]> Pileus Git - ~andy/linux/blob - arch/arm/kernel/smp.c
Merge branch 'drm-next-3.9' of git://people.freedesktop.org/~agd5f/linux into drm...
[~andy/linux] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48
49 /*
50  * as from 2.5, kernels no longer have an init_tasks structure
51  * so we need some other way of telling a new secondary core
52  * where to place its SVC stack
53  */
54 struct secondary_data secondary_data;
55
56 /*
57  * control for which core is the next to come out of the secondary
58  * boot "holding pen"
59  */
60 volatile int __cpuinitdata pen_release = -1;
61
62 enum ipi_msg_type {
63         IPI_WAKEUP,
64         IPI_TIMER,
65         IPI_RESCHEDULE,
66         IPI_CALL_FUNC,
67         IPI_CALL_FUNC_SINGLE,
68         IPI_CPU_STOP,
69 };
70
71 static DECLARE_COMPLETION(cpu_running);
72
73 static struct smp_operations smp_ops;
74
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77         if (ops)
78                 smp_ops = *ops;
79 };
80
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83         int ret;
84
85         /*
86          * We need to tell the secondary core where to find
87          * its stack and the page tables.
88          */
89         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90         secondary_data.pgdir = virt_to_phys(idmap_pgd);
91         secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
92         __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
93         outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
94
95         /*
96          * Now bring the CPU into our world.
97          */
98         ret = boot_secondary(cpu, idle);
99         if (ret == 0) {
100                 /*
101                  * CPU was successfully started, wait for it
102                  * to come online or time out.
103                  */
104                 wait_for_completion_timeout(&cpu_running,
105                                                  msecs_to_jiffies(1000));
106
107                 if (!cpu_online(cpu)) {
108                         pr_crit("CPU%u: failed to come online\n", cpu);
109                         ret = -EIO;
110                 }
111         } else {
112                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113         }
114
115         secondary_data.stack = NULL;
116         secondary_data.pgdir = 0;
117
118         return ret;
119 }
120
121 /* platform specific SMP operations */
122 void __init smp_init_cpus(void)
123 {
124         if (smp_ops.smp_init_cpus)
125                 smp_ops.smp_init_cpus();
126 }
127
128 static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
129 {
130         if (smp_ops.smp_prepare_cpus)
131                 smp_ops.smp_prepare_cpus(max_cpus);
132 }
133
134 static void __cpuinit platform_secondary_init(unsigned int cpu)
135 {
136         if (smp_ops.smp_secondary_init)
137                 smp_ops.smp_secondary_init(cpu);
138 }
139
140 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
141 {
142         if (smp_ops.smp_boot_secondary)
143                 return smp_ops.smp_boot_secondary(cpu, idle);
144         return -ENOSYS;
145 }
146
147 #ifdef CONFIG_HOTPLUG_CPU
148 static void percpu_timer_stop(void);
149
150 static int platform_cpu_kill(unsigned int cpu)
151 {
152         if (smp_ops.cpu_kill)
153                 return smp_ops.cpu_kill(cpu);
154         return 1;
155 }
156
157 static void platform_cpu_die(unsigned int cpu)
158 {
159         if (smp_ops.cpu_die)
160                 smp_ops.cpu_die(cpu);
161 }
162
163 static int platform_cpu_disable(unsigned int cpu)
164 {
165         if (smp_ops.cpu_disable)
166                 return smp_ops.cpu_disable(cpu);
167
168         /*
169          * By default, allow disabling all CPUs except the first one,
170          * since this is special on a lot of platforms, e.g. because
171          * of clock tick interrupts.
172          */
173         return cpu == 0 ? -EPERM : 0;
174 }
175 /*
176  * __cpu_disable runs on the processor to be shutdown.
177  */
178 int __cpuinit __cpu_disable(void)
179 {
180         unsigned int cpu = smp_processor_id();
181         int ret;
182
183         ret = platform_cpu_disable(cpu);
184         if (ret)
185                 return ret;
186
187         /*
188          * Take this CPU offline.  Once we clear this, we can't return,
189          * and we must not schedule until we're ready to give up the cpu.
190          */
191         set_cpu_online(cpu, false);
192
193         /*
194          * OK - migrate IRQs away from this CPU
195          */
196         migrate_irqs();
197
198         /*
199          * Stop the local timer for this CPU.
200          */
201         percpu_timer_stop();
202
203         /*
204          * Flush user cache and TLB mappings, and then remove this CPU
205          * from the vm mask set of all processes.
206          *
207          * Caches are flushed to the Level of Unification Inner Shareable
208          * to write-back dirty lines to unified caches shared by all CPUs.
209          */
210         flush_cache_louis();
211         local_flush_tlb_all();
212
213         clear_tasks_mm_cpumask(cpu);
214
215         return 0;
216 }
217
218 static DECLARE_COMPLETION(cpu_died);
219
220 /*
221  * called on the thread which is asking for a CPU to be shutdown -
222  * waits until shutdown has completed, or it is timed out.
223  */
224 void __cpuinit __cpu_die(unsigned int cpu)
225 {
226         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
227                 pr_err("CPU%u: cpu didn't die\n", cpu);
228                 return;
229         }
230         printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
231
232         if (!platform_cpu_kill(cpu))
233                 printk("CPU%u: unable to kill\n", cpu);
234 }
235
236 /*
237  * Called from the idle thread for the CPU which has been shutdown.
238  *
239  * Note that we disable IRQs here, but do not re-enable them
240  * before returning to the caller. This is also the behaviour
241  * of the other hotplug-cpu capable cores, so presumably coming
242  * out of idle fixes this.
243  */
244 void __ref cpu_die(void)
245 {
246         unsigned int cpu = smp_processor_id();
247
248         idle_task_exit();
249
250         local_irq_disable();
251         mb();
252
253         /* Tell __cpu_die() that this CPU is now safe to dispose of */
254         RCU_NONIDLE(complete(&cpu_died));
255
256         /*
257          * actual CPU shutdown procedure is at least platform (if not
258          * CPU) specific.
259          */
260         platform_cpu_die(cpu);
261
262         /*
263          * Do not return to the idle loop - jump back to the secondary
264          * cpu initialisation.  There's some initialisation which needs
265          * to be repeated to undo the effects of taking the CPU offline.
266          */
267         __asm__("mov    sp, %0\n"
268         "       mov     fp, #0\n"
269         "       b       secondary_start_kernel"
270                 :
271                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
272 }
273 #endif /* CONFIG_HOTPLUG_CPU */
274
275 /*
276  * Called by both boot and secondaries to move global data into
277  * per-processor storage.
278  */
279 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
280 {
281         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
282
283         cpu_info->loops_per_jiffy = loops_per_jiffy;
284         cpu_info->cpuid = read_cpuid_id();
285
286         store_cpu_topology(cpuid);
287 }
288
289 static void percpu_timer_setup(void);
290
291 /*
292  * This is the secondary CPU boot entry.  We're using this CPUs
293  * idle thread stack, but a set of temporary page tables.
294  */
295 asmlinkage void __cpuinit secondary_start_kernel(void)
296 {
297         struct mm_struct *mm = &init_mm;
298         unsigned int cpu;
299
300         /*
301          * The identity mapping is uncached (strongly ordered), so
302          * switch away from it before attempting any exclusive accesses.
303          */
304         cpu_switch_mm(mm->pgd, mm);
305         enter_lazy_tlb(mm, current);
306         local_flush_tlb_all();
307
308         /*
309          * All kernel threads share the same mm context; grab a
310          * reference and switch to it.
311          */
312         cpu = smp_processor_id();
313         atomic_inc(&mm->mm_count);
314         current->active_mm = mm;
315         cpumask_set_cpu(cpu, mm_cpumask(mm));
316
317         cpu_init();
318
319         printk("CPU%u: Booted secondary processor\n", cpu);
320
321         preempt_disable();
322         trace_hardirqs_off();
323
324         /*
325          * Give the platform a chance to do its own initialisation.
326          */
327         platform_secondary_init(cpu);
328
329         notify_cpu_starting(cpu);
330
331         calibrate_delay();
332
333         smp_store_cpu_info(cpu);
334
335         /*
336          * OK, now it's safe to let the boot CPU continue.  Wait for
337          * the CPU migration code to notice that the CPU is online
338          * before we continue - which happens after __cpu_up returns.
339          */
340         set_cpu_online(cpu, true);
341         complete(&cpu_running);
342
343         /*
344          * Setup the percpu timer for this CPU.
345          */
346         percpu_timer_setup();
347
348         local_irq_enable();
349         local_fiq_enable();
350
351         /*
352          * OK, it's off to the idle thread for us
353          */
354         cpu_idle();
355 }
356
357 void __init smp_cpus_done(unsigned int max_cpus)
358 {
359         int cpu;
360         unsigned long bogosum = 0;
361
362         for_each_online_cpu(cpu)
363                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
364
365         printk(KERN_INFO "SMP: Total of %d processors activated "
366                "(%lu.%02lu BogoMIPS).\n",
367                num_online_cpus(),
368                bogosum / (500000/HZ),
369                (bogosum / (5000/HZ)) % 100);
370
371         hyp_mode_check();
372 }
373
374 void __init smp_prepare_boot_cpu(void)
375 {
376         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
377 }
378
379 void __init smp_prepare_cpus(unsigned int max_cpus)
380 {
381         unsigned int ncores = num_possible_cpus();
382
383         init_cpu_topology();
384
385         smp_store_cpu_info(smp_processor_id());
386
387         /*
388          * are we trying to boot more cores than exist?
389          */
390         if (max_cpus > ncores)
391                 max_cpus = ncores;
392         if (ncores > 1 && max_cpus) {
393                 /*
394                  * Enable the local timer or broadcast device for the
395                  * boot CPU, but only if we have more than one CPU.
396                  */
397                 percpu_timer_setup();
398
399                 /*
400                  * Initialise the present map, which describes the set of CPUs
401                  * actually populated at the present time. A platform should
402                  * re-initialize the map in platform_smp_prepare_cpus() if
403                  * present != possible (e.g. physical hotplug).
404                  */
405                 init_cpu_present(cpu_possible_mask);
406
407                 /*
408                  * Initialise the SCU if there are more than one CPU
409                  * and let them know where to start.
410                  */
411                 platform_smp_prepare_cpus(max_cpus);
412         }
413 }
414
415 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
416
417 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
418 {
419         smp_cross_call = fn;
420 }
421
422 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
423 {
424         smp_cross_call(mask, IPI_CALL_FUNC);
425 }
426
427 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
428 {
429         smp_cross_call(mask, IPI_WAKEUP);
430 }
431
432 void arch_send_call_function_single_ipi(int cpu)
433 {
434         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
435 }
436
437 static const char *ipi_types[NR_IPI] = {
438 #define S(x,s)  [x] = s
439         S(IPI_WAKEUP, "CPU wakeup interrupts"),
440         S(IPI_TIMER, "Timer broadcast interrupts"),
441         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
442         S(IPI_CALL_FUNC, "Function call interrupts"),
443         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
444         S(IPI_CPU_STOP, "CPU stop interrupts"),
445 };
446
447 void show_ipi_list(struct seq_file *p, int prec)
448 {
449         unsigned int cpu, i;
450
451         for (i = 0; i < NR_IPI; i++) {
452                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
453
454                 for_each_online_cpu(cpu)
455                         seq_printf(p, "%10u ",
456                                    __get_irq_stat(cpu, ipi_irqs[i]));
457
458                 seq_printf(p, " %s\n", ipi_types[i]);
459         }
460 }
461
462 u64 smp_irq_stat_cpu(unsigned int cpu)
463 {
464         u64 sum = 0;
465         int i;
466
467         for (i = 0; i < NR_IPI; i++)
468                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
469
470         return sum;
471 }
472
473 /*
474  * Timer (local or broadcast) support
475  */
476 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
477
478 static void ipi_timer(void)
479 {
480         struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
481         evt->event_handler(evt);
482 }
483
484 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
485 static void smp_timer_broadcast(const struct cpumask *mask)
486 {
487         smp_cross_call(mask, IPI_TIMER);
488 }
489 #else
490 #define smp_timer_broadcast     NULL
491 #endif
492
493 static void broadcast_timer_set_mode(enum clock_event_mode mode,
494         struct clock_event_device *evt)
495 {
496 }
497
498 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
499 {
500         evt->name       = "dummy_timer";
501         evt->features   = CLOCK_EVT_FEAT_ONESHOT |
502                           CLOCK_EVT_FEAT_PERIODIC |
503                           CLOCK_EVT_FEAT_DUMMY;
504         evt->rating     = 400;
505         evt->mult       = 1;
506         evt->set_mode   = broadcast_timer_set_mode;
507
508         clockevents_register_device(evt);
509 }
510
511 static struct local_timer_ops *lt_ops;
512
513 #ifdef CONFIG_LOCAL_TIMERS
514 int local_timer_register(struct local_timer_ops *ops)
515 {
516         if (!is_smp() || !setup_max_cpus)
517                 return -ENXIO;
518
519         if (lt_ops)
520                 return -EBUSY;
521
522         lt_ops = ops;
523         return 0;
524 }
525 #endif
526
527 static void __cpuinit percpu_timer_setup(void)
528 {
529         unsigned int cpu = smp_processor_id();
530         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
531
532         evt->cpumask = cpumask_of(cpu);
533         evt->broadcast = smp_timer_broadcast;
534
535         if (!lt_ops || lt_ops->setup(evt))
536                 broadcast_timer_setup(evt);
537 }
538
539 #ifdef CONFIG_HOTPLUG_CPU
540 /*
541  * The generic clock events code purposely does not stop the local timer
542  * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
543  * manually here.
544  */
545 static void percpu_timer_stop(void)
546 {
547         unsigned int cpu = smp_processor_id();
548         struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
549
550         if (lt_ops)
551                 lt_ops->stop(evt);
552 }
553 #endif
554
555 static DEFINE_RAW_SPINLOCK(stop_lock);
556
557 /*
558  * ipi_cpu_stop - handle IPI from smp_send_stop()
559  */
560 static void ipi_cpu_stop(unsigned int cpu)
561 {
562         if (system_state == SYSTEM_BOOTING ||
563             system_state == SYSTEM_RUNNING) {
564                 raw_spin_lock(&stop_lock);
565                 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
566                 dump_stack();
567                 raw_spin_unlock(&stop_lock);
568         }
569
570         set_cpu_online(cpu, false);
571
572         local_fiq_disable();
573         local_irq_disable();
574
575         while (1)
576                 cpu_relax();
577 }
578
579 /*
580  * Main handler for inter-processor interrupts
581  */
582 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
583 {
584         handle_IPI(ipinr, regs);
585 }
586
587 void handle_IPI(int ipinr, struct pt_regs *regs)
588 {
589         unsigned int cpu = smp_processor_id();
590         struct pt_regs *old_regs = set_irq_regs(regs);
591
592         if (ipinr < NR_IPI)
593                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
594
595         switch (ipinr) {
596         case IPI_WAKEUP:
597                 break;
598
599         case IPI_TIMER:
600                 irq_enter();
601                 ipi_timer();
602                 irq_exit();
603                 break;
604
605         case IPI_RESCHEDULE:
606                 scheduler_ipi();
607                 break;
608
609         case IPI_CALL_FUNC:
610                 irq_enter();
611                 generic_smp_call_function_interrupt();
612                 irq_exit();
613                 break;
614
615         case IPI_CALL_FUNC_SINGLE:
616                 irq_enter();
617                 generic_smp_call_function_single_interrupt();
618                 irq_exit();
619                 break;
620
621         case IPI_CPU_STOP:
622                 irq_enter();
623                 ipi_cpu_stop(cpu);
624                 irq_exit();
625                 break;
626
627         default:
628                 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
629                        cpu, ipinr);
630                 break;
631         }
632         set_irq_regs(old_regs);
633 }
634
635 void smp_send_reschedule(int cpu)
636 {
637         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
638 }
639
640 #ifdef CONFIG_HOTPLUG_CPU
641 static void smp_kill_cpus(cpumask_t *mask)
642 {
643         unsigned int cpu;
644         for_each_cpu(cpu, mask)
645                 platform_cpu_kill(cpu);
646 }
647 #else
648 static void smp_kill_cpus(cpumask_t *mask) { }
649 #endif
650
651 void smp_send_stop(void)
652 {
653         unsigned long timeout;
654         struct cpumask mask;
655
656         cpumask_copy(&mask, cpu_online_mask);
657         cpumask_clear_cpu(smp_processor_id(), &mask);
658         if (!cpumask_empty(&mask))
659                 smp_cross_call(&mask, IPI_CPU_STOP);
660
661         /* Wait up to one second for other CPUs to stop */
662         timeout = USEC_PER_SEC;
663         while (num_online_cpus() > 1 && timeout--)
664                 udelay(1);
665
666         if (num_online_cpus() > 1)
667                 pr_warning("SMP: failed to stop secondary CPUs\n");
668
669         smp_kill_cpus(&mask);
670 }
671
672 /*
673  * not supported here
674  */
675 int setup_profiling_timer(unsigned int multiplier)
676 {
677         return -EINVAL;
678 }
679
680 #ifdef CONFIG_CPU_FREQ
681
682 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
683 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
684 static unsigned long global_l_p_j_ref;
685 static unsigned long global_l_p_j_ref_freq;
686
687 static int cpufreq_callback(struct notifier_block *nb,
688                                         unsigned long val, void *data)
689 {
690         struct cpufreq_freqs *freq = data;
691         int cpu = freq->cpu;
692
693         if (freq->flags & CPUFREQ_CONST_LOOPS)
694                 return NOTIFY_OK;
695
696         if (!per_cpu(l_p_j_ref, cpu)) {
697                 per_cpu(l_p_j_ref, cpu) =
698                         per_cpu(cpu_data, cpu).loops_per_jiffy;
699                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
700                 if (!global_l_p_j_ref) {
701                         global_l_p_j_ref = loops_per_jiffy;
702                         global_l_p_j_ref_freq = freq->old;
703                 }
704         }
705
706         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
707             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
708             (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
709                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
710                                                 global_l_p_j_ref_freq,
711                                                 freq->new);
712                 per_cpu(cpu_data, cpu).loops_per_jiffy =
713                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
714                                         per_cpu(l_p_j_ref_freq, cpu),
715                                         freq->new);
716         }
717         return NOTIFY_OK;
718 }
719
720 static struct notifier_block cpufreq_notifier = {
721         .notifier_call  = cpufreq_callback,
722 };
723
724 static int __init register_cpufreq_notifier(void)
725 {
726         return cpufreq_register_notifier(&cpufreq_notifier,
727                                                 CPUFREQ_TRANSITION_NOTIFIER);
728 }
729 core_initcall(register_cpufreq_notifier);
730
731 #endif