]> Pileus Git - ~andy/linux/blob - arch/arm/kernel/ptrace.c
tools/power: turbostat: fix large c1% issue
[~andy/linux] / arch / arm / kernel / ptrace.c
1 /*
2  *  linux/arch/arm/kernel/ptrace.c
3  *
4  *  By Ross Biro 1/23/92
5  * edited by Linus Torvalds
6  * ARM modifications Copyright (C) 2000 Russell King
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include <linux/kernel.h>
13 #include <linux/sched.h>
14 #include <linux/mm.h>
15 #include <linux/elf.h>
16 #include <linux/smp.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/init.h>
21 #include <linux/signal.h>
22 #include <linux/uaccess.h>
23 #include <linux/perf_event.h>
24 #include <linux/hw_breakpoint.h>
25 #include <linux/regset.h>
26 #include <linux/audit.h>
27 #include <linux/tracehook.h>
28 #include <linux/unistd.h>
29
30 #include <asm/pgtable.h>
31 #include <asm/traps.h>
32
33 #define REG_PC  15
34 #define REG_PSR 16
35 /*
36  * does not yet catch signals sent when the child dies.
37  * in exit.c or in signal.c.
38  */
39
40 #if 0
41 /*
42  * Breakpoint SWI instruction: SWI &9F0001
43  */
44 #define BREAKINST_ARM   0xef9f0001
45 #define BREAKINST_THUMB 0xdf00          /* fill this in later */
46 #else
47 /*
48  * New breakpoints - use an undefined instruction.  The ARM architecture
49  * reference manual guarantees that the following instruction space
50  * will produce an undefined instruction exception on all CPUs:
51  *
52  *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
53  *  Thumb: 1101 1110 xxxx xxxx
54  */
55 #define BREAKINST_ARM   0xe7f001f0
56 #define BREAKINST_THUMB 0xde01
57 #endif
58
59 struct pt_regs_offset {
60         const char *name;
61         int offset;
62 };
63
64 #define REG_OFFSET_NAME(r) \
65         {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
66 #define REG_OFFSET_END {.name = NULL, .offset = 0}
67
68 static const struct pt_regs_offset regoffset_table[] = {
69         REG_OFFSET_NAME(r0),
70         REG_OFFSET_NAME(r1),
71         REG_OFFSET_NAME(r2),
72         REG_OFFSET_NAME(r3),
73         REG_OFFSET_NAME(r4),
74         REG_OFFSET_NAME(r5),
75         REG_OFFSET_NAME(r6),
76         REG_OFFSET_NAME(r7),
77         REG_OFFSET_NAME(r8),
78         REG_OFFSET_NAME(r9),
79         REG_OFFSET_NAME(r10),
80         REG_OFFSET_NAME(fp),
81         REG_OFFSET_NAME(ip),
82         REG_OFFSET_NAME(sp),
83         REG_OFFSET_NAME(lr),
84         REG_OFFSET_NAME(pc),
85         REG_OFFSET_NAME(cpsr),
86         REG_OFFSET_NAME(ORIG_r0),
87         REG_OFFSET_END,
88 };
89
90 /**
91  * regs_query_register_offset() - query register offset from its name
92  * @name:       the name of a register
93  *
94  * regs_query_register_offset() returns the offset of a register in struct
95  * pt_regs from its name. If the name is invalid, this returns -EINVAL;
96  */
97 int regs_query_register_offset(const char *name)
98 {
99         const struct pt_regs_offset *roff;
100         for (roff = regoffset_table; roff->name != NULL; roff++)
101                 if (!strcmp(roff->name, name))
102                         return roff->offset;
103         return -EINVAL;
104 }
105
106 /**
107  * regs_query_register_name() - query register name from its offset
108  * @offset:     the offset of a register in struct pt_regs.
109  *
110  * regs_query_register_name() returns the name of a register from its
111  * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
112  */
113 const char *regs_query_register_name(unsigned int offset)
114 {
115         const struct pt_regs_offset *roff;
116         for (roff = regoffset_table; roff->name != NULL; roff++)
117                 if (roff->offset == offset)
118                         return roff->name;
119         return NULL;
120 }
121
122 /**
123  * regs_within_kernel_stack() - check the address in the stack
124  * @regs:      pt_regs which contains kernel stack pointer.
125  * @addr:      address which is checked.
126  *
127  * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
128  * If @addr is within the kernel stack, it returns true. If not, returns false.
129  */
130 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
131 {
132         return ((addr & ~(THREAD_SIZE - 1))  ==
133                 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
134 }
135
136 /**
137  * regs_get_kernel_stack_nth() - get Nth entry of the stack
138  * @regs:       pt_regs which contains kernel stack pointer.
139  * @n:          stack entry number.
140  *
141  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
142  * is specified by @regs. If the @n th entry is NOT in the kernel stack,
143  * this returns 0.
144  */
145 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
146 {
147         unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
148         addr += n;
149         if (regs_within_kernel_stack(regs, (unsigned long)addr))
150                 return *addr;
151         else
152                 return 0;
153 }
154
155 /*
156  * this routine will get a word off of the processes privileged stack.
157  * the offset is how far from the base addr as stored in the THREAD.
158  * this routine assumes that all the privileged stacks are in our
159  * data space.
160  */
161 static inline long get_user_reg(struct task_struct *task, int offset)
162 {
163         return task_pt_regs(task)->uregs[offset];
164 }
165
166 /*
167  * this routine will put a word on the processes privileged stack.
168  * the offset is how far from the base addr as stored in the THREAD.
169  * this routine assumes that all the privileged stacks are in our
170  * data space.
171  */
172 static inline int
173 put_user_reg(struct task_struct *task, int offset, long data)
174 {
175         struct pt_regs newregs, *regs = task_pt_regs(task);
176         int ret = -EINVAL;
177
178         newregs = *regs;
179         newregs.uregs[offset] = data;
180
181         if (valid_user_regs(&newregs)) {
182                 regs->uregs[offset] = data;
183                 ret = 0;
184         }
185
186         return ret;
187 }
188
189 /*
190  * Called by kernel/ptrace.c when detaching..
191  */
192 void ptrace_disable(struct task_struct *child)
193 {
194         /* Nothing to do. */
195 }
196
197 /*
198  * Handle hitting a breakpoint.
199  */
200 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
201 {
202         siginfo_t info;
203
204         info.si_signo = SIGTRAP;
205         info.si_errno = 0;
206         info.si_code  = TRAP_BRKPT;
207         info.si_addr  = (void __user *)instruction_pointer(regs);
208
209         force_sig_info(SIGTRAP, &info, tsk);
210 }
211
212 static int break_trap(struct pt_regs *regs, unsigned int instr)
213 {
214         ptrace_break(current, regs);
215         return 0;
216 }
217
218 static struct undef_hook arm_break_hook = {
219         .instr_mask     = 0x0fffffff,
220         .instr_val      = 0x07f001f0,
221         .cpsr_mask      = PSR_T_BIT,
222         .cpsr_val       = 0,
223         .fn             = break_trap,
224 };
225
226 static struct undef_hook thumb_break_hook = {
227         .instr_mask     = 0xffff,
228         .instr_val      = 0xde01,
229         .cpsr_mask      = PSR_T_BIT,
230         .cpsr_val       = PSR_T_BIT,
231         .fn             = break_trap,
232 };
233
234 static struct undef_hook thumb2_break_hook = {
235         .instr_mask     = 0xffffffff,
236         .instr_val      = 0xf7f0a000,
237         .cpsr_mask      = PSR_T_BIT,
238         .cpsr_val       = PSR_T_BIT,
239         .fn             = break_trap,
240 };
241
242 static int __init ptrace_break_init(void)
243 {
244         register_undef_hook(&arm_break_hook);
245         register_undef_hook(&thumb_break_hook);
246         register_undef_hook(&thumb2_break_hook);
247         return 0;
248 }
249
250 core_initcall(ptrace_break_init);
251
252 /*
253  * Read the word at offset "off" into the "struct user".  We
254  * actually access the pt_regs stored on the kernel stack.
255  */
256 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
257                             unsigned long __user *ret)
258 {
259         unsigned long tmp;
260
261         if (off & 3)
262                 return -EIO;
263
264         tmp = 0;
265         if (off == PT_TEXT_ADDR)
266                 tmp = tsk->mm->start_code;
267         else if (off == PT_DATA_ADDR)
268                 tmp = tsk->mm->start_data;
269         else if (off == PT_TEXT_END_ADDR)
270                 tmp = tsk->mm->end_code;
271         else if (off < sizeof(struct pt_regs))
272                 tmp = get_user_reg(tsk, off >> 2);
273         else if (off >= sizeof(struct user))
274                 return -EIO;
275
276         return put_user(tmp, ret);
277 }
278
279 /*
280  * Write the word at offset "off" into "struct user".  We
281  * actually access the pt_regs stored on the kernel stack.
282  */
283 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
284                              unsigned long val)
285 {
286         if (off & 3 || off >= sizeof(struct user))
287                 return -EIO;
288
289         if (off >= sizeof(struct pt_regs))
290                 return 0;
291
292         return put_user_reg(tsk, off >> 2, val);
293 }
294
295 #ifdef CONFIG_IWMMXT
296
297 /*
298  * Get the child iWMMXt state.
299  */
300 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
301 {
302         struct thread_info *thread = task_thread_info(tsk);
303
304         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
305                 return -ENODATA;
306         iwmmxt_task_disable(thread);  /* force it to ram */
307         return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
308                 ? -EFAULT : 0;
309 }
310
311 /*
312  * Set the child iWMMXt state.
313  */
314 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
315 {
316         struct thread_info *thread = task_thread_info(tsk);
317
318         if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
319                 return -EACCES;
320         iwmmxt_task_release(thread);  /* force a reload */
321         return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
322                 ? -EFAULT : 0;
323 }
324
325 #endif
326
327 #ifdef CONFIG_CRUNCH
328 /*
329  * Get the child Crunch state.
330  */
331 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
332 {
333         struct thread_info *thread = task_thread_info(tsk);
334
335         crunch_task_disable(thread);  /* force it to ram */
336         return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
337                 ? -EFAULT : 0;
338 }
339
340 /*
341  * Set the child Crunch state.
342  */
343 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
344 {
345         struct thread_info *thread = task_thread_info(tsk);
346
347         crunch_task_release(thread);  /* force a reload */
348         return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
349                 ? -EFAULT : 0;
350 }
351 #endif
352
353 #ifdef CONFIG_HAVE_HW_BREAKPOINT
354 /*
355  * Convert a virtual register number into an index for a thread_info
356  * breakpoint array. Breakpoints are identified using positive numbers
357  * whilst watchpoints are negative. The registers are laid out as pairs
358  * of (address, control), each pair mapping to a unique hw_breakpoint struct.
359  * Register 0 is reserved for describing resource information.
360  */
361 static int ptrace_hbp_num_to_idx(long num)
362 {
363         if (num < 0)
364                 num = (ARM_MAX_BRP << 1) - num;
365         return (num - 1) >> 1;
366 }
367
368 /*
369  * Returns the virtual register number for the address of the
370  * breakpoint at index idx.
371  */
372 static long ptrace_hbp_idx_to_num(int idx)
373 {
374         long mid = ARM_MAX_BRP << 1;
375         long num = (idx << 1) + 1;
376         return num > mid ? mid - num : num;
377 }
378
379 /*
380  * Handle hitting a HW-breakpoint.
381  */
382 static void ptrace_hbptriggered(struct perf_event *bp,
383                                      struct perf_sample_data *data,
384                                      struct pt_regs *regs)
385 {
386         struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
387         long num;
388         int i;
389         siginfo_t info;
390
391         for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
392                 if (current->thread.debug.hbp[i] == bp)
393                         break;
394
395         num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
396
397         info.si_signo   = SIGTRAP;
398         info.si_errno   = (int)num;
399         info.si_code    = TRAP_HWBKPT;
400         info.si_addr    = (void __user *)(bkpt->trigger);
401
402         force_sig_info(SIGTRAP, &info, current);
403 }
404
405 /*
406  * Set ptrace breakpoint pointers to zero for this task.
407  * This is required in order to prevent child processes from unregistering
408  * breakpoints held by their parent.
409  */
410 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
411 {
412         memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
413 }
414
415 /*
416  * Unregister breakpoints from this task and reset the pointers in
417  * the thread_struct.
418  */
419 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
420 {
421         int i;
422         struct thread_struct *t = &tsk->thread;
423
424         for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
425                 if (t->debug.hbp[i]) {
426                         unregister_hw_breakpoint(t->debug.hbp[i]);
427                         t->debug.hbp[i] = NULL;
428                 }
429         }
430 }
431
432 static u32 ptrace_get_hbp_resource_info(void)
433 {
434         u8 num_brps, num_wrps, debug_arch, wp_len;
435         u32 reg = 0;
436
437         num_brps        = hw_breakpoint_slots(TYPE_INST);
438         num_wrps        = hw_breakpoint_slots(TYPE_DATA);
439         debug_arch      = arch_get_debug_arch();
440         wp_len          = arch_get_max_wp_len();
441
442         reg             |= debug_arch;
443         reg             <<= 8;
444         reg             |= wp_len;
445         reg             <<= 8;
446         reg             |= num_wrps;
447         reg             <<= 8;
448         reg             |= num_brps;
449
450         return reg;
451 }
452
453 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
454 {
455         struct perf_event_attr attr;
456
457         ptrace_breakpoint_init(&attr);
458
459         /* Initialise fields to sane defaults. */
460         attr.bp_addr    = 0;
461         attr.bp_len     = HW_BREAKPOINT_LEN_4;
462         attr.bp_type    = type;
463         attr.disabled   = 1;
464
465         return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
466                                            tsk);
467 }
468
469 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
470                              unsigned long  __user *data)
471 {
472         u32 reg;
473         int idx, ret = 0;
474         struct perf_event *bp;
475         struct arch_hw_breakpoint_ctrl arch_ctrl;
476
477         if (num == 0) {
478                 reg = ptrace_get_hbp_resource_info();
479         } else {
480                 idx = ptrace_hbp_num_to_idx(num);
481                 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
482                         ret = -EINVAL;
483                         goto out;
484                 }
485
486                 bp = tsk->thread.debug.hbp[idx];
487                 if (!bp) {
488                         reg = 0;
489                         goto put;
490                 }
491
492                 arch_ctrl = counter_arch_bp(bp)->ctrl;
493
494                 /*
495                  * Fix up the len because we may have adjusted it
496                  * to compensate for an unaligned address.
497                  */
498                 while (!(arch_ctrl.len & 0x1))
499                         arch_ctrl.len >>= 1;
500
501                 if (num & 0x1)
502                         reg = bp->attr.bp_addr;
503                 else
504                         reg = encode_ctrl_reg(arch_ctrl);
505         }
506
507 put:
508         if (put_user(reg, data))
509                 ret = -EFAULT;
510
511 out:
512         return ret;
513 }
514
515 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
516                              unsigned long __user *data)
517 {
518         int idx, gen_len, gen_type, implied_type, ret = 0;
519         u32 user_val;
520         struct perf_event *bp;
521         struct arch_hw_breakpoint_ctrl ctrl;
522         struct perf_event_attr attr;
523
524         if (num == 0)
525                 goto out;
526         else if (num < 0)
527                 implied_type = HW_BREAKPOINT_RW;
528         else
529                 implied_type = HW_BREAKPOINT_X;
530
531         idx = ptrace_hbp_num_to_idx(num);
532         if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
533                 ret = -EINVAL;
534                 goto out;
535         }
536
537         if (get_user(user_val, data)) {
538                 ret = -EFAULT;
539                 goto out;
540         }
541
542         bp = tsk->thread.debug.hbp[idx];
543         if (!bp) {
544                 bp = ptrace_hbp_create(tsk, implied_type);
545                 if (IS_ERR(bp)) {
546                         ret = PTR_ERR(bp);
547                         goto out;
548                 }
549                 tsk->thread.debug.hbp[idx] = bp;
550         }
551
552         attr = bp->attr;
553
554         if (num & 0x1) {
555                 /* Address */
556                 attr.bp_addr    = user_val;
557         } else {
558                 /* Control */
559                 decode_ctrl_reg(user_val, &ctrl);
560                 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
561                 if (ret)
562                         goto out;
563
564                 if ((gen_type & implied_type) != gen_type) {
565                         ret = -EINVAL;
566                         goto out;
567                 }
568
569                 attr.bp_len     = gen_len;
570                 attr.bp_type    = gen_type;
571                 attr.disabled   = !ctrl.enabled;
572         }
573
574         ret = modify_user_hw_breakpoint(bp, &attr);
575 out:
576         return ret;
577 }
578 #endif
579
580 /* regset get/set implementations */
581
582 static int gpr_get(struct task_struct *target,
583                    const struct user_regset *regset,
584                    unsigned int pos, unsigned int count,
585                    void *kbuf, void __user *ubuf)
586 {
587         struct pt_regs *regs = task_pt_regs(target);
588
589         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
590                                    regs,
591                                    0, sizeof(*regs));
592 }
593
594 static int gpr_set(struct task_struct *target,
595                    const struct user_regset *regset,
596                    unsigned int pos, unsigned int count,
597                    const void *kbuf, const void __user *ubuf)
598 {
599         int ret;
600         struct pt_regs newregs;
601
602         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
603                                  &newregs,
604                                  0, sizeof(newregs));
605         if (ret)
606                 return ret;
607
608         if (!valid_user_regs(&newregs))
609                 return -EINVAL;
610
611         *task_pt_regs(target) = newregs;
612         return 0;
613 }
614
615 static int fpa_get(struct task_struct *target,
616                    const struct user_regset *regset,
617                    unsigned int pos, unsigned int count,
618                    void *kbuf, void __user *ubuf)
619 {
620         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
621                                    &task_thread_info(target)->fpstate,
622                                    0, sizeof(struct user_fp));
623 }
624
625 static int fpa_set(struct task_struct *target,
626                    const struct user_regset *regset,
627                    unsigned int pos, unsigned int count,
628                    const void *kbuf, const void __user *ubuf)
629 {
630         struct thread_info *thread = task_thread_info(target);
631
632         thread->used_cp[1] = thread->used_cp[2] = 1;
633
634         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
635                 &thread->fpstate,
636                 0, sizeof(struct user_fp));
637 }
638
639 #ifdef CONFIG_VFP
640 /*
641  * VFP register get/set implementations.
642  *
643  * With respect to the kernel, struct user_fp is divided into three chunks:
644  * 16 or 32 real VFP registers (d0-d15 or d0-31)
645  *      These are transferred to/from the real registers in the task's
646  *      vfp_hard_struct.  The number of registers depends on the kernel
647  *      configuration.
648  *
649  * 16 or 0 fake VFP registers (d16-d31 or empty)
650  *      i.e., the user_vfp structure has space for 32 registers even if
651  *      the kernel doesn't have them all.
652  *
653  *      vfp_get() reads this chunk as zero where applicable
654  *      vfp_set() ignores this chunk
655  *
656  * 1 word for the FPSCR
657  *
658  * The bounds-checking logic built into user_regset_copyout and friends
659  * means that we can make a simple sequence of calls to map the relevant data
660  * to/from the specified slice of the user regset structure.
661  */
662 static int vfp_get(struct task_struct *target,
663                    const struct user_regset *regset,
664                    unsigned int pos, unsigned int count,
665                    void *kbuf, void __user *ubuf)
666 {
667         int ret;
668         struct thread_info *thread = task_thread_info(target);
669         struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
670         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
671         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
672
673         vfp_sync_hwstate(thread);
674
675         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
676                                   &vfp->fpregs,
677                                   user_fpregs_offset,
678                                   user_fpregs_offset + sizeof(vfp->fpregs));
679         if (ret)
680                 return ret;
681
682         ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
683                                        user_fpregs_offset + sizeof(vfp->fpregs),
684                                        user_fpscr_offset);
685         if (ret)
686                 return ret;
687
688         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
689                                    &vfp->fpscr,
690                                    user_fpscr_offset,
691                                    user_fpscr_offset + sizeof(vfp->fpscr));
692 }
693
694 /*
695  * For vfp_set() a read-modify-write is done on the VFP registers,
696  * in order to avoid writing back a half-modified set of registers on
697  * failure.
698  */
699 static int vfp_set(struct task_struct *target,
700                           const struct user_regset *regset,
701                           unsigned int pos, unsigned int count,
702                           const void *kbuf, const void __user *ubuf)
703 {
704         int ret;
705         struct thread_info *thread = task_thread_info(target);
706         struct vfp_hard_struct new_vfp;
707         const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
708         const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
709
710         vfp_sync_hwstate(thread);
711         new_vfp = thread->vfpstate.hard;
712
713         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
714                                   &new_vfp.fpregs,
715                                   user_fpregs_offset,
716                                   user_fpregs_offset + sizeof(new_vfp.fpregs));
717         if (ret)
718                 return ret;
719
720         ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
721                                 user_fpregs_offset + sizeof(new_vfp.fpregs),
722                                 user_fpscr_offset);
723         if (ret)
724                 return ret;
725
726         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
727                                  &new_vfp.fpscr,
728                                  user_fpscr_offset,
729                                  user_fpscr_offset + sizeof(new_vfp.fpscr));
730         if (ret)
731                 return ret;
732
733         vfp_flush_hwstate(thread);
734         thread->vfpstate.hard = new_vfp;
735
736         return 0;
737 }
738 #endif /* CONFIG_VFP */
739
740 enum arm_regset {
741         REGSET_GPR,
742         REGSET_FPR,
743 #ifdef CONFIG_VFP
744         REGSET_VFP,
745 #endif
746 };
747
748 static const struct user_regset arm_regsets[] = {
749         [REGSET_GPR] = {
750                 .core_note_type = NT_PRSTATUS,
751                 .n = ELF_NGREG,
752                 .size = sizeof(u32),
753                 .align = sizeof(u32),
754                 .get = gpr_get,
755                 .set = gpr_set
756         },
757         [REGSET_FPR] = {
758                 /*
759                  * For the FPA regs in fpstate, the real fields are a mixture
760                  * of sizes, so pretend that the registers are word-sized:
761                  */
762                 .core_note_type = NT_PRFPREG,
763                 .n = sizeof(struct user_fp) / sizeof(u32),
764                 .size = sizeof(u32),
765                 .align = sizeof(u32),
766                 .get = fpa_get,
767                 .set = fpa_set
768         },
769 #ifdef CONFIG_VFP
770         [REGSET_VFP] = {
771                 /*
772                  * Pretend that the VFP regs are word-sized, since the FPSCR is
773                  * a single word dangling at the end of struct user_vfp:
774                  */
775                 .core_note_type = NT_ARM_VFP,
776                 .n = ARM_VFPREGS_SIZE / sizeof(u32),
777                 .size = sizeof(u32),
778                 .align = sizeof(u32),
779                 .get = vfp_get,
780                 .set = vfp_set
781         },
782 #endif /* CONFIG_VFP */
783 };
784
785 static const struct user_regset_view user_arm_view = {
786         .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
787         .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
788 };
789
790 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
791 {
792         return &user_arm_view;
793 }
794
795 long arch_ptrace(struct task_struct *child, long request,
796                  unsigned long addr, unsigned long data)
797 {
798         int ret;
799         unsigned long __user *datap = (unsigned long __user *) data;
800
801         switch (request) {
802                 case PTRACE_PEEKUSR:
803                         ret = ptrace_read_user(child, addr, datap);
804                         break;
805
806                 case PTRACE_POKEUSR:
807                         ret = ptrace_write_user(child, addr, data);
808                         break;
809
810                 case PTRACE_GETREGS:
811                         ret = copy_regset_to_user(child,
812                                                   &user_arm_view, REGSET_GPR,
813                                                   0, sizeof(struct pt_regs),
814                                                   datap);
815                         break;
816
817                 case PTRACE_SETREGS:
818                         ret = copy_regset_from_user(child,
819                                                     &user_arm_view, REGSET_GPR,
820                                                     0, sizeof(struct pt_regs),
821                                                     datap);
822                         break;
823
824                 case PTRACE_GETFPREGS:
825                         ret = copy_regset_to_user(child,
826                                                   &user_arm_view, REGSET_FPR,
827                                                   0, sizeof(union fp_state),
828                                                   datap);
829                         break;
830
831                 case PTRACE_SETFPREGS:
832                         ret = copy_regset_from_user(child,
833                                                     &user_arm_view, REGSET_FPR,
834                                                     0, sizeof(union fp_state),
835                                                     datap);
836                         break;
837
838 #ifdef CONFIG_IWMMXT
839                 case PTRACE_GETWMMXREGS:
840                         ret = ptrace_getwmmxregs(child, datap);
841                         break;
842
843                 case PTRACE_SETWMMXREGS:
844                         ret = ptrace_setwmmxregs(child, datap);
845                         break;
846 #endif
847
848                 case PTRACE_GET_THREAD_AREA:
849                         ret = put_user(task_thread_info(child)->tp_value,
850                                        datap);
851                         break;
852
853                 case PTRACE_SET_SYSCALL:
854                         task_thread_info(child)->syscall = data;
855                         ret = 0;
856                         break;
857
858 #ifdef CONFIG_CRUNCH
859                 case PTRACE_GETCRUNCHREGS:
860                         ret = ptrace_getcrunchregs(child, datap);
861                         break;
862
863                 case PTRACE_SETCRUNCHREGS:
864                         ret = ptrace_setcrunchregs(child, datap);
865                         break;
866 #endif
867
868 #ifdef CONFIG_VFP
869                 case PTRACE_GETVFPREGS:
870                         ret = copy_regset_to_user(child,
871                                                   &user_arm_view, REGSET_VFP,
872                                                   0, ARM_VFPREGS_SIZE,
873                                                   datap);
874                         break;
875
876                 case PTRACE_SETVFPREGS:
877                         ret = copy_regset_from_user(child,
878                                                     &user_arm_view, REGSET_VFP,
879                                                     0, ARM_VFPREGS_SIZE,
880                                                     datap);
881                         break;
882 #endif
883
884 #ifdef CONFIG_HAVE_HW_BREAKPOINT
885                 case PTRACE_GETHBPREGS:
886                         if (ptrace_get_breakpoints(child) < 0)
887                                 return -ESRCH;
888
889                         ret = ptrace_gethbpregs(child, addr,
890                                                 (unsigned long __user *)data);
891                         ptrace_put_breakpoints(child);
892                         break;
893                 case PTRACE_SETHBPREGS:
894                         if (ptrace_get_breakpoints(child) < 0)
895                                 return -ESRCH;
896
897                         ret = ptrace_sethbpregs(child, addr,
898                                                 (unsigned long __user *)data);
899                         ptrace_put_breakpoints(child);
900                         break;
901 #endif
902
903                 default:
904                         ret = ptrace_request(child, request, addr, data);
905                         break;
906         }
907
908         return ret;
909 }
910
911 asmlinkage int syscall_trace(int why, struct pt_regs *regs, int scno)
912 {
913         unsigned long ip;
914
915         if (why)
916                 audit_syscall_exit(regs);
917         else
918                 audit_syscall_entry(AUDIT_ARCH_ARM, scno, regs->ARM_r0,
919                                     regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
920
921         if (why == 0 && test_and_clear_thread_flag(TIF_SYSCALL_RESTARTSYS))
922                 scno = __NR_restart_syscall - __NR_SYSCALL_BASE;
923         if (!test_thread_flag(TIF_SYSCALL_TRACE))
924                 return scno;
925
926         current_thread_info()->syscall = scno;
927
928         /*
929          * IP is used to denote syscall entry/exit:
930          * IP = 0 -> entry, =1 -> exit
931          */
932         ip = regs->ARM_ip;
933         regs->ARM_ip = why;
934
935         if (why)
936                 tracehook_report_syscall_exit(regs, 0);
937         else if (tracehook_report_syscall_entry(regs))
938                 current_thread_info()->syscall = -1;
939
940         regs->ARM_ip = ip;
941
942         return current_thread_info()->syscall;
943 }