]> Pileus Git - ~andy/linux/blob - arch/arc/kernel/kprobes.c
Merge tag 'ecryptfs-3.9-rc2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[~andy/linux] / arch / arc / kernel / kprobes.c
1 /*
2  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/types.h>
10 #include <linux/kprobes.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/kprobes.h>
14 #include <linux/kdebug.h>
15 #include <linux/sched.h>
16 #include <linux/uaccess.h>
17 #include <asm/cacheflush.h>
18 #include <asm/current.h>
19 #include <asm/disasm.h>
20
21 #define MIN_STACK_SIZE(addr)    min((unsigned long)MAX_STACK_SIZE, \
22                 (unsigned long)current_thread_info() + THREAD_SIZE - (addr))
23
24 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
25 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
26
27 int __kprobes arch_prepare_kprobe(struct kprobe *p)
28 {
29         /* Attempt to probe at unaligned address */
30         if ((unsigned long)p->addr & 0x01)
31                 return -EINVAL;
32
33         /* Address should not be in exception handling code */
34
35         p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
36         p->opcode = *p->addr;
37
38         return 0;
39 }
40
41 void __kprobes arch_arm_kprobe(struct kprobe *p)
42 {
43         *p->addr = UNIMP_S_INSTRUCTION;
44
45         flush_icache_range((unsigned long)p->addr,
46                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
47 }
48
49 void __kprobes arch_disarm_kprobe(struct kprobe *p)
50 {
51         *p->addr = p->opcode;
52
53         flush_icache_range((unsigned long)p->addr,
54                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
55 }
56
57 void __kprobes arch_remove_kprobe(struct kprobe *p)
58 {
59         arch_disarm_kprobe(p);
60
61         /* Can we remove the kprobe in the middle of kprobe handling? */
62         if (p->ainsn.t1_addr) {
63                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
64
65                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
66                                    (unsigned long)p->ainsn.t1_addr +
67                                    sizeof(kprobe_opcode_t));
68
69                 p->ainsn.t1_addr = NULL;
70         }
71
72         if (p->ainsn.t2_addr) {
73                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
74
75                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
76                                    (unsigned long)p->ainsn.t2_addr +
77                                    sizeof(kprobe_opcode_t));
78
79                 p->ainsn.t2_addr = NULL;
80         }
81 }
82
83 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
84 {
85         kcb->prev_kprobe.kp = kprobe_running();
86         kcb->prev_kprobe.status = kcb->kprobe_status;
87 }
88
89 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
90 {
91         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
92         kcb->kprobe_status = kcb->prev_kprobe.status;
93 }
94
95 static inline void __kprobes set_current_kprobe(struct kprobe *p)
96 {
97         __get_cpu_var(current_kprobe) = p;
98 }
99
100 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
101                                        struct pt_regs *regs)
102 {
103         /* Remove the trap instructions inserted for single step and
104          * restore the original instructions
105          */
106         if (p->ainsn.t1_addr) {
107                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
108
109                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
110                                    (unsigned long)p->ainsn.t1_addr +
111                                    sizeof(kprobe_opcode_t));
112
113                 p->ainsn.t1_addr = NULL;
114         }
115
116         if (p->ainsn.t2_addr) {
117                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
118
119                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
120                                    (unsigned long)p->ainsn.t2_addr +
121                                    sizeof(kprobe_opcode_t));
122
123                 p->ainsn.t2_addr = NULL;
124         }
125
126         return;
127 }
128
129 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
130 {
131         unsigned long next_pc;
132         unsigned long tgt_if_br = 0;
133         int is_branch;
134         unsigned long bta;
135
136         /* Copy the opcode back to the kprobe location and execute the
137          * instruction. Because of this we will not be able to get into the
138          * same kprobe until this kprobe is done
139          */
140         *(p->addr) = p->opcode;
141
142         flush_icache_range((unsigned long)p->addr,
143                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
144
145         /* Now we insert the trap at the next location after this instruction to
146          * single step. If it is a branch we insert the trap at possible branch
147          * targets
148          */
149
150         bta = regs->bta;
151
152         if (regs->status32 & 0x40) {
153                 /* We are in a delay slot with the branch taken */
154
155                 next_pc = bta & ~0x01;
156
157                 if (!p->ainsn.is_short) {
158                         if (bta & 0x01)
159                                 regs->blink += 2;
160                         else {
161                                 /* Branch not taken */
162                                 next_pc += 2;
163
164                                 /* next pc is taken from bta after executing the
165                                  * delay slot instruction
166                                  */
167                                 regs->bta += 2;
168                         }
169                 }
170
171                 is_branch = 0;
172         } else
173                 is_branch =
174                     disasm_next_pc((unsigned long)p->addr, regs,
175                         (struct callee_regs *) current->thread.callee_reg,
176                         &next_pc, &tgt_if_br);
177
178         p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
179         p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
180         *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
181
182         flush_icache_range((unsigned long)p->ainsn.t1_addr,
183                            (unsigned long)p->ainsn.t1_addr +
184                            sizeof(kprobe_opcode_t));
185
186         if (is_branch) {
187                 p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
188                 p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
189                 *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
190
191                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
192                                    (unsigned long)p->ainsn.t2_addr +
193                                    sizeof(kprobe_opcode_t));
194         }
195 }
196
197 int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
198 {
199         struct kprobe *p;
200         struct kprobe_ctlblk *kcb;
201
202         preempt_disable();
203
204         kcb = get_kprobe_ctlblk();
205         p = get_kprobe((unsigned long *)addr);
206
207         if (p) {
208                 /*
209                  * We have reentered the kprobe_handler, since another kprobe
210                  * was hit while within the handler, we save the original
211                  * kprobes and single step on the instruction of the new probe
212                  * without calling any user handlers to avoid recursive
213                  * kprobes.
214                  */
215                 if (kprobe_running()) {
216                         save_previous_kprobe(kcb);
217                         set_current_kprobe(p);
218                         kprobes_inc_nmissed_count(p);
219                         setup_singlestep(p, regs);
220                         kcb->kprobe_status = KPROBE_REENTER;
221                         return 1;
222                 }
223
224                 set_current_kprobe(p);
225                 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
226
227                 /* If we have no pre-handler or it returned 0, we continue with
228                  * normal processing. If we have a pre-handler and it returned
229                  * non-zero - which is expected from setjmp_pre_handler for
230                  * jprobe, we return without single stepping and leave that to
231                  * the break-handler which is invoked by a kprobe from
232                  * jprobe_return
233                  */
234                 if (!p->pre_handler || !p->pre_handler(p, regs)) {
235                         setup_singlestep(p, regs);
236                         kcb->kprobe_status = KPROBE_HIT_SS;
237                 }
238
239                 return 1;
240         } else if (kprobe_running()) {
241                 p = __get_cpu_var(current_kprobe);
242                 if (p->break_handler && p->break_handler(p, regs)) {
243                         setup_singlestep(p, regs);
244                         kcb->kprobe_status = KPROBE_HIT_SS;
245                         return 1;
246                 }
247         }
248
249         /* no_kprobe: */
250         preempt_enable_no_resched();
251         return 0;
252 }
253
254 static int __kprobes arc_post_kprobe_handler(unsigned long addr,
255                                          struct pt_regs *regs)
256 {
257         struct kprobe *cur = kprobe_running();
258         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
259
260         if (!cur)
261                 return 0;
262
263         resume_execution(cur, addr, regs);
264
265         /* Rearm the kprobe */
266         arch_arm_kprobe(cur);
267
268         /*
269          * When we return from trap instruction we go to the next instruction
270          * We restored the actual instruction in resume_exectuiont and we to
271          * return to the same address and execute it
272          */
273         regs->ret = addr;
274
275         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
276                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
277                 cur->post_handler(cur, regs, 0);
278         }
279
280         if (kcb->kprobe_status == KPROBE_REENTER) {
281                 restore_previous_kprobe(kcb);
282                 goto out;
283         }
284
285         reset_current_kprobe();
286
287 out:
288         preempt_enable_no_resched();
289         return 1;
290 }
291
292 /*
293  * Fault can be for the instruction being single stepped or for the
294  * pre/post handlers in the module.
295  * This is applicable for applications like user probes, where we have the
296  * probe in user space and the handlers in the kernel
297  */
298
299 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
300 {
301         struct kprobe *cur = kprobe_running();
302         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
303
304         switch (kcb->kprobe_status) {
305         case KPROBE_HIT_SS:
306         case KPROBE_REENTER:
307                 /*
308                  * We are here because the instruction being single stepped
309                  * caused the fault. We reset the current kprobe and allow the
310                  * exception handler as if it is regular exception. In our
311                  * case it doesn't matter because the system will be halted
312                  */
313                 resume_execution(cur, (unsigned long)cur->addr, regs);
314
315                 if (kcb->kprobe_status == KPROBE_REENTER)
316                         restore_previous_kprobe(kcb);
317                 else
318                         reset_current_kprobe();
319
320                 preempt_enable_no_resched();
321                 break;
322
323         case KPROBE_HIT_ACTIVE:
324         case KPROBE_HIT_SSDONE:
325                 /*
326                  * We are here because the instructions in the pre/post handler
327                  * caused the fault.
328                  */
329
330                 /* We increment the nmissed count for accounting,
331                  * we can also use npre/npostfault count for accouting
332                  * these specific fault cases.
333                  */
334                 kprobes_inc_nmissed_count(cur);
335
336                 /*
337                  * We come here because instructions in the pre/post
338                  * handler caused the page_fault, this could happen
339                  * if handler tries to access user space by
340                  * copy_from_user(), get_user() etc. Let the
341                  * user-specified handler try to fix it first.
342                  */
343                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
344                         return 1;
345
346                 /*
347                  * In case the user-specified fault handler returned zero,
348                  * try to fix up.
349                  */
350                 if (fixup_exception(regs))
351                         return 1;
352
353                 /*
354                  * fixup_exception() could not handle it,
355                  * Let do_page_fault() fix it.
356                  */
357                 break;
358
359         default:
360                 break;
361         }
362         return 0;
363 }
364
365 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
366                                        unsigned long val, void *data)
367 {
368         struct die_args *args = data;
369         unsigned long addr = args->err;
370         int ret = NOTIFY_DONE;
371
372         switch (val) {
373         case DIE_IERR:
374                 if (arc_kprobe_handler(addr, args->regs))
375                         return NOTIFY_STOP;
376                 break;
377
378         case DIE_TRAP:
379                 if (arc_post_kprobe_handler(addr, args->regs))
380                         return NOTIFY_STOP;
381                 break;
382
383         default:
384                 break;
385         }
386
387         return ret;
388 }
389
390 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
391 {
392         struct jprobe *jp = container_of(p, struct jprobe, kp);
393         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
394         unsigned long sp_addr = regs->sp;
395
396         kcb->jprobe_saved_regs = *regs;
397         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
398         regs->ret = (unsigned long)(jp->entry);
399
400         return 1;
401 }
402
403 void __kprobes jprobe_return(void)
404 {
405         __asm__ __volatile__("unimp_s");
406         return;
407 }
408
409 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
410 {
411         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
412         unsigned long sp_addr;
413
414         *regs = kcb->jprobe_saved_regs;
415         sp_addr = regs->sp;
416         memcpy((void *)sp_addr, kcb->jprobes_stack, MIN_STACK_SIZE(sp_addr));
417         preempt_enable_no_resched();
418
419         return 1;
420 }
421
422 static void __used kretprobe_trampoline_holder(void)
423 {
424         __asm__ __volatile__(".global kretprobe_trampoline\n"
425                              "kretprobe_trampoline:\n" "nop\n");
426 }
427
428 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
429                                       struct pt_regs *regs)
430 {
431
432         ri->ret_addr = (kprobe_opcode_t *) regs->blink;
433
434         /* Replace the return addr with trampoline addr */
435         regs->blink = (unsigned long)&kretprobe_trampoline;
436 }
437
438 static int __kprobes trampoline_probe_handler(struct kprobe *p,
439                                               struct pt_regs *regs)
440 {
441         struct kretprobe_instance *ri = NULL;
442         struct hlist_head *head, empty_rp;
443         struct hlist_node *tmp;
444         unsigned long flags, orig_ret_address = 0;
445         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
446
447         INIT_HLIST_HEAD(&empty_rp);
448         kretprobe_hash_lock(current, &head, &flags);
449
450         /*
451          * It is possible to have multiple instances associated with a given
452          * task either because an multiple functions in the call path
453          * have a return probe installed on them, and/or more than one return
454          * return probe was registered for a target function.
455          *
456          * We can handle this because:
457          *     - instances are always inserted at the head of the list
458          *     - when multiple return probes are registered for the same
459          *       function, the first instance's ret_addr will point to the
460          *       real return address, and all the rest will point to
461          *       kretprobe_trampoline
462          */
463         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
464                 if (ri->task != current)
465                         /* another task is sharing our hash bucket */
466                         continue;
467
468                 if (ri->rp && ri->rp->handler)
469                         ri->rp->handler(ri, regs);
470
471                 orig_ret_address = (unsigned long)ri->ret_addr;
472                 recycle_rp_inst(ri, &empty_rp);
473
474                 if (orig_ret_address != trampoline_address) {
475                         /*
476                          * This is the real return address. Any other
477                          * instances associated with this task are for
478                          * other calls deeper on the call stack
479                          */
480                         break;
481                 }
482         }
483
484         kretprobe_assert(ri, orig_ret_address, trampoline_address);
485         regs->ret = orig_ret_address;
486
487         reset_current_kprobe();
488         kretprobe_hash_unlock(current, &flags);
489         preempt_enable_no_resched();
490
491         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
492                 hlist_del(&ri->hlist);
493                 kfree(ri);
494         }
495
496         /* By returning a non zero value, we are telling the kprobe handler
497          * that we don't want the post_handler to run
498          */
499         return 1;
500 }
501
502 static struct kprobe trampoline_p = {
503         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
504         .pre_handler = trampoline_probe_handler
505 };
506
507 int __init arch_init_kprobes(void)
508 {
509         /* Registering the trampoline code for the kret probe */
510         return register_kprobe(&trampoline_p);
511 }
512
513 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
514 {
515         if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
516                 return 1;
517
518         return 0;
519 }
520
521 void trap_is_kprobe(unsigned long cause, unsigned long address,
522                     struct pt_regs *regs)
523 {
524         notify_die(DIE_TRAP, "kprobe_trap", regs, address, cause, SIGTRAP);
525 }