except for the first
1038          * memory bank, up to the vmalloc region.
1039          */
1040         for (addr = __phys_to_virt(end);
1041              addr < VMALLOC_START; addr += PMD_SIZE)
1042                 pmd_clear(pmd_off_k(addr));
1043 }
1044
1045 #ifdef CONFIG_ARM_LPAE
1046 /* the first page is reserved for pgd */
1047 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1048                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1049 #else
1050 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1051 #endif
1052
1053 /*
1054  * Reserve the special regions of memory
1055  */
1056 void __init arm_mm_memblock_reserve(void)
1057 {
1058         /*
1059          * Reserve the page tables.  These are already in use,
1060          * and can only be in node 0.
1061          */
1062         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1063
1064 #ifdef CONFIG_SA1111
1065         /*
1066          * Because of the SA1111 DMA bug, we want to preserve our
1067          * precious DMA-able memory...
1068          */
1069         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1070 #endif
1071 }
1072
1073 /*
1074  * Set up the device mappings.  Since we clear out the page tables for all
1075  * mappings above VMALLOC_START, we will remove any debug device mappings.
1076  * This means you have to be careful how you debug this function, or any
1077  * called function.  This means you can't use any function or debugging
1078  * method which may touch any device, otherwise the kernel _will_ crash.
1079  */
1080 static void __init devicemaps_init(struct machine_desc *mdesc)
1081 {
1082         struct map_desc map;
1083         unsigned long addr;
1084         void *vectors;
1085
1086         /*
1087          * Allocate the vector page early.
1088          */
1089         vectors = early_alloc(PAGE_SIZE);
1090
1091         early_trap_init(vectors);
1092
1093         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1094                 pmd_clear(pmd_off_k(addr));
1095
1096         /*
1097          * Map the kernel if it is XIP.
1098          * It is always first in the modulearea.
1099          */
1100 #ifdef CONFIG_XIP_KERNEL
1101         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1102         map.virtual = MODULES_VADDR;
1103         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1104         map.type = MT_ROM;
1105         create_mapping(&map);
1106 #endif
1107
1108         /*
1109          * Map the cache flushing regions.
1110          */
1111 #ifdef FLUSH_BASE
1112         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1113         map.virtual = FLUSH_BASE;
1114         map.length = SZ_1M;
1115         map.type = MT_CACHECLEAN;
1116         create_mapping(&map);
1117 #endif
1118 #ifdef FLUSH_BASE_MINICACHE
1119         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1120         map.virtual = FLUSH_BASE_MINICACHE;
1121         map.length = SZ_1M;
1122         map.type = MT_MINICLEAN;
1123         create_mapping(&map);
1124 #endif
1125
1126         /*
1127          * Create a mapping for the machine vectors at the high-vectors
1128          * location (0xffff0000).  If we aren't using high-vectors, also
1129          * create a mapping at the low-vectors virtual address.
1130          */
1131         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1132         map.virtual = 0xffff0000;
1133         map.length = PAGE_SIZE;
1134         map.type = MT_HIGH_VECTORS;
1135         create_mapping(&map);
1136
1137         if (!vectors_high()) {
1138                 map.virtual = 0;
1139                 map.type = MT_LOW_VECTORS;
1140                 create_mapping(&map);
1141         }
1142
1143         /*
1144          * Ask the machine support to map in the statically mapped devices.
1145          */
1146         if (mdesc->map_io)
1147                 mdesc->map_io();
1148         fill_pmd_gaps();
1149
1150         /*
1151          * Finally flush the caches and tlb to ensure that we're in a
1152          * consistent state wrt the writebuffer.  This also ensures that
1153          * any write-allocated cache lines in the vector page are written
1154          * back.  After this point, we can start to touch devices again.
1155          */
1156         local_flush_tlb_all();
1157         flush_cache_all();
1158 }
1159
1160 static void __init kmap_init(void)
1161 {
1162 #ifdef CONFIG_HIGHMEM
1163         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1164                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1165 #endif
1166 }
1167
1168 static void __init map_lowmem(void)
1169 {
1170         struct memblock_region *reg;
1171
1172         /* Map all the lowmem memory banks. */
1173         for_each_memblock(memory, reg) {
1174                 phys_addr_t start = reg->base;
1175                 phys_addr_t end = start + reg->size;
1176                 struct map_desc map;
1177
1178                 if (end > arm_lowmem_limit)
1179                         end = arm_lowmem_limit;
1180                 if (start >= end)
1181                         break;
1182
1183                 map.pfn = __phys_to_pfn(start);
1184                 map.virtual = __phys_to_virt(start);
1185                 map.length = end - start;
1186                 map.type = MT_MEMORY;
1187
1188                 create_mapping(&map);
1189         }
1190 }
1191
1192 /*
1193  * paging_init() sets up the page tables, initialises the zone memory
1194  * maps, and sets up the zero page, bad page and bad page tables.
1195  */
1196 void __init paging_init(struct machine_desc *mdesc)
1197 {
1198         void *zero_page;
1199
1200         memblock_set_current_limit(arm_lowmem_limit);
1201
1202         build_mem_type_table();
1203         prepare_page_table();
1204         map_lowmem();
1205         dma_contiguous_remap();
1206         devicemaps_init(mdesc);
1207         kmap_init();
1208
1209         top_pmd = pmd_off_k(0xffff0000);
1210
1211         /* allocate the zero page. */
1212         zero_page = early_alloc(PAGE_SIZE);
1213
1214         bootmem_init();
1215
1216         empty_zero_page = virt_to_page(zero_page);
1217         __flush_dcache_page(NULL, empty_zero_page);
1218 }