]> Pileus Git - ~andy/linux/blob - Documentation/ptp/testptp.c
Linux 3.14
[~andy/linux] / Documentation / ptp / testptp.c
1 /*
2  * PTP 1588 clock support - User space test program
3  *
4  * Copyright (C) 2010 OMICRON electronics GmbH
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, write to the Free Software
18  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <math.h>
23 #include <signal.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/ioctl.h>
28 #include <sys/mman.h>
29 #include <sys/stat.h>
30 #include <sys/time.h>
31 #include <sys/timex.h>
32 #include <sys/types.h>
33 #include <time.h>
34 #include <unistd.h>
35
36 #include <linux/ptp_clock.h>
37
38 #define DEVICE "/dev/ptp0"
39
40 #ifndef ADJ_SETOFFSET
41 #define ADJ_SETOFFSET 0x0100
42 #endif
43
44 #ifndef CLOCK_INVALID
45 #define CLOCK_INVALID -1
46 #endif
47
48 /* When glibc offers the syscall, this will go away. */
49 #include <sys/syscall.h>
50 static int clock_adjtime(clockid_t id, struct timex *tx)
51 {
52         return syscall(__NR_clock_adjtime, id, tx);
53 }
54
55 static clockid_t get_clockid(int fd)
56 {
57 #define CLOCKFD 3
58 #define FD_TO_CLOCKID(fd)       ((~(clockid_t) (fd) << 3) | CLOCKFD)
59
60         return FD_TO_CLOCKID(fd);
61 }
62
63 static void handle_alarm(int s)
64 {
65         printf("received signal %d\n", s);
66 }
67
68 static int install_handler(int signum, void (*handler)(int))
69 {
70         struct sigaction action;
71         sigset_t mask;
72
73         /* Unblock the signal. */
74         sigemptyset(&mask);
75         sigaddset(&mask, signum);
76         sigprocmask(SIG_UNBLOCK, &mask, NULL);
77
78         /* Install the signal handler. */
79         action.sa_handler = handler;
80         action.sa_flags = 0;
81         sigemptyset(&action.sa_mask);
82         sigaction(signum, &action, NULL);
83
84         return 0;
85 }
86
87 static long ppb_to_scaled_ppm(int ppb)
88 {
89         /*
90          * The 'freq' field in the 'struct timex' is in parts per
91          * million, but with a 16 bit binary fractional field.
92          * Instead of calculating either one of
93          *
94          *    scaled_ppm = (ppb / 1000) << 16  [1]
95          *    scaled_ppm = (ppb << 16) / 1000  [2]
96          *
97          * we simply use double precision math, in order to avoid the
98          * truncation in [1] and the possible overflow in [2].
99          */
100         return (long) (ppb * 65.536);
101 }
102
103 static int64_t pctns(struct ptp_clock_time *t)
104 {
105         return t->sec * 1000000000LL + t->nsec;
106 }
107
108 static void usage(char *progname)
109 {
110         fprintf(stderr,
111                 "usage: %s [options]\n"
112                 " -a val     request a one-shot alarm after 'val' seconds\n"
113                 " -A val     request a periodic alarm every 'val' seconds\n"
114                 " -c         query the ptp clock's capabilities\n"
115                 " -d name    device to open\n"
116                 " -e val     read 'val' external time stamp events\n"
117                 " -f val     adjust the ptp clock frequency by 'val' ppb\n"
118                 " -g         get the ptp clock time\n"
119                 " -h         prints this message\n"
120                 " -i val     index for event/trigger\n"
121                 " -k val     measure the time offset between system and phc clock\n"
122                 "            for 'val' times (Maximum 25)\n"
123                 " -p val     enable output with a period of 'val' nanoseconds\n"
124                 " -P val     enable or disable (val=1|0) the system clock PPS\n"
125                 " -s         set the ptp clock time from the system time\n"
126                 " -S         set the system time from the ptp clock time\n"
127                 " -t val     shift the ptp clock time by 'val' seconds\n",
128                 progname);
129 }
130
131 int main(int argc, char *argv[])
132 {
133         struct ptp_clock_caps caps;
134         struct ptp_extts_event event;
135         struct ptp_extts_request extts_request;
136         struct ptp_perout_request perout_request;
137         struct timespec ts;
138         struct timex tx;
139
140         static timer_t timerid;
141         struct itimerspec timeout;
142         struct sigevent sigevent;
143
144         struct ptp_clock_time *pct;
145         struct ptp_sys_offset *sysoff;
146
147
148         char *progname;
149         int i, c, cnt, fd;
150
151         char *device = DEVICE;
152         clockid_t clkid;
153         int adjfreq = 0x7fffffff;
154         int adjtime = 0;
155         int capabilities = 0;
156         int extts = 0;
157         int gettime = 0;
158         int index = 0;
159         int oneshot = 0;
160         int pct_offset = 0;
161         int n_samples = 0;
162         int periodic = 0;
163         int perout = -1;
164         int pps = -1;
165         int settime = 0;
166
167         int64_t t1, t2, tp;
168         int64_t interval, offset;
169
170         progname = strrchr(argv[0], '/');
171         progname = progname ? 1+progname : argv[0];
172         while (EOF != (c = getopt(argc, argv, "a:A:cd:e:f:ghi:k:p:P:sSt:v"))) {
173                 switch (c) {
174                 case 'a':
175                         oneshot = atoi(optarg);
176                         break;
177                 case 'A':
178                         periodic = atoi(optarg);
179                         break;
180                 case 'c':
181                         capabilities = 1;
182                         break;
183                 case 'd':
184                         device = optarg;
185                         break;
186                 case 'e':
187                         extts = atoi(optarg);
188                         break;
189                 case 'f':
190                         adjfreq = atoi(optarg);
191                         break;
192                 case 'g':
193                         gettime = 1;
194                         break;
195                 case 'i':
196                         index = atoi(optarg);
197                         break;
198                 case 'k':
199                         pct_offset = 1;
200                         n_samples = atoi(optarg);
201                         break;
202                 case 'p':
203                         perout = atoi(optarg);
204                         break;
205                 case 'P':
206                         pps = atoi(optarg);
207                         break;
208                 case 's':
209                         settime = 1;
210                         break;
211                 case 'S':
212                         settime = 2;
213                         break;
214                 case 't':
215                         adjtime = atoi(optarg);
216                         break;
217                 case 'h':
218                         usage(progname);
219                         return 0;
220                 case '?':
221                 default:
222                         usage(progname);
223                         return -1;
224                 }
225         }
226
227         fd = open(device, O_RDWR);
228         if (fd < 0) {
229                 fprintf(stderr, "opening %s: %s\n", device, strerror(errno));
230                 return -1;
231         }
232
233         clkid = get_clockid(fd);
234         if (CLOCK_INVALID == clkid) {
235                 fprintf(stderr, "failed to read clock id\n");
236                 return -1;
237         }
238
239         if (capabilities) {
240                 if (ioctl(fd, PTP_CLOCK_GETCAPS, &caps)) {
241                         perror("PTP_CLOCK_GETCAPS");
242                 } else {
243                         printf("capabilities:\n"
244                                "  %d maximum frequency adjustment (ppb)\n"
245                                "  %d programmable alarms\n"
246                                "  %d external time stamp channels\n"
247                                "  %d programmable periodic signals\n"
248                                "  %d pulse per second\n",
249                                caps.max_adj,
250                                caps.n_alarm,
251                                caps.n_ext_ts,
252                                caps.n_per_out,
253                                caps.pps);
254                 }
255         }
256
257         if (0x7fffffff != adjfreq) {
258                 memset(&tx, 0, sizeof(tx));
259                 tx.modes = ADJ_FREQUENCY;
260                 tx.freq = ppb_to_scaled_ppm(adjfreq);
261                 if (clock_adjtime(clkid, &tx)) {
262                         perror("clock_adjtime");
263                 } else {
264                         puts("frequency adjustment okay");
265                 }
266         }
267
268         if (adjtime) {
269                 memset(&tx, 0, sizeof(tx));
270                 tx.modes = ADJ_SETOFFSET;
271                 tx.time.tv_sec = adjtime;
272                 tx.time.tv_usec = 0;
273                 if (clock_adjtime(clkid, &tx) < 0) {
274                         perror("clock_adjtime");
275                 } else {
276                         puts("time shift okay");
277                 }
278         }
279
280         if (gettime) {
281                 if (clock_gettime(clkid, &ts)) {
282                         perror("clock_gettime");
283                 } else {
284                         printf("clock time: %ld.%09ld or %s",
285                                ts.tv_sec, ts.tv_nsec, ctime(&ts.tv_sec));
286                 }
287         }
288
289         if (settime == 1) {
290                 clock_gettime(CLOCK_REALTIME, &ts);
291                 if (clock_settime(clkid, &ts)) {
292                         perror("clock_settime");
293                 } else {
294                         puts("set time okay");
295                 }
296         }
297
298         if (settime == 2) {
299                 clock_gettime(clkid, &ts);
300                 if (clock_settime(CLOCK_REALTIME, &ts)) {
301                         perror("clock_settime");
302                 } else {
303                         puts("set time okay");
304                 }
305         }
306
307         if (extts) {
308                 memset(&extts_request, 0, sizeof(extts_request));
309                 extts_request.index = index;
310                 extts_request.flags = PTP_ENABLE_FEATURE;
311                 if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
312                         perror("PTP_EXTTS_REQUEST");
313                         extts = 0;
314                 } else {
315                         puts("external time stamp request okay");
316                 }
317                 for (; extts; extts--) {
318                         cnt = read(fd, &event, sizeof(event));
319                         if (cnt != sizeof(event)) {
320                                 perror("read");
321                                 break;
322                         }
323                         printf("event index %u at %lld.%09u\n", event.index,
324                                event.t.sec, event.t.nsec);
325                         fflush(stdout);
326                 }
327                 /* Disable the feature again. */
328                 extts_request.flags = 0;
329                 if (ioctl(fd, PTP_EXTTS_REQUEST, &extts_request)) {
330                         perror("PTP_EXTTS_REQUEST");
331                 }
332         }
333
334         if (oneshot) {
335                 install_handler(SIGALRM, handle_alarm);
336                 /* Create a timer. */
337                 sigevent.sigev_notify = SIGEV_SIGNAL;
338                 sigevent.sigev_signo = SIGALRM;
339                 if (timer_create(clkid, &sigevent, &timerid)) {
340                         perror("timer_create");
341                         return -1;
342                 }
343                 /* Start the timer. */
344                 memset(&timeout, 0, sizeof(timeout));
345                 timeout.it_value.tv_sec = oneshot;
346                 if (timer_settime(timerid, 0, &timeout, NULL)) {
347                         perror("timer_settime");
348                         return -1;
349                 }
350                 pause();
351                 timer_delete(timerid);
352         }
353
354         if (periodic) {
355                 install_handler(SIGALRM, handle_alarm);
356                 /* Create a timer. */
357                 sigevent.sigev_notify = SIGEV_SIGNAL;
358                 sigevent.sigev_signo = SIGALRM;
359                 if (timer_create(clkid, &sigevent, &timerid)) {
360                         perror("timer_create");
361                         return -1;
362                 }
363                 /* Start the timer. */
364                 memset(&timeout, 0, sizeof(timeout));
365                 timeout.it_interval.tv_sec = periodic;
366                 timeout.it_value.tv_sec = periodic;
367                 if (timer_settime(timerid, 0, &timeout, NULL)) {
368                         perror("timer_settime");
369                         return -1;
370                 }
371                 while (1) {
372                         pause();
373                 }
374                 timer_delete(timerid);
375         }
376
377         if (perout >= 0) {
378                 if (clock_gettime(clkid, &ts)) {
379                         perror("clock_gettime");
380                         return -1;
381                 }
382                 memset(&perout_request, 0, sizeof(perout_request));
383                 perout_request.index = index;
384                 perout_request.start.sec = ts.tv_sec + 2;
385                 perout_request.start.nsec = 0;
386                 perout_request.period.sec = 0;
387                 perout_request.period.nsec = perout;
388                 if (ioctl(fd, PTP_PEROUT_REQUEST, &perout_request)) {
389                         perror("PTP_PEROUT_REQUEST");
390                 } else {
391                         puts("periodic output request okay");
392                 }
393         }
394
395         if (pps != -1) {
396                 int enable = pps ? 1 : 0;
397                 if (ioctl(fd, PTP_ENABLE_PPS, enable)) {
398                         perror("PTP_ENABLE_PPS");
399                 } else {
400                         puts("pps for system time request okay");
401                 }
402         }
403
404         if (pct_offset) {
405                 if (n_samples <= 0 || n_samples > 25) {
406                         puts("n_samples should be between 1 and 25");
407                         usage(progname);
408                         return -1;
409                 }
410
411                 sysoff = calloc(1, sizeof(*sysoff));
412                 if (!sysoff) {
413                         perror("calloc");
414                         return -1;
415                 }
416                 sysoff->n_samples = n_samples;
417
418                 if (ioctl(fd, PTP_SYS_OFFSET, sysoff))
419                         perror("PTP_SYS_OFFSET");
420                 else
421                         puts("system and phc clock time offset request okay");
422
423                 pct = &sysoff->ts[0];
424                 for (i = 0; i < sysoff->n_samples; i++) {
425                         t1 = pctns(pct+2*i);
426                         tp = pctns(pct+2*i+1);
427                         t2 = pctns(pct+2*i+2);
428                         interval = t2 - t1;
429                         offset = (t2 + t1) / 2 - tp;
430
431                         printf("system time: %ld.%ld\n",
432                                 (pct+2*i)->sec, (pct+2*i)->nsec);
433                         printf("phc    time: %ld.%ld\n",
434                                 (pct+2*i+1)->sec, (pct+2*i+1)->nsec);
435                         printf("system time: %ld.%ld\n",
436                                 (pct+2*i+2)->sec, (pct+2*i+2)->nsec);
437                         printf("system/phc clock time offset is %ld ns\n"
438                                 "system     clock time delay  is %ld ns\n",
439                                 offset, interval);
440                 }
441
442                 free(sysoff);
443         }
444
445         close(fd);
446         return 0;
447 }