]> Pileus Git - ~andy/linux/blob - arch/arm/mach-exynos/mct.c
Merge tag 'ktest-v3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[~andy/linux] / arch / arm / mach-exynos / mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22 #include <linux/of.h>
23
24 #include <asm/arch_timer.h>
25 #include <asm/localtimer.h>
26
27 #include <plat/cpu.h>
28
29 #include <mach/map.h>
30 #include <mach/irqs.h>
31 #include <mach/regs-mct.h>
32 #include <asm/mach/time.h>
33
34 #define TICK_BASE_CNT   1
35
36 enum {
37         MCT_INT_SPI,
38         MCT_INT_PPI
39 };
40
41 static unsigned long clk_rate;
42 static unsigned int mct_int_type;
43
44 struct mct_clock_event_device {
45         struct clock_event_device *evt;
46         void __iomem *base;
47         char name[10];
48 };
49
50 static void exynos4_mct_write(unsigned int value, void *addr)
51 {
52         void __iomem *stat_addr;
53         u32 mask;
54         u32 i;
55
56         __raw_writel(value, addr);
57
58         if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
59                 u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
60                 switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
61                 case (u32) MCT_L_TCON_OFFSET:
62                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
63                         mask = 1 << 3;          /* L_TCON write status */
64                         break;
65                 case (u32) MCT_L_ICNTB_OFFSET:
66                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
67                         mask = 1 << 1;          /* L_ICNTB write status */
68                         break;
69                 case (u32) MCT_L_TCNTB_OFFSET:
70                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
71                         mask = 1 << 0;          /* L_TCNTB write status */
72                         break;
73                 default:
74                         return;
75                 }
76         } else {
77                 switch ((u32) addr) {
78                 case (u32) EXYNOS4_MCT_G_TCON:
79                         stat_addr = EXYNOS4_MCT_G_WSTAT;
80                         mask = 1 << 16;         /* G_TCON write status */
81                         break;
82                 case (u32) EXYNOS4_MCT_G_COMP0_L:
83                         stat_addr = EXYNOS4_MCT_G_WSTAT;
84                         mask = 1 << 0;          /* G_COMP0_L write status */
85                         break;
86                 case (u32) EXYNOS4_MCT_G_COMP0_U:
87                         stat_addr = EXYNOS4_MCT_G_WSTAT;
88                         mask = 1 << 1;          /* G_COMP0_U write status */
89                         break;
90                 case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
91                         stat_addr = EXYNOS4_MCT_G_WSTAT;
92                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
93                         break;
94                 case (u32) EXYNOS4_MCT_G_CNT_L:
95                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
96                         mask = 1 << 0;          /* G_CNT_L write status */
97                         break;
98                 case (u32) EXYNOS4_MCT_G_CNT_U:
99                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
100                         mask = 1 << 1;          /* G_CNT_U write status */
101                         break;
102                 default:
103                         return;
104                 }
105         }
106
107         /* Wait maximum 1 ms until written values are applied */
108         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
109                 if (__raw_readl(stat_addr) & mask) {
110                         __raw_writel(mask, stat_addr);
111                         return;
112                 }
113
114         panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
115 }
116
117 /* Clocksource handling */
118 static void exynos4_mct_frc_start(u32 hi, u32 lo)
119 {
120         u32 reg;
121
122         exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
123         exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
124
125         reg = __raw_readl(EXYNOS4_MCT_G_TCON);
126         reg |= MCT_G_TCON_START;
127         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
128 }
129
130 static cycle_t exynos4_frc_read(struct clocksource *cs)
131 {
132         unsigned int lo, hi;
133         u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
134
135         do {
136                 hi = hi2;
137                 lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
138                 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
139         } while (hi != hi2);
140
141         return ((cycle_t)hi << 32) | lo;
142 }
143
144 static void exynos4_frc_resume(struct clocksource *cs)
145 {
146         exynos4_mct_frc_start(0, 0);
147 }
148
149 struct clocksource mct_frc = {
150         .name           = "mct-frc",
151         .rating         = 400,
152         .read           = exynos4_frc_read,
153         .mask           = CLOCKSOURCE_MASK(64),
154         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
155         .resume         = exynos4_frc_resume,
156 };
157
158 static void __init exynos4_clocksource_init(void)
159 {
160         exynos4_mct_frc_start(0, 0);
161
162         if (clocksource_register_hz(&mct_frc, clk_rate))
163                 panic("%s: can't register clocksource\n", mct_frc.name);
164 }
165
166 static void exynos4_mct_comp0_stop(void)
167 {
168         unsigned int tcon;
169
170         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
171         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
172
173         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
174         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
175 }
176
177 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
178                                     unsigned long cycles)
179 {
180         unsigned int tcon;
181         cycle_t comp_cycle;
182
183         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
184
185         if (mode == CLOCK_EVT_MODE_PERIODIC) {
186                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
187                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
188         }
189
190         comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
191         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
192         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
193
194         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
195
196         tcon |= MCT_G_TCON_COMP0_ENABLE;
197         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
198 }
199
200 static int exynos4_comp_set_next_event(unsigned long cycles,
201                                        struct clock_event_device *evt)
202 {
203         exynos4_mct_comp0_start(evt->mode, cycles);
204
205         return 0;
206 }
207
208 static void exynos4_comp_set_mode(enum clock_event_mode mode,
209                                   struct clock_event_device *evt)
210 {
211         unsigned long cycles_per_jiffy;
212         exynos4_mct_comp0_stop();
213
214         switch (mode) {
215         case CLOCK_EVT_MODE_PERIODIC:
216                 cycles_per_jiffy =
217                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
218                 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
219                 break;
220
221         case CLOCK_EVT_MODE_ONESHOT:
222         case CLOCK_EVT_MODE_UNUSED:
223         case CLOCK_EVT_MODE_SHUTDOWN:
224         case CLOCK_EVT_MODE_RESUME:
225                 break;
226         }
227 }
228
229 static struct clock_event_device mct_comp_device = {
230         .name           = "mct-comp",
231         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
232         .rating         = 250,
233         .set_next_event = exynos4_comp_set_next_event,
234         .set_mode       = exynos4_comp_set_mode,
235 };
236
237 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
238 {
239         struct clock_event_device *evt = dev_id;
240
241         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
242
243         evt->event_handler(evt);
244
245         return IRQ_HANDLED;
246 }
247
248 static struct irqaction mct_comp_event_irq = {
249         .name           = "mct_comp_irq",
250         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
251         .handler        = exynos4_mct_comp_isr,
252         .dev_id         = &mct_comp_device,
253 };
254
255 static void exynos4_clockevent_init(void)
256 {
257         mct_comp_device.cpumask = cpumask_of(0);
258         clockevents_config_and_register(&mct_comp_device, clk_rate,
259                                         0xf, 0xffffffff);
260
261         if (soc_is_exynos5250())
262                 setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
263         else
264                 setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
265 }
266
267 #ifdef CONFIG_LOCAL_TIMERS
268
269 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
270
271 /* Clock event handling */
272 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
273 {
274         unsigned long tmp;
275         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
276         void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
277
278         tmp = __raw_readl(addr);
279         if (tmp & mask) {
280                 tmp &= ~mask;
281                 exynos4_mct_write(tmp, addr);
282         }
283 }
284
285 static void exynos4_mct_tick_start(unsigned long cycles,
286                                    struct mct_clock_event_device *mevt)
287 {
288         unsigned long tmp;
289
290         exynos4_mct_tick_stop(mevt);
291
292         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
293
294         /* update interrupt count buffer */
295         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
296
297         /* enable MCT tick interrupt */
298         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
299
300         tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
301         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
302                MCT_L_TCON_INTERVAL_MODE;
303         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
304 }
305
306 static int exynos4_tick_set_next_event(unsigned long cycles,
307                                        struct clock_event_device *evt)
308 {
309         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
310
311         exynos4_mct_tick_start(cycles, mevt);
312
313         return 0;
314 }
315
316 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
317                                          struct clock_event_device *evt)
318 {
319         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
320         unsigned long cycles_per_jiffy;
321
322         exynos4_mct_tick_stop(mevt);
323
324         switch (mode) {
325         case CLOCK_EVT_MODE_PERIODIC:
326                 cycles_per_jiffy =
327                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
328                 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
329                 break;
330
331         case CLOCK_EVT_MODE_ONESHOT:
332         case CLOCK_EVT_MODE_UNUSED:
333         case CLOCK_EVT_MODE_SHUTDOWN:
334         case CLOCK_EVT_MODE_RESUME:
335                 break;
336         }
337 }
338
339 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
340 {
341         struct clock_event_device *evt = mevt->evt;
342
343         /*
344          * This is for supporting oneshot mode.
345          * Mct would generate interrupt periodically
346          * without explicit stopping.
347          */
348         if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
349                 exynos4_mct_tick_stop(mevt);
350
351         /* Clear the MCT tick interrupt */
352         if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
353                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
354                 return 1;
355         } else {
356                 return 0;
357         }
358 }
359
360 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
361 {
362         struct mct_clock_event_device *mevt = dev_id;
363         struct clock_event_device *evt = mevt->evt;
364
365         exynos4_mct_tick_clear(mevt);
366
367         evt->event_handler(evt);
368
369         return IRQ_HANDLED;
370 }
371
372 static struct irqaction mct_tick0_event_irq = {
373         .name           = "mct_tick0_irq",
374         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
375         .handler        = exynos4_mct_tick_isr,
376 };
377
378 static struct irqaction mct_tick1_event_irq = {
379         .name           = "mct_tick1_irq",
380         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
381         .handler        = exynos4_mct_tick_isr,
382 };
383
384 static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
385 {
386         struct mct_clock_event_device *mevt;
387         unsigned int cpu = smp_processor_id();
388         int mct_lx_irq;
389
390         mevt = this_cpu_ptr(&percpu_mct_tick);
391         mevt->evt = evt;
392
393         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
394         sprintf(mevt->name, "mct_tick%d", cpu);
395
396         evt->name = mevt->name;
397         evt->cpumask = cpumask_of(cpu);
398         evt->set_next_event = exynos4_tick_set_next_event;
399         evt->set_mode = exynos4_tick_set_mode;
400         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
401         evt->rating = 450;
402         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
403                                         0xf, 0x7fffffff);
404
405         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
406
407         if (mct_int_type == MCT_INT_SPI) {
408                 if (cpu == 0) {
409                         mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0 :
410                                                 EXYNOS5_IRQ_MCT_L0;
411                         mct_tick0_event_irq.dev_id = mevt;
412                         evt->irq = mct_lx_irq;
413                         setup_irq(mct_lx_irq, &mct_tick0_event_irq);
414                 } else {
415                         mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1 :
416                                                 EXYNOS5_IRQ_MCT_L1;
417                         mct_tick1_event_irq.dev_id = mevt;
418                         evt->irq = mct_lx_irq;
419                         setup_irq(mct_lx_irq, &mct_tick1_event_irq);
420                         irq_set_affinity(mct_lx_irq, cpumask_of(1));
421                 }
422         } else {
423                 enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
424         }
425
426         return 0;
427 }
428
429 static void exynos4_local_timer_stop(struct clock_event_device *evt)
430 {
431         unsigned int cpu = smp_processor_id();
432         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
433         if (mct_int_type == MCT_INT_SPI)
434                 if (cpu == 0)
435                         remove_irq(evt->irq, &mct_tick0_event_irq);
436                 else
437                         remove_irq(evt->irq, &mct_tick1_event_irq);
438         else
439                 disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
440 }
441
442 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
443         .setup  = exynos4_local_timer_setup,
444         .stop   = exynos4_local_timer_stop,
445 };
446 #endif /* CONFIG_LOCAL_TIMERS */
447
448 static void __init exynos4_timer_resources(void)
449 {
450         struct clk *mct_clk;
451         mct_clk = clk_get(NULL, "xtal");
452
453         clk_rate = clk_get_rate(mct_clk);
454
455 #ifdef CONFIG_LOCAL_TIMERS
456         if (mct_int_type == MCT_INT_PPI) {
457                 int err;
458
459                 err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
460                                          exynos4_mct_tick_isr, "MCT",
461                                          &percpu_mct_tick);
462                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
463                      EXYNOS_IRQ_MCT_LOCALTIMER, err);
464         }
465
466         local_timer_register(&exynos4_mct_tick_ops);
467 #endif /* CONFIG_LOCAL_TIMERS */
468 }
469
470 void __init exynos4_timer_init(void)
471 {
472         if (soc_is_exynos5440()) {
473                 arch_timer_of_register();
474                 return;
475         }
476
477         if ((soc_is_exynos4210()) || (soc_is_exynos5250()))
478                 mct_int_type = MCT_INT_SPI;
479         else
480                 mct_int_type = MCT_INT_PPI;
481
482         exynos4_timer_resources();
483         exynos4_clocksource_init();
484         exynos4_clockevent_init();
485 }