]> Pileus Git - ~andy/linux/blob - arch/arm/kernel/arch_timer.c
Merge branch 'i2c-embedded/for-next' of git://git.pengutronix.de/git/wsa/linux
[~andy/linux] / arch / arm / kernel / arch_timer.c
1 /*
2  *  linux/arch/arm/kernel/arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/smp.h>
16 #include <linux/cpu.h>
17 #include <linux/jiffies.h>
18 #include <linux/clockchips.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/io.h>
22
23 #include <asm/cputype.h>
24 #include <asm/delay.h>
25 #include <asm/localtimer.h>
26 #include <asm/arch_timer.h>
27 #include <asm/system_info.h>
28 #include <asm/sched_clock.h>
29
30 static unsigned long arch_timer_rate;
31
32 enum ppi_nr {
33         PHYS_SECURE_PPI,
34         PHYS_NONSECURE_PPI,
35         VIRT_PPI,
36         HYP_PPI,
37         MAX_TIMER_PPI
38 };
39
40 static int arch_timer_ppi[MAX_TIMER_PPI];
41
42 static struct clock_event_device __percpu **arch_timer_evt;
43 static struct delay_timer arch_delay_timer;
44
45 static bool arch_timer_use_virtual = true;
46
47 /*
48  * Architected system timer support.
49  */
50
51 #define ARCH_TIMER_CTRL_ENABLE          (1 << 0)
52 #define ARCH_TIMER_CTRL_IT_MASK         (1 << 1)
53 #define ARCH_TIMER_CTRL_IT_STAT         (1 << 2)
54
55 #define ARCH_TIMER_REG_CTRL             0
56 #define ARCH_TIMER_REG_FREQ             1
57 #define ARCH_TIMER_REG_TVAL             2
58
59 #define ARCH_TIMER_PHYS_ACCESS          0
60 #define ARCH_TIMER_VIRT_ACCESS          1
61
62 /*
63  * These register accessors are marked inline so the compiler can
64  * nicely work out which register we want, and chuck away the rest of
65  * the code. At least it does so with a recent GCC (4.6.3).
66  */
67 static inline void arch_timer_reg_write(const int access, const int reg, u32 val)
68 {
69         if (access == ARCH_TIMER_PHYS_ACCESS) {
70                 switch (reg) {
71                 case ARCH_TIMER_REG_CTRL:
72                         asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
73                         break;
74                 case ARCH_TIMER_REG_TVAL:
75                         asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val));
76                         break;
77                 }
78         }
79
80         if (access == ARCH_TIMER_VIRT_ACCESS) {
81                 switch (reg) {
82                 case ARCH_TIMER_REG_CTRL:
83                         asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val));
84                         break;
85                 case ARCH_TIMER_REG_TVAL:
86                         asm volatile("mcr p15, 0, %0, c14, c3, 0" : : "r" (val));
87                         break;
88                 }
89         }
90
91         isb();
92 }
93
94 static inline u32 arch_timer_reg_read(const int access, const int reg)
95 {
96         u32 val = 0;
97
98         if (access == ARCH_TIMER_PHYS_ACCESS) {
99                 switch (reg) {
100                 case ARCH_TIMER_REG_CTRL:
101                         asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
102                         break;
103                 case ARCH_TIMER_REG_TVAL:
104                         asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val));
105                         break;
106                 case ARCH_TIMER_REG_FREQ:
107                         asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val));
108                         break;
109                 }
110         }
111
112         if (access == ARCH_TIMER_VIRT_ACCESS) {
113                 switch (reg) {
114                 case ARCH_TIMER_REG_CTRL:
115                         asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val));
116                         break;
117                 case ARCH_TIMER_REG_TVAL:
118                         asm volatile("mrc p15, 0, %0, c14, c3, 0" : "=r" (val));
119                         break;
120                 }
121         }
122
123         return val;
124 }
125
126 static inline cycle_t arch_timer_counter_read(const int access)
127 {
128         cycle_t cval = 0;
129
130         if (access == ARCH_TIMER_PHYS_ACCESS)
131                 asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval));
132
133         if (access == ARCH_TIMER_VIRT_ACCESS)
134                 asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (cval));
135
136         return cval;
137 }
138
139 static inline cycle_t arch_counter_get_cntpct(void)
140 {
141         return arch_timer_counter_read(ARCH_TIMER_PHYS_ACCESS);
142 }
143
144 static inline cycle_t arch_counter_get_cntvct(void)
145 {
146         return arch_timer_counter_read(ARCH_TIMER_VIRT_ACCESS);
147 }
148
149 static irqreturn_t inline timer_handler(const int access,
150                                         struct clock_event_device *evt)
151 {
152         unsigned long ctrl;
153         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
154         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
155                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
156                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
157                 evt->event_handler(evt);
158                 return IRQ_HANDLED;
159         }
160
161         return IRQ_NONE;
162 }
163
164 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
165 {
166         struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
167
168         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
169 }
170
171 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
172 {
173         struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
174
175         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
176 }
177
178 static inline void timer_set_mode(const int access, int mode)
179 {
180         unsigned long ctrl;
181         switch (mode) {
182         case CLOCK_EVT_MODE_UNUSED:
183         case CLOCK_EVT_MODE_SHUTDOWN:
184                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
185                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
186                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
187                 break;
188         default:
189                 break;
190         }
191 }
192
193 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
194                                      struct clock_event_device *clk)
195 {
196         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
197 }
198
199 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
200                                      struct clock_event_device *clk)
201 {
202         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
203 }
204
205 static inline void set_next_event(const int access, unsigned long evt)
206 {
207         unsigned long ctrl;
208         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
209         ctrl |= ARCH_TIMER_CTRL_ENABLE;
210         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
211         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
212         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
213 }
214
215 static int arch_timer_set_next_event_virt(unsigned long evt,
216                                           struct clock_event_device *unused)
217 {
218         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
219         return 0;
220 }
221
222 static int arch_timer_set_next_event_phys(unsigned long evt,
223                                           struct clock_event_device *unused)
224 {
225         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
226         return 0;
227 }
228
229 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
230 {
231         clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
232         clk->name = "arch_sys_timer";
233         clk->rating = 450;
234         if (arch_timer_use_virtual) {
235                 clk->irq = arch_timer_ppi[VIRT_PPI];
236                 clk->set_mode = arch_timer_set_mode_virt;
237                 clk->set_next_event = arch_timer_set_next_event_virt;
238         } else {
239                 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
240                 clk->set_mode = arch_timer_set_mode_phys;
241                 clk->set_next_event = arch_timer_set_next_event_phys;
242         }
243
244         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
245
246         clockevents_config_and_register(clk, arch_timer_rate,
247                                         0xf, 0x7fffffff);
248
249         *__this_cpu_ptr(arch_timer_evt) = clk;
250
251         if (arch_timer_use_virtual)
252                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
253         else {
254                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
255                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
256                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
257         }
258
259         return 0;
260 }
261
262 /* Is the optional system timer available? */
263 static int local_timer_is_architected(void)
264 {
265         return (cpu_architecture() >= CPU_ARCH_ARMv7) &&
266                ((read_cpuid_ext(CPUID_EXT_PFR1) >> 16) & 0xf) == 1;
267 }
268
269 static int arch_timer_available(void)
270 {
271         unsigned long freq;
272
273         if (!local_timer_is_architected())
274                 return -ENXIO;
275
276         if (arch_timer_rate == 0) {
277                 freq = arch_timer_reg_read(ARCH_TIMER_PHYS_ACCESS,
278                                            ARCH_TIMER_REG_FREQ);
279
280                 /* Check the timer frequency. */
281                 if (freq == 0) {
282                         pr_warn("Architected timer frequency not available\n");
283                         return -EINVAL;
284                 }
285
286                 arch_timer_rate = freq;
287         }
288
289         pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
290                      arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100,
291                      arch_timer_use_virtual ? "virt" : "phys");
292         return 0;
293 }
294
295 static u32 notrace arch_counter_get_cntpct32(void)
296 {
297         cycle_t cnt = arch_counter_get_cntpct();
298
299         /*
300          * The sched_clock infrastructure only knows about counters
301          * with at most 32bits. Forget about the upper 24 bits for the
302          * time being...
303          */
304         return (u32)cnt;
305 }
306
307 static u32 notrace arch_counter_get_cntvct32(void)
308 {
309         cycle_t cnt = arch_counter_get_cntvct();
310
311         /*
312          * The sched_clock infrastructure only knows about counters
313          * with at most 32bits. Forget about the upper 24 bits for the
314          * time being...
315          */
316         return (u32)cnt;
317 }
318
319 static cycle_t arch_counter_read(struct clocksource *cs)
320 {
321         /*
322          * Always use the physical counter for the clocksource.
323          * CNTHCTL.PL1PCTEN must be set to 1.
324          */
325         return arch_counter_get_cntpct();
326 }
327
328 static unsigned long arch_timer_read_current_timer(void)
329 {
330         return arch_counter_get_cntpct();
331 }
332
333 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
334 {
335         /*
336          * Always use the physical counter for the clocksource.
337          * CNTHCTL.PL1PCTEN must be set to 1.
338          */
339         return arch_counter_get_cntpct();
340 }
341
342 static struct clocksource clocksource_counter = {
343         .name   = "arch_sys_counter",
344         .rating = 400,
345         .read   = arch_counter_read,
346         .mask   = CLOCKSOURCE_MASK(56),
347         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
348 };
349
350 static struct cyclecounter cyclecounter = {
351         .read   = arch_counter_read_cc,
352         .mask   = CLOCKSOURCE_MASK(56),
353 };
354
355 static struct timecounter timecounter;
356
357 struct timecounter *arch_timer_get_timecounter(void)
358 {
359         return &timecounter;
360 }
361
362 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
363 {
364         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
365                  clk->irq, smp_processor_id());
366
367         if (arch_timer_use_virtual)
368                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
369         else {
370                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
371                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
372                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
373         }
374
375         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
376 }
377
378 static struct local_timer_ops arch_timer_ops __cpuinitdata = {
379         .setup  = arch_timer_setup,
380         .stop   = arch_timer_stop,
381 };
382
383 static struct clock_event_device arch_timer_global_evt;
384
385 static int __init arch_timer_register(void)
386 {
387         int err;
388         int ppi;
389
390         err = arch_timer_available();
391         if (err)
392                 goto out;
393
394         arch_timer_evt = alloc_percpu(struct clock_event_device *);
395         if (!arch_timer_evt) {
396                 err = -ENOMEM;
397                 goto out;
398         }
399
400         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
401         cyclecounter.mult = clocksource_counter.mult;
402         cyclecounter.shift = clocksource_counter.shift;
403         timecounter_init(&timecounter, &cyclecounter,
404                          arch_counter_get_cntpct());
405
406         if (arch_timer_use_virtual) {
407                 ppi = arch_timer_ppi[VIRT_PPI];
408                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
409                                          "arch_timer", arch_timer_evt);
410         } else {
411                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
412                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
413                                          "arch_timer", arch_timer_evt);
414                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
415                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
416                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
417                                                  "arch_timer", arch_timer_evt);
418                         if (err)
419                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
420                                                 arch_timer_evt);
421                 }
422         }
423
424         if (err) {
425                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
426                        ppi, err);
427                 goto out_free;
428         }
429
430         err = local_timer_register(&arch_timer_ops);
431         if (err) {
432                 /*
433                  * We couldn't register as a local timer (could be
434                  * because we're on a UP platform, or because some
435                  * other local timer is already present...). Try as a
436                  * global timer instead.
437                  */
438                 arch_timer_global_evt.cpumask = cpumask_of(0);
439                 err = arch_timer_setup(&arch_timer_global_evt);
440         }
441         if (err)
442                 goto out_free_irq;
443
444         /* Use the architected timer for the delay loop. */
445         arch_delay_timer.read_current_timer = &arch_timer_read_current_timer;
446         arch_delay_timer.freq = arch_timer_rate;
447         register_current_timer_delay(&arch_delay_timer);
448         return 0;
449
450 out_free_irq:
451         if (arch_timer_use_virtual)
452                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
453         else {
454                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
455                                 arch_timer_evt);
456                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
457                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
458                                         arch_timer_evt);
459         }
460
461 out_free:
462         free_percpu(arch_timer_evt);
463 out:
464         return err;
465 }
466
467 static const struct of_device_id arch_timer_of_match[] __initconst = {
468         { .compatible   = "arm,armv7-timer",    },
469         {},
470 };
471
472 int __init arch_timer_of_register(void)
473 {
474         struct device_node *np;
475         u32 freq;
476         int i;
477
478         np = of_find_matching_node(NULL, arch_timer_of_match);
479         if (!np) {
480                 pr_err("arch_timer: can't find DT node\n");
481                 return -ENODEV;
482         }
483
484         /* Try to determine the frequency from the device tree or CNTFRQ */
485         if (!of_property_read_u32(np, "clock-frequency", &freq))
486                 arch_timer_rate = freq;
487
488         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
489                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
490
491         /*
492          * If no interrupt provided for virtual timer, we'll have to
493          * stick to the physical timer. It'd better be accessible...
494          */
495         if (!arch_timer_ppi[VIRT_PPI]) {
496                 arch_timer_use_virtual = false;
497
498                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
499                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
500                         pr_warn("arch_timer: No interrupt available, giving up\n");
501                         return -EINVAL;
502                 }
503         }
504
505         return arch_timer_register();
506 }
507
508 int __init arch_timer_sched_clock_init(void)
509 {
510         u32 (*cnt32)(void);
511         int err;
512
513         err = arch_timer_available();
514         if (err)
515                 return err;
516
517         if (arch_timer_use_virtual)
518                 cnt32 = arch_counter_get_cntvct32;
519         else
520                 cnt32 = arch_counter_get_cntpct32;
521
522         setup_sched_clock(cnt32, 32, arch_timer_rate);
523         return 0;
524 }