]> Pileus Git - ~andy/linux/blob - arch/arm/mach-omap2/gpmc-onenand.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[~andy/linux] / arch / arm / mach-omap2 / gpmc-onenand.c
1 /*
2  * linux/arch/arm/mach-omap2/gpmc-onenand.c
3  *
4  * Copyright (C) 2006 - 2009 Nokia Corporation
5  * Contacts:    Juha Yrjola
6  *              Tony Lindgren
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/string.h>
14 #include <linux/kernel.h>
15 #include <linux/platform_device.h>
16 #include <linux/mtd/onenand_regs.h>
17 #include <linux/io.h>
18
19 #include <asm/mach/flash.h>
20
21 #include <plat/cpu.h>
22 #include <plat/onenand.h>
23 #include <plat/board.h>
24 #include <plat/gpmc.h>
25
26 static struct omap_onenand_platform_data *gpmc_onenand_data;
27
28 static struct platform_device gpmc_onenand_device = {
29         .name           = "omap2-onenand",
30         .id             = -1,
31 };
32
33 static int omap2_onenand_set_async_mode(int cs, void __iomem *onenand_base)
34 {
35         struct gpmc_timings t;
36         u32 reg;
37         int err;
38
39         const int t_cer = 15;
40         const int t_avdp = 12;
41         const int t_aavdh = 7;
42         const int t_ce = 76;
43         const int t_aa = 76;
44         const int t_oe = 20;
45         const int t_cez = 20; /* max of t_cez, t_oez */
46         const int t_ds = 30;
47         const int t_wpl = 40;
48         const int t_wph = 30;
49
50         /* Ensure sync read and sync write are disabled */
51         reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
52         reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
53         writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
54
55         memset(&t, 0, sizeof(t));
56         t.sync_clk = 0;
57         t.cs_on = 0;
58         t.adv_on = 0;
59
60         /* Read */
61         t.adv_rd_off = gpmc_round_ns_to_ticks(max_t(int, t_avdp, t_cer));
62         t.oe_on  = t.adv_rd_off + gpmc_round_ns_to_ticks(t_aavdh);
63         t.access = t.adv_on + gpmc_round_ns_to_ticks(t_aa);
64         t.access = max_t(int, t.access, t.cs_on + gpmc_round_ns_to_ticks(t_ce));
65         t.access = max_t(int, t.access, t.oe_on + gpmc_round_ns_to_ticks(t_oe));
66         t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
67         t.cs_rd_off = t.oe_off;
68         t.rd_cycle  = t.cs_rd_off + gpmc_round_ns_to_ticks(t_cez);
69
70         /* Write */
71         t.adv_wr_off = t.adv_rd_off;
72         t.we_on  = t.oe_on;
73         if (cpu_is_omap34xx()) {
74                 t.wr_data_mux_bus = t.we_on;
75                 t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
76         }
77         t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
78         t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
79         t.wr_cycle  = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
80
81         /* Configure GPMC for asynchronous read */
82         gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
83                           GPMC_CONFIG1_DEVICESIZE_16 |
84                           GPMC_CONFIG1_MUXADDDATA);
85
86         err = gpmc_cs_set_timings(cs, &t);
87         if (err)
88                 return err;
89
90         /* Ensure sync read and sync write are disabled */
91         reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
92         reg &= ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE;
93         writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
94
95         return 0;
96 }
97
98 static void set_onenand_cfg(void __iomem *onenand_base, int latency,
99                                 int sync_read, int sync_write, int hf, int vhf)
100 {
101         u32 reg;
102
103         reg = readw(onenand_base + ONENAND_REG_SYS_CFG1);
104         reg &= ~((0x7 << ONENAND_SYS_CFG1_BRL_SHIFT) | (0x7 << 9));
105         reg |=  (latency << ONENAND_SYS_CFG1_BRL_SHIFT) |
106                 ONENAND_SYS_CFG1_BL_16;
107         if (sync_read)
108                 reg |= ONENAND_SYS_CFG1_SYNC_READ;
109         else
110                 reg &= ~ONENAND_SYS_CFG1_SYNC_READ;
111         if (sync_write)
112                 reg |= ONENAND_SYS_CFG1_SYNC_WRITE;
113         else
114                 reg &= ~ONENAND_SYS_CFG1_SYNC_WRITE;
115         if (hf)
116                 reg |= ONENAND_SYS_CFG1_HF;
117         else
118                 reg &= ~ONENAND_SYS_CFG1_HF;
119         if (vhf)
120                 reg |= ONENAND_SYS_CFG1_VHF;
121         else
122                 reg &= ~ONENAND_SYS_CFG1_VHF;
123         writew(reg, onenand_base + ONENAND_REG_SYS_CFG1);
124 }
125
126 static int omap2_onenand_get_freq(struct omap_onenand_platform_data *cfg,
127                                   void __iomem *onenand_base, bool *clk_dep)
128 {
129         u16 ver = readw(onenand_base + ONENAND_REG_VERSION_ID);
130         int freq = 0;
131
132         if (cfg->get_freq) {
133                 struct onenand_freq_info fi;
134
135                 fi.maf_id = readw(onenand_base + ONENAND_REG_MANUFACTURER_ID);
136                 fi.dev_id = readw(onenand_base + ONENAND_REG_DEVICE_ID);
137                 fi.ver_id = ver;
138                 freq = cfg->get_freq(&fi, clk_dep);
139                 if (freq)
140                         return freq;
141         }
142
143         switch ((ver >> 4) & 0xf) {
144         case 0:
145                 freq = 40;
146                 break;
147         case 1:
148                 freq = 54;
149                 break;
150         case 2:
151                 freq = 66;
152                 break;
153         case 3:
154                 freq = 83;
155                 break;
156         case 4:
157                 freq = 104;
158                 break;
159         default:
160                 freq = 54;
161                 break;
162         }
163
164         return freq;
165 }
166
167 static int omap2_onenand_set_sync_mode(struct omap_onenand_platform_data *cfg,
168                                         void __iomem *onenand_base,
169                                         int *freq_ptr)
170 {
171         struct gpmc_timings t;
172         const int t_cer  = 15;
173         const int t_avdp = 12;
174         const int t_cez  = 20; /* max of t_cez, t_oez */
175         const int t_ds   = 30;
176         const int t_wpl  = 40;
177         const int t_wph  = 30;
178         int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
179         int tick_ns, div, fclk_offset_ns, fclk_offset, gpmc_clk_ns, latency;
180         int first_time = 0, hf = 0, vhf = 0, sync_read = 0, sync_write = 0;
181         int err, ticks_cez;
182         int cs = cfg->cs, freq = *freq_ptr;
183         u32 reg;
184         bool clk_dep = false;
185
186         if (cfg->flags & ONENAND_SYNC_READ) {
187                 sync_read = 1;
188         } else if (cfg->flags & ONENAND_SYNC_READWRITE) {
189                 sync_read = 1;
190                 sync_write = 1;
191         } else
192                 return omap2_onenand_set_async_mode(cs, onenand_base);
193
194         if (!freq) {
195                 /* Very first call freq is not known */
196                 err = omap2_onenand_set_async_mode(cs, onenand_base);
197                 if (err)
198                         return err;
199                 freq = omap2_onenand_get_freq(cfg, onenand_base, &clk_dep);
200                 first_time = 1;
201         }
202
203         switch (freq) {
204         case 104:
205                 min_gpmc_clk_period = 9600; /* 104 MHz */
206                 t_ces   = 3;
207                 t_avds  = 4;
208                 t_avdh  = 2;
209                 t_ach   = 3;
210                 t_aavdh = 6;
211                 t_rdyo  = 6;
212                 break;
213         case 83:
214                 min_gpmc_clk_period = 12000; /* 83 MHz */
215                 t_ces   = 5;
216                 t_avds  = 4;
217                 t_avdh  = 2;
218                 t_ach   = 6;
219                 t_aavdh = 6;
220                 t_rdyo  = 9;
221                 break;
222         case 66:
223                 min_gpmc_clk_period = 15000; /* 66 MHz */
224                 t_ces   = 6;
225                 t_avds  = 5;
226                 t_avdh  = 2;
227                 t_ach   = 6;
228                 t_aavdh = 6;
229                 t_rdyo  = 11;
230                 break;
231         default:
232                 min_gpmc_clk_period = 18500; /* 54 MHz */
233                 t_ces   = 7;
234                 t_avds  = 7;
235                 t_avdh  = 7;
236                 t_ach   = 9;
237                 t_aavdh = 7;
238                 t_rdyo  = 15;
239                 sync_write = 0;
240                 break;
241         }
242
243         tick_ns = gpmc_ticks_to_ns(1);
244         div = gpmc_cs_calc_divider(cs, min_gpmc_clk_period);
245         gpmc_clk_ns = gpmc_ticks_to_ns(div);
246         if (gpmc_clk_ns < 15) /* >66Mhz */
247                 hf = 1;
248         if (gpmc_clk_ns < 12) /* >83Mhz */
249                 vhf = 1;
250         if (vhf)
251                 latency = 8;
252         else if (hf)
253                 latency = 6;
254         else if (gpmc_clk_ns >= 25) /* 40 MHz*/
255                 latency = 3;
256         else
257                 latency = 4;
258
259         if (clk_dep) {
260                 if (gpmc_clk_ns < 12) { /* >83Mhz */
261                         t_ces   = 3;
262                         t_avds  = 4;
263                 } else if (gpmc_clk_ns < 15) { /* >66Mhz */
264                         t_ces   = 5;
265                         t_avds  = 4;
266                 } else if (gpmc_clk_ns < 25) { /* >40Mhz */
267                         t_ces   = 6;
268                         t_avds  = 5;
269                 } else {
270                         t_ces   = 7;
271                         t_avds  = 7;
272                 }
273         }
274
275         if (first_time)
276                 set_onenand_cfg(onenand_base, latency,
277                                         sync_read, sync_write, hf, vhf);
278
279         if (div == 1) {
280                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
281                 reg |= (1 << 7);
282                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
283                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
284                 reg |= (1 << 7);
285                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
286                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
287                 reg |= (1 << 7);
288                 reg |= (1 << 23);
289                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
290         } else {
291                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG2);
292                 reg &= ~(1 << 7);
293                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG2, reg);
294                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG3);
295                 reg &= ~(1 << 7);
296                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG3, reg);
297                 reg = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG4);
298                 reg &= ~(1 << 7);
299                 reg &= ~(1 << 23);
300                 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG4, reg);
301         }
302
303         /* Set synchronous read timings */
304         memset(&t, 0, sizeof(t));
305         t.sync_clk = min_gpmc_clk_period;
306         t.cs_on = 0;
307         t.adv_on = 0;
308         fclk_offset_ns = gpmc_round_ns_to_ticks(max_t(int, t_ces, t_avds));
309         fclk_offset = gpmc_ns_to_ticks(fclk_offset_ns);
310         t.page_burst_access = gpmc_clk_ns;
311
312         /* Read */
313         t.adv_rd_off = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_avdh));
314         t.oe_on = gpmc_ticks_to_ns(fclk_offset + gpmc_ns_to_ticks(t_ach));
315         /* Force at least 1 clk between AVD High to OE Low */
316         if (t.oe_on <= t.adv_rd_off)
317                 t.oe_on = t.adv_rd_off + gpmc_round_ns_to_ticks(1);
318         t.access = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div);
319         t.oe_off = t.access + gpmc_round_ns_to_ticks(1);
320         t.cs_rd_off = t.oe_off;
321         ticks_cez = ((gpmc_ns_to_ticks(t_cez) + div - 1) / div) * div;
322         t.rd_cycle = gpmc_ticks_to_ns(fclk_offset + (latency + 1) * div +
323                      ticks_cez);
324
325         /* Write */
326         if (sync_write) {
327                 t.adv_wr_off = t.adv_rd_off;
328                 t.we_on  = 0;
329                 t.we_off = t.cs_rd_off;
330                 t.cs_wr_off = t.cs_rd_off;
331                 t.wr_cycle  = t.rd_cycle;
332                 if (cpu_is_omap34xx()) {
333                         t.wr_data_mux_bus = gpmc_ticks_to_ns(fclk_offset +
334                                         gpmc_ps_to_ticks(min_gpmc_clk_period +
335                                         t_rdyo * 1000));
336                         t.wr_access = t.access;
337                 }
338         } else {
339                 t.adv_wr_off = gpmc_round_ns_to_ticks(max_t(int,
340                                                         t_avdp, t_cer));
341                 t.we_on  = t.adv_wr_off + gpmc_round_ns_to_ticks(t_aavdh);
342                 t.we_off = t.we_on + gpmc_round_ns_to_ticks(t_wpl);
343                 t.cs_wr_off = t.we_off + gpmc_round_ns_to_ticks(t_wph);
344                 t.wr_cycle  = t.cs_wr_off + gpmc_round_ns_to_ticks(t_cez);
345                 if (cpu_is_omap34xx()) {
346                         t.wr_data_mux_bus = t.we_on;
347                         t.wr_access = t.we_on + gpmc_round_ns_to_ticks(t_ds);
348                 }
349         }
350
351         /* Configure GPMC for synchronous read */
352         gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1,
353                           GPMC_CONFIG1_WRAPBURST_SUPP |
354                           GPMC_CONFIG1_READMULTIPLE_SUPP |
355                           (sync_read ? GPMC_CONFIG1_READTYPE_SYNC : 0) |
356                           (sync_write ? GPMC_CONFIG1_WRITEMULTIPLE_SUPP : 0) |
357                           (sync_write ? GPMC_CONFIG1_WRITETYPE_SYNC : 0) |
358                           GPMC_CONFIG1_CLKACTIVATIONTIME(fclk_offset) |
359                           GPMC_CONFIG1_PAGE_LEN(2) |
360                           (cpu_is_omap34xx() ? 0 :
361                                 (GPMC_CONFIG1_WAIT_READ_MON |
362                                  GPMC_CONFIG1_WAIT_PIN_SEL(0))) |
363                           GPMC_CONFIG1_DEVICESIZE_16 |
364                           GPMC_CONFIG1_DEVICETYPE_NOR |
365                           GPMC_CONFIG1_MUXADDDATA);
366
367         err = gpmc_cs_set_timings(cs, &t);
368         if (err)
369                 return err;
370
371         set_onenand_cfg(onenand_base, latency, sync_read, sync_write, hf, vhf);
372
373         *freq_ptr = freq;
374
375         return 0;
376 }
377
378 static int gpmc_onenand_setup(void __iomem *onenand_base, int *freq_ptr)
379 {
380         struct device *dev = &gpmc_onenand_device.dev;
381
382         /* Set sync timings in GPMC */
383         if (omap2_onenand_set_sync_mode(gpmc_onenand_data, onenand_base,
384                         freq_ptr) < 0) {
385                 dev_err(dev, "Unable to set synchronous mode\n");
386                 return -EINVAL;
387         }
388
389         return 0;
390 }
391
392 void __init gpmc_onenand_init(struct omap_onenand_platform_data *_onenand_data)
393 {
394         gpmc_onenand_data = _onenand_data;
395         gpmc_onenand_data->onenand_setup = gpmc_onenand_setup;
396         gpmc_onenand_device.dev.platform_data = gpmc_onenand_data;
397
398         if (cpu_is_omap24xx() &&
399                         (gpmc_onenand_data->flags & ONENAND_SYNC_READWRITE)) {
400                 printk(KERN_ERR "Onenand using only SYNC_READ on 24xx\n");
401                 gpmc_onenand_data->flags &= ~ONENAND_SYNC_READWRITE;
402                 gpmc_onenand_data->flags |= ONENAND_SYNC_READ;
403         }
404
405         if (platform_device_register(&gpmc_onenand_device) < 0) {
406                 printk(KERN_ERR "Unable to register OneNAND device\n");
407                 return;
408         }
409 }